ALLUVIAL DEPOSITS AS A SUBSOIL AND MATERIAL FOR BASIC HYDRO-TECHNICAL CONSTRUCTIONS
 
More details
Hide details
1
Department of Engineering Geology and Geotechnics, Adam Mickiewicz University in Poznań, Maków Polnych Str. 16, 61-606 Poznań, Poland
2
Institute of Construction and Geoengineering, Poznań University of Life Sciences, Piątkowska Str. 94, 60-649 Poznań, Poland
Publish date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):176–182
KEYWORDS
ABSTRACT
The article presents an analysis of geotechnical parameters of the alluvial deposit (the areas of the Vistula and Warta river valleys) with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. Strength and deformation parameters of the subsoil tested were identified by the CPTU (cone penetration test) and DMT (flat dilatometer test) methods, as well as by the vane test (VT). The article includes the analysis of overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 4 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne’s formula (1995) was used to determine the M0 modulus from the CPTU test. The usefulness of the alluvial deposit as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterized by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition. On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.
 
REFERENCES (21)
1. Benjamin J.R. and Cornell C.A. 1970. Probability, statistics, and decision for civil engineers. McGraw-Hill Book Co., New York.
2. Horn A. 1964. Die Scherfestigkeit von Schluff Westdeutschr Verlag. Koln.
3. Kezdi A., Młynarek Z. 1980. Static penetration test results with soils having slight or medium cohesion. Acta Technica Academiae Scientiarum Hungaricae, 90 (3-4), 187–199.
4. Kezdi A. 1969. Handbuch der Bodenmechanik. Akademiai Kiado. Budapest.
5. LunneT., Robertson P.K., Powell J. 1997. Cone penetration testing in geotechnical practice. E&FN Spon, London.
6. Mayne P.W. 1995. Profiling yield stress in clays by in-situ tests. Transportation Research Record 1479, National Academy Press, Washington, D.C. 43–50.
7. Mayne P.W., Coop M.R., Springman S., Huang A-B., Zornberg J. 2009. State-of-the-art paper (SOA-1): Geomaterial behavior and testing. In: Proc. of 17th Int. Conf. on Soil Mechanics & Geotechnical Engineering, Vol. 4 (ICSMGE, Alexandria, Egypt), Millpress/IOS Press Rotterdam, 2777–2872.
8. Młynarek Z. 1970. Metoda sondowania statycznego w zastosowaniu do charakterystyki konsystencji i cech wytrzymałościowych gliny piaszczystej. PhD Thesis (in Polish), University of Life Sciences, Poznań.
9. Młynarek Z., Tschuskche W., Sanglerat G. 1988. Accuracy of embankment density assessment of cone penetration test and light dynamic probe. Proc. of ISOPT-1988, Orlando; Balkema, 869–874.
10. Młynarek Z., Wierzbicki J., Wołyński W. 2007.An approach to 3D subsoil model based on CPTU results. Proc. of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid. Vol. 3. Millpress Rotterdam, 1721–1726.
11. Młynarek Z. 2010. Quality of laboratory and in-situ test contribution to risk management. In: Proc. of 14th Danube-European Conference on Geotechnical Engineering, Bratislava, Slovakia.
12. Młynarek Z., Stefaniak K., Wierzbicki J. 2012.Usefulness of alluvial soils for earth constructions. In: Proceedings of 12th Baltic Sea Geotechnical Conference, Rostock 2012.
13. Robertson P.K. 2009. Interpretation of Cone Penetration Testing – a unified approach. Canadian Geotechnical Journal.
14. Sandven R., K. Senneset, N. Janbu 1988. Interpretation of piezocone tests in cohesive soils. In: Proc. ISOPT-1. Orlando, 939–953.
15. Schnaid F. 2009. In situ testing in geomechanics. Taylor & Francis, London and New York.
16. Senneset K., Janbu N., Svano G. 1982. Strength and deformation parameters from cone penetration tests. In: Proc. ESOPT-2, Amsterdam, Balkema Publ., Rotterdam, 863–870.
17. Tumay M.T., Karasulu H., Mlynarek Z., Wierzbicki J. 2011. Effectiveness of piezo cone penetration test classification charts for identification of subsoil stratigraphy. In: Proc. of 12th ECSMGE, Athens.
18. Wierzbicki J. 2010. Evaluation of subsoil overconsolidation by means of in situ tests in the context of its origin (in Polish). Rozprawy Naukowe nr 410. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu. pp. 182.
19. Wierzbicki J. 2006. Parametry geotechniczne osadów tarasy zalewowej Wisły w rejonie Puław. [In:] Kałuża T. „Badania odporności hydraulicznej drzewostanów łęgowych w aspekcie racjonalnego zagospodarowania terenów zalewowych”. Raport z projektu badawczego KBN 0734/P06/2003/25.
20. Wierzbicki J., Smaga A. 2014. Repeatability analysis of geoengineering layers in river valley (in Polish). Przegląd Geologiczny, 62, 10/2, 721–726.
21. Wiłun Z. 2000. Zarys geotechniki (in Polish). Wyd. Komunikacji i Łączności, Warszawa.