Maciej Płatkowski 1  ,  
Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
J. Ecol. Eng. 2016; 17(1):77–81
Publish date: 2016-01-01
The aim of study was to determine the influence of NaCl and glyphosate-based herbicide Avans Premium 360 SL on acid and alkaline phosphomonoesterase activities in sandy loam. The experiment was carried out in laboratory conditions on sandy loam with Corg content 10.90 g/kg. Soil was divided into half kilogram samples and adjusted to 60% of maximum water holding capacity. In the experiment dependent variables were: I – dosages of Avans Premium 360 SL (0, a recommended field dosage – FD, a tenfold higher dosage – 10 FD and hundredfold higher dosage – 100 FD), II – amount of NaCl (0, 3% and 6%), III – day of experiment (1, 7, 14, 28 and 56). On days of experiment the activity of alkaline and acid phosphomonoesterase activity was assayed spectrophotometrically. The obtained result showed that the application of Avans Premium 360 SL decreased in acid and alkaline phosphomonoesterase activity in clay soil. Significant interaction effect between the dosage of Avans Premium 360 SL, NaCl amount and day of experiment was reported in the experiment. The inhibitory effect of Avans Premium 360 SL was the highest in soil with NaCl at the amount of 6%.
1. Ahmad I., Khan K.M. 1988. Studies on enzymes activity in normal and saline soils. Pak. J. Agric. Res. 9, 4, 506–508.
2. Al Rajabi A.J., Hakami O.H. 2014. Behavior of the non-selective herbicide glyphosate in agricultural soil. Am. J. Environ. Sci. 10, 2, 94–101.
3. Cherni A.E., Trabelsi D., Chebil S. Barchoumi F., Rodriguez-Llorente I.D., Zribi K. 2015. Effect of glyphosate on enzymatic activities, Rhizobiaceace and total bacteria; communities in an agricultural Tunisian soil. Water Air Soil Pollut. 226, 145–155.
4. Forlani G., Mangiagalli A., Nielsen E., Suardi C.M. 1999. Degradation of the phosphonate herbicide glyphosate in soil: evidence for a possible involvement of unculturable microorganisms. Soil Biol. Biochem. 31, 991–997.
5. Kier L.D., Kirkland D.J. 2013. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit. Rev. Toxicol. 43, 283–315.
6. Lane M., Lorenz N., Saxena J., Ramsier C., Dick R.P. 2012. The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia 55, 335–342.
7. Margesin R. 1996. Acid and alkaline phosphomonoesterase with the substrate p-nitrophenyl phosphate. In: F. Schinner, E. Öhlinger, E. Kandeler, R. Margesin (Eds.) Methods in soil biology. Berlin. Springer Verl., 213–217.
8. Moore L.J., Fuentes L., Rodgers Jr. J.H., Bowerman W.W., Yarrow G.K., Chao W.Y., Bridges Jr. W.C. 2012. Relative toxicity of the components of the original formulation of Roundup to five North American anurans. Ecotoxicol. Environ. Saf. 78, 128–133.
9. Nakatani A.S., Fernandes M.F., de Souza R.A., da Silva A.P., dos Ris-Junior F-.B., Mendes I.C., Hungria M. 2014. Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crop. Res. 62, 20–29.
10. Płatkowski M., Telesiński A. 2015a. Effect of different glyphosate salts on phosphodiesterase and phosphotriesterase activities in soil with reference to ecological importance of soil pollution. A laboratory experiment. Environ. Protect. Natur. Res. 26, 2, 9–14.
11. Płatkowski M., Telesiński A. 2015b. Wpływ glifosatu w postaci soli amonowej na zawartość fosforu przyswajalnego i aktywność wybranych fosfataz w glebie lekkiej. Inż. Ekol. 43, 115–121.
12. Rietz D.N., Haynes R.J. 2003. Effect of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35, 9, 845–854.
13. Sannino F., Gianfreda L. 2001. Pesticide influence on soil enzymatic activities. Chemosphere 45, 417–425.
14. Siddikee M.A., Tipayno M.A., Kim K., Chung J., Sa T. 2011. Influence of varying of salinity-sodicity stress on enzyme activities and bacterial population of Coastal soils of Yellow Sea, South Korea. J. Microbiol. Biotechnol. 21, 4, 341–346.
15. Speir T.W., Ross D.F. 1978. Soil phosphatase and sulphatase. In: R.G. Burns (Ed.) Soil enzymes. Academic Press. Londyn, 197–250.
16. Tabatabai M.A., Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay soil phosphatase activity. Soil Biol. Biochem. 1, 4, 307–310.
17. Telesiński A. 2012. Wpływ zasolenia na wybrane biochemiczne wskaźniki żyzności gleby [The effect of salinity on some biochemical indices of soil fertility]. Woda-Środ.-Obsz. Wiej. 12, 1, 209–217.
18. Telesiński A., Stręk M., Śnioszek M. 2015. Effects of cadmium and salinity-sodicity on acid and alkaline phosphatase activity with reference to ecological importance of soil pollution. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 316, 33, 107–116.
19. Uren-Webster T.M., Laing L.V., Florance H., Santos E.M. 2014. Effect of the glyphosate and its formulations, Roundup, on reproduction in zebrafish (Danio renio). Environ. Sci. Technol. 48, 1271–1279.
20. Ying Y., Haijun Z., Qixing Z. 2011. Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus esticide methamidophos and glyphosate. Soil Sedim. Contam. 20, 688–701.
21. Zhang C., Hu X., Luo J., Wu Z., Wang L., Li B., Wang Y., Sun G. 2015. Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 20, 1161–1175.
Copy url