CHANGES THE CONCENTRATION OF SELECTED PAHs IN URBAN SOILS FERTILIZED WITH MUNICIPAL SEWAGE SLUDGE
 
More details
Hide details
1
Division of Sanitary Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Str., 15-351 Białystok, Poland
2
Division of Chemistry, Bialystok University of Technology, Wiejska 45E Str., 15-351 Białystok, Poland
Publish date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):62–67
KEYWORDS
ABSTRACT
The aim of this study was to analyze changes in the content of selected polycyclic aromatic hydrocarbons (PAHs) in urban soils fertilized with municipal sewage sludge. The factors in the experiment were three lawns along the main roads in Bialystok (in Popieluszki, Hetmanska and Raginisa Strs.), doses of sewage sludge (0 – control; 75 and 150 Mg/ha) and two years of study (2011 and 2012). The studied parameters were monitored at the end of the growing season (in October 2011 and 2012) by determining fluoranthene, pyrene, benzo[a]anthracene, chrysene, and benzo[a]pyrene in soil samples. Furthermore, the dehydrogenase activity, the pH and organic carbon content of the soil were determined. Obtained content of studied PAHs in the urban soil does not exceed those contained in the Regulation of the Minister of the Environment of September 9th, 2002 on soil quality standards and ground quality standards. The concentration of pyrene and chrysene differed significantly depending on the time of sampling and the localization. It has been shown that fertilization of soil sewage sludge revealed reduction of pyrene concentration in soil. Among 5 tested PAHs compounds, benzo[a]pyrene was the most dominant compound both in samples collected in 2011 and 2012 (28 and 27% respectively).
 
REFERENCES (22)
1.
Banach-Szott M., Dębska B., Mroziński G. 2012. Zmiany zawartości wybranych WWA w glebach płowych. Proceedings of ECOpole, 6, 1, 173–181.
 
2.
Banger K., Toor G.S., Chirenje T., Ma L. 2010. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida. Soil and Sediment Contamination, 19, 231–243.
 
3.
Baran S., Bielinska J.E., Oleszczuk P. 2004. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118, 221–232.
 
4.
Brzezińska M., Włodarczyk T. 2005. Enzymy wewnątrzkomórkowych przemian redoks (okydoreduktazy). Acta Agrophysica, Rozprawy i Monografie, 3, 11–26.
 
5.
De Nicola F., Alfani A., Maisto G. 2014. Polycyclic aromatic hydrocarbon contamination in an urban area assessed by Quercus ilex leaves and soil. Environmental Science and Pollution Research, 21, 7616–7623.
 
6.
Dębska B., Banach-Szott M., Rosa E. 2014. Soil pollution of selected PAHs as a factor affecting the properties of humic acids. Journal of Ecological Engineering, 15, 1, 67–73.
 
7.
Haritash A.K., Kaushik C.P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials 169, 1–15.
 
9.
Monte M.J.S., Notario R., Pinto S.P., Ferreira L., Ana I.M.C, R. da Silva, 2012. Thermodynamic properties of fluoranthene: an experimental and computational study. Journal of Chemical Thermodynamics, 49, 159–164.
 
10.
Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Katalog. IOŚ, Warszawa.
 
11.
Piekutin J. 2011. Zanieczyszczenie wód produktami naftowymi. Rocznik Ochrony Środowiska, 13, 2, 1905–1916.
 
12.
Rosales E., Pe´rez-Paz A., Va´zquez X., Pazos M., Sanroma´n M.A. 2012. Isolation of novel benzo[a]anthracene-degrading microorganisms and continuous bioremediation in an expanded-bed bioreactor. Bioprocess and Biosystems Engineering, 35, 851–855.
 
13.
Rozporządzenie Ministra Środowiska z dnia 13 lipca 2010r w sprawie komunalnych osadów ściekowych (Dz.U. 2010 nr 137, poz. 924).
 
14.
Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi (Dz.U. 2002 nr 165, poz. 1359).
 
15.
Schneider J., Grosser R., Jayasimhulu K., Xue W., Warshawsky D. 1996. Degradation of pyrene, benzo[a]anthracene, and benzo[a]pyrene by mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology, 62, 13–19.
 
16.
Vane C.H., Kim A.W., Beriro D.J., Cave M.R., Knights K., Moss-Hayes V., Nathanail P.C. 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 2014, 303–314.
 
17.
Wang Y., Tian Z., Zhu H., Cheng Z., Kang M., Luo C., Li J., Zhang G. 2012. Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in South China: Concentration, distribution, source, and risk assessment. Science of the Total Environment, 439, 187–193.
 
18.
White P.A. 2002. The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutation Research, 515, 85–98.
 
19.
Wild S.R., Jones K.C. 1995. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environmental Pollution, 88, 91–108.
 
20.
Yu H, Huang G H, An C J, Wei J, 2011. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system. Journal of Hazardous Materials, 190(1-3), 883–890.
 
21.
Yu H., Zhu L., Zhou W. 2007. Enhanced desorption and biodegradation of phenanthrene in soil–water systems with the presence of anionic–nonionic mixed surfactants. Journal of Hazardous Materials, 142, 354–361.
 
22.
Zhang J., Lin X., Liu W., Wang Y., Zeng J., Chen H. 2012. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils. Journal of Environmental Sciences, 24, 8, 1476–1482.