More details
Hide details
Department of Microbiology and Environmental Biotechnology, West Pomeranian University of Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
Publish date: 2016-01-01
J. Ecol. Eng. 2016; 17(1):119–122
The aim of the study was to assess the cellulolytic activity of a strain of Trichoderma viride in the presence of three lignocellulosic substrates, i.e. wheat, barley, and maize straw, in different temperatures (25 °C, 30 °C and 35 °C). Research related to the biosynthesis of enzymes was conducted using the deep method, whereas enzyme activity was assessed on solid media with added carboxymethyl cellulose (CMC). The assessment was based on the activity index (AI) determined for each object of research. The obtained results indicate that T. viride produces cellulolytic enzymes, and that their level of activity depends on the type of material introduced into the culture as a lignocellulosic substrate as well as on the temperature. The highest value of AI was found in objects with added maize straw. The optimal temperature for the biosynthesis of cellulolytic enzymes equalled 30 °C.
Bhattacharya S., Das A., Patnaik A., Bokade P., Rajan S.S., 2014. Submerged fermentation and characterization of carboxymethyl cellulase from a rhizospheric isolate of Trichoderma viride associated with Azadirachta indica. J. Sci. Ind. Res., 73, 225–230.
Bisaria V.S., Ghose T.K., 1981. Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzyme Microbial Technol., 3, 90–104.
Herculano P.N., Porto T.S., Moreira K.A., Pinto G.A., Souza-Motta C.M., Porto A.L., 2011. Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L. ) under solid state fermentation. Appl. Biochem. Biotechnol., 165(3-4), 1057–1067.
Kancelista A., Tril U., Stempniewicz R., Piegza M., Szczech M., Witkowska D., 2013. Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Pol. J. Environ. Stud., 22(4), 1083–1090.
Khokhar I., Haider M.S., Mushtaq S., Mukhtar I., 2012. Isolation and screening of highly cellulolytic filamentous fungi. J. Appl. Sci. Environ. Manage., 16(3), 223–226.
Krawiec F. (red.), 2010. Odnawialne źródła energii w świetle globalnego kryzysu energetycznego. Wybrane problemy. Diffin, Warszawa.
Kumar P., Barret D.M., Delwiche M.J., Stroeve P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48(8), 3713–3729.
Lim J.S., Abdul Manan Z., Wan Alwi S.R., Hashim H., 2012. A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sust. Energ. Rev., 16(5), 3084–3094.
Maeda R.N., Serpa V.I., Rocha V.A.L., Mesquita R.A.A., Santa Anna L.M.M., Machado de Castro A., Driemeier C.E., Pereira Jr. N., Polikarpov I., 2011. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Proc. Biochem., 46, 1196–1201.
Malik S.K., Mukhtar H., Farooqi A.A., Haq I., 2010.Optimization of process parameters for the biosynthesis of cellulases by Trichoderma viride. Pak. J. Bot., 42, 4243–4251.
Mandels M., 1975. Microbial Sources of cellulase. Biotechnol. Bioeng. Symp., 5, 81–105.
Miettinen-Oinonen A., Suominen P., 2002. Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Appl. Environ. Microbiol., 68(8), 3956–3964.
Neethu K., Rubeena M., Sajith S., Sreedevi S., Priji P., Unni K.N., Sarath Josh M.K., Jisha V.N., Pradeep S., Benjamin S., 2012. A novel strain of Trichoderma viride shows complete lignocellulolytic activities Adv. Biosc. Biotechnol., 3, 1160–1166.
Perez J., Munoz-Dorado J., De-la-Rubia T., Martinez J., 2002. Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: an overview. Int. Microbiol., 5, 53–63.
Ren N.Q., Wang A.J., Cao G.L., Xu J.F., Gao L.F., 2009. Bioconversion of lignocellulosic biomass is hydrogen: Potential and challenges. Biotechnol. Advan., 27, 1051–1060.
Rubeena M., Neethu K., Sajith S., Sreedevi S., Priji P., Unni K.N., Sarath Josh M.K., Jisha V.N., Pradeep S., Benjamin S., 2013. Lignocellulolytic activities of a novel strain of Trichoderma harzianum. Adv. Biosc. Biotechnol., 4, 214–221.
Sanchez C., 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv., 27, 185–194.
Sartori T., Tibolla H., Prigol E., Colla L.M., Vieira Costa J.A., Bertolin T.E., 2015. Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. BioMed Research International, volume 2015, article ID 342716, 9 pages.
Song Z., Yang G, Liu X., Yan Z., Yuan Y., Liao Y., 2014. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE, 9(4), e93801, doi: 10.1371/journal.pone.0093801.
Tholudur A., Ramirez W.F., McMillan J.D., 1999. Mathematical modeling and optimization of cellulose protein production using Trichoderma reseei RL-P37. Biotechnol. Bioeng., 66, 1–16.