RESPONSE OF SPECKLED SPUR-FLOWER TO SALINITY STRESS AND SALICYLIC ACID TREATMENT
 
More details
Hide details
1
Department of Horticulture, Faculty of Environmental, Management and Agriculture, West Pomeranian University of Technology, Papieża Pawła VI 3, 71-459 Szczecin, Poland
Publish date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):68–75
KEYWORDS
ABSTRACT
One of the limitations to using ornamental plants in green areas is too high salinity and alkalization of the soil. The adverse effect of salinity on plant growth and development may be effectively reduced by application of salicylic acid. Plectranthus ciliatus is an attractive bed plant with ornamental leaves, recommended for growing in containers, hanging baskets, or sunny borders. The aim of this study was to investigate the response of P. ciliatus to salicylic acid and calcium chloride. The plants were grown in pots in a glasshouse and were sprayed with solution of 0.5 mM salicylic acid and watered with 200 mM calcium chloride. The application of salicylic acid resulted in an increased weight of the aboveground parts, higher stomatal conductance and leaf greenness index and enhanced leaf content of nitrogen, potassium, iron and zinc. Salinity-exposed plants were characterized by reduced weight, stomatal conductance and leaf greenness index. Salt stress caused also a drop in leaf content of nitrogen, potassium and iron, and an increase in calcium, sodium, chlorine, copper and manganese concentration. Salicylic acid seemed to relieve salinity-mediated plant stress.
 
REFERENCES (44)
1.
Amir J., Eshghi S., Tafazoli E., Kholdebarin B., Abbaspour N. 2014. Ameliorative effects of salicylic acid on mineral concentrations in roots and leaves of two grapevine (Vitis vinifera L.) cultivars under salt stress. VITIS - J. Grapevine Res., 53 (4), 181–188.
 
2.
Arve L.E., Torre S., Olsen J.E., Tanino K.K. 2011. Stomatal responses to drought stress and air humidity. In: Abiotic stress in plants – mechanisms and adaptations, A. Shanker, B. Venkateswarlu (eds.), InTech, Rijeka, Croatia.
 
3.
Bãnón, S., Miralles, J., Ochoa, J., Franco, J.A., Sánchez-Blanco, M.J. 2011. Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants. Sci. Hort., 129, 869–876.
 
4.
Belkadhi A., De Haro A., Obregon S., Chaibi W., Djebali W. 2015. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.) Ecotoxicol. Environ. Saf., 120, 102–109.
 
5.
Bercu R. 2013. Comparative anatomy of two Lamiaceae species leaves with ornamental value. Ann. Rom. Soc. Cell Biol., 18 (1), 232–238.
 
6.
Bhatt M.J., Patel A.D., Bhatti P.M., Pandey A.N. 2008. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). Fruit. Ornam. Plant Res., 16, 383–401.
 
7.
Breś W. 2008. Czynniki antropopresji powodujące zamieranie drzew w krajobrazie miejskim. Nauka Przyr. Technol. 2, 4, p. 31.
 
8.
Breś W., Kupska A., Trelka T. 2014. Response of scarlet sage and common sunflower plants to salinity caused by sodium salts. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech., 315(32), 5–14.
 
9.
Briat J.-F., Dubos C., Gaymard F. 2015. Iron nutrition, biomass production, and plant product quality. Trends Plant Sci., 20 (1), 33–40.
 
10.
Cai X., Niu G., Starman T., Hall C. 2014. Response of six garden roses (Rosa ×hybrida L.) to salt stress. Sci. Hortic., 168, 27–32.
 
11.
El-Yazied A.A. 2011. Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Res. J. Agric. Biol. Sci. 7(6), 423–433.
 
12.
Freitas M.A.C., Amorim A.V., Bezerra A.M.E., Pereira M.S., Bessa M.C., Nogueira Filho F.P., Lacerda C.F. 2014. Growth and salinity tolerance in three medicinal species of the genus Plectranthus exposed to different levels of solar radiation. Rev. Bras. Plantas Med., 16 (4), 839–849.
 
13.
Gao J., Gu M., Niu G., Chen Y. 2012. Effects of salinity on three Pennisetum cultivars. J. Food Agric. Environ., 10 (3-4), 1005–1007.
 
14.
Greenway H., Munns R. 1980. Mechanisms of salt tolerance in non-halophytes. Annu. Rev. Plant Physiol., 31, 149–190.
 
15.
Gunes A, Inal A, Alpaslan M, Eraslan F, Guneri Bagci E, Cicek N. 2007. Salicylic acid induded changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol., 164(728), 736.
 
16.
Jalal R.S., Bafeel S.O., Moftah A.E. 2012. Effect of salicylic acid on growth, photosynthetic pigments and essential oil components of Shara (Plectranthus tenuiflorus) plants grown under drought stress conditions. Int. Res. J. Agric. Sci. Soil Sci., 2(6), 252–260.
 
17.
Jayakannan M., Bose J., Babourina O., Rengel Z., Shabala S. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul., 76(1), 25–40.
 
18.
Jull L.G. 2009. Winter salt injury and salt tolerant landscape plants. Division of Cooperative Extension, University of Wisconsin, A3877, 1–12.
 
19.
Khan M.I.R., Fatma M., Per T.S., Anjum N.A., Khan N.A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci., 6, 462.
 
20.
Kong J., Dong Y., Xu L., Liu S., Bai X. 2014. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot. Stud., 55, 9.
 
21.
Kovácik J, Grúz J, Backor M, Strnad M, Repcák M. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep., 28, 135–143.
 
22.
Larque-Saavedra A., Martin-Mex R. 2007. Effects of salicylic acid on the bioproductivity of plants. In: S. Hayat, A. Ahmad (Eds.) Salicylic acid: A plant hormone. Springer Publishers. Dordrecht. The Netherlands, 15–23.
 
23.
Li T., Hu Y., Du X., Tang H., Shen C., Wu J. 2014. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE, 9 (10), no. e109492.
 
24.
Li X.M., Ma L.J., Bu N., Li Y.Y., Zhang L.H. 2014. Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biol. Plantarum, 58 (1), 195–199.
 
25.
Manaa A., Gharbi E., Mimouni H., Wasti S., Aschi-Smiti S., Lutts S., Ben Ahmed H. 2014. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S. Afr. J. Bot., 95, 32–39.
 
26.
Marschner H. 1995. Mineral nutrition of higher plants (2nd ed.). Academic Press, New York.
 
27.
Mirdad Z.M. 2014. Effect of K+ and salicylic acid on broccoli (Brassica oleraceae var. italica) plants grown under saline water irrigation. J. Agric. Sci. 6 (10), 57–66.
 
28.
Niu G., Cabrera R.I. 2010. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience, 45(11), 1605–1609.
 
29.
Niu G., Rodriguez D.S. 2006. Relative salt tolerance of selected herbaceous perennials and groundcovers. Sci. Hortic., 110(4), 352–358.
 
30.
Niu G., Rodriguez D.S., McKenney C. 2012. Response of selected wildflower species to saline water irrigation. HortScience, 47(9), 1351–1355.
 
31.
Niu G., Rodriguez D.S., Starman T. 2010. Response of bedding plants to saline water irrigation. HortScience 45(4), 628–636.
 
32.
Oosterhuis D.M., Loka D.A., Kawakami E.M., Pettigrew W.T. 2014. The physiology of potassium in crop production. Adv. Agron., 126, 203–233.
 
33.
Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska. Warszawa.
 
34.
Potgieter C.J., Edwards T.J., Miller R.M., Van Staden J. 1999. Pollination of seven Plectranthus spp. (Lamiaceae) in southern Natal, South Africa. Plant Syst. Evol., 218 (1-2), 99–112.
 
35.
Rice L.J., Brits G.J., Potgieter C.J., Van Staden J. 2011. Plectranthus: A plant for the future? S. Afr. J. Bot., 77 (4), 947–959.
 
36.
Rivas-San Vicente M., Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot., 62, 3321–3338.
 
37.
Sadeghzadeh B., Rengel Z. 2011. Zinc in soils and crop nutrition. In: M.J. Hawkesford, P. Barraclough (Eds.) The molecular and physiological basis of nutrient use efficiency in crops, Wiley-Blackwel, Sussex, UK, 335–375.
 
38.
Sahu G.K. 2013. Salicylic acid: Role in plant physiology and stress tolerance. In: G.R. Rout, A.B. Das (Eds.) Molecular stress physiology of plants. Springer, India, 217–239.
 
39.
Starck Z. 2005. Gospodarka mineralna roślin. In: J. Koncewicz, S. Lewak (Eds.) Fizjologia roślin. PWN Warszwa, 232–239.
 
40.
Stavri M., Gibbons S. 2007. Antibacterial constituents from Plectranthus ciliatus. Planta Med., 73, 158.
 
41.
Taria S., Joshi N., Samal S.K., Mishra B.K. 2015. Salicylic acid and high temperature stress. Ann. Biol., 31(1), 18–23.
 
42.
Villarino G.H., Mattson N.S. 2011. Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology, 21(5), 539–545.
 
43.
Waraich E.A., Ahmad R., Ashraf M.Y. 2011. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci., 5 (6), 764–777.
 
44.
Yildirim E., Turan M., Guvenc I. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nutr., 31 (3), 593–612.