Application of Bimetallic Nanoparticles as Eco-Friendly Metal Corrosion Inhibitors in a Thiol Medium through the Example of Cysteine
More details
Hide details
1
D. Serikbayev East Kazakhstan Technical University, 19, Serikbayev str., 070000, Ust-Kamenogorsk, Kazakhstan
2
Immanuel Kant Baltic Federal University, 14 A. Nevskogo ul., 236016 Kaliningrad, Russia
Corresponding author
Yelena Ivashchenko
D. Serikbayev East Kazakhstan Technical University, 19, Serikbayev str., 070000, Ust-Kamenogorsk, Kazakhstan
J. Ecol. Eng. 2024; 25(7):105-114
KEYWORDS
TOPICS
ABSTRACT
This article raises the relevancy problems of bimetallic nanostructures using to inhibit corrosion processes specific to various sulfur-containing media, including the extraction and transporta-tion of natural hydrocarbons, in oil and gas condensate equipment. The environmental aspect of the research is the possibility of using bimetallic nanostructures modified with cysteine as environmentally friendly agents that protect steel from corrosion, especially in a thiol medium.
There are presented experimental data on the synthesis and study of bimetallic nanostructures based on copper and silver in a thiol medium based on cysteine aminoacid. The research field is conditioned by these days’ tendency that advanced developments in many branches of sci-ence are directly associated to the application of nanomaterials. The high action efficiency of these materials is achieved due to their highly dispersed state, distinguishing them favorably from conventional macroobjects. The synthesis of Cu/Ag nanostructures was carried out due to the unique properties of bimetals, such as increased activity of atoms in the surface layer, display of quantum effects, etc., that are more pronounced than those in monometallic nanostructures. The main article concept lies within simulation the process of sulfides and oth-er sulfur compounds formation with bimetallic nanoparticles to protect oil and gas equipment from sulfur-containing corrosive agents in aqueous medium. The goal is to synthesize the cop-per-silver bimetallic microparticles stabilized with apple pectin and verification of the possibil-ity of forming a metal-sulfur bond at the nanoscale level with cysteine aminoacid as a suitable and convenient compound. The objectives include directly the method of synthesis of the bi-metallic microstructure Cu-Ag, stabilized with a solution of apple pectin; absorption spectro-photometry of the studied disperse system of bimetallic Cu-Ag microparticles in the visible region; scanning electron microscopy (SEM) of the bimetallic Cu-Ag microparticles obtained; study of chemisorption of L-cysteine hydrochloride on the dispersed phase surface of bimetal-lic Cu-Ag microparticles; Raman-scattering spectroscopy of the sample obtained after chemi-sorption.