THE INFLUENCE OF THE PRESENCE OF VEGETATIONS IN FLOODPLAINS ON FLOOD RISKS
Natalia Walczak 1  
,  
Mateusz Hammerling 1  
,  
Jakub Nieć 1  
 
 
More details
Hide details
1
Department of Hydraulic and Sanitary Engineering, Faculty of Land Reclamation and Environmental Enginee-ring, University of Life Sciences in Poznan, Piątkowska 94E Str., 60-649 Poznań, Poland
Publish date: 2015-11-03
 
J. Ecol. Eng. 2015; 16(5):160–167
KEYWORDS
ABSTRACT
The movement of water on flood areas depends mainly on the geometric parameters of vegetation, which as a dynamic factor causes a high changeability of flow conditions during the year. The actual ecological trend, whereby there is a tendency to leave the plants in the floodplain, imposes the necessity on engineers to develop accurate methods of determining the effect of vegetation on what used to be once a commonly occurring flood risk. According to the report on national security risk, elaborated by the Government Security Centre, flooding is the most common such risk. This is most likely to occur among all the risks included in the National Crisis Management Plan and brings the greatest number of negative effects. In order to mitigate the negative phenomena related to floodplains, the methodology and calculation of the average flows, using the Maninng and Darcy-Weisbach models is presented.
 
REFERENCES (41)
1.
Andersen K.H., Mork M., Nilsen J.E.Ø. 1996. Measurement of the velocity-profile in and above a forest of Laminaria Hyperborea. Sarsia, 81, 193–196.
 
2.
Baptist M.J. 2003. A flume experiment on sediment transport with flexible, submerged vegetation. International workshop on RIParian FORest vegetated channels: hydraulic, morphological and ecological aspects. Trento, Italy.
 
3.
Bednarczyk S., Duszyński R., 2008. Hydrauliczne i hydrotechniczne podstawy regulacji i rewita-lizacji rzek. Wyd. Politechniki Gdańskiej, Gdańsk.
 
4.
Chow V.T. 1959. Open-channel hydraulics. McGraw-Hill, New York.
 
5.
Dąbkowski L. 1995. Badania szorstkości hydraulicznej i odporności powierzchni trawiastej na ruch wody. Seminarium nt. „Hydrauliczne i ekologiczne problemy inżynierii rzecznej”, materiały seminaryjne, p. E1–E9.
 
6.
Dąbkowski L, .Popek Z. 1995. Wymiarowanie koryta z roślinnością trawiastą Seminarium nt. „Hydrauliczne i ekologiczne problemy inżynierii rzecznej”, materiały seminaryjne, p. F1–F12.
 
7.
Defina A., Bixio Ch. 2005. Mean flow and turbulence in vegetated open channel flow. Water Resources Research, 41, 1–12.
 
8.
Fathi-Maghadam M., Kouwen N. 1997. Nonrigid, nonsubmerged, vegetative roughness on floodplains. Journal of Hydraulic Engineering, 123, 51–57.
 
9.
Gambi M.C., Nowell A.R.M., Jumars P.A. 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series, 61, 159–169.
 
10.
Ghisalberti M., Nepf, H. 2004. The limited growth of vegetated shear-layers. Water Resources Research, 40.
 
11.
Howe A., Rodriguez J. 2006. Flow resistance in saltmarsh and mangrove vegetation in an Australian coastal wetland. 7th International Conference on HydroScience and Engineering Philadelphia, USA.
 
12.
Huthoff F., Augustijn D.C M., Hulscher S.J.M.H. 2007. Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation. Water Resources Research, 43.
 
13.
James C.S., Birkheaf A.L., Jordanova A.A., O’Sullivan J.J. 2004. Flow resistance of emergent vegetation. Journal of Hydraulic Research, 42(4), 390–398.
 
14.
James C.S., Goldbeck U.K., Patini A., Jordanova A.A. 2008. Influence of foliage on flow resistance of emergent vegetation. Journal of Hydraulic Research, 46(4), 536–542.
 
15.
Järvelä J. 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. Journal of Hydrology, 269, 44–54.
 
16.
Järvelä J. 2003. Influence of vegetation on flow structure in floodplains and wetlands. Sánchez-Arcilla A. and Bateman A. (Eds.). Symposium on River, Coastal and Estuarine Morphodynamics. IAHR, Madrid.
 
17.
Jordanova A.A. James C.S., 2003. Experimental study of bed load transport through emergent vegetation. Journal Hydraulic Engineering, ASCE 129, 474–478.
 
18.
Kałuża T., 2000. Opory ruchu przy przepływie wód wielkich wywołanych roślinnością terenów zalewowych. Maszynopis rozprawy doktorskiej, AR. Poznań.
 
19.
Kubrak E. 2007. Rozkłady prędkości wody w korytach otwartych z elementami symulującymi roślinność. Maszynopis rozprawy doktorskiej, SGGW Warszawa.
 
20.
Kubrak E., Kubrak J., Rowiński P. M. 2008. Vertical velocity distributions through and above submerged, flexible vegetation. Hydrological Sciences Journal des Sciences Hydrologiques, 53(4), 905–919.
 
21.
Kubrak J., Kozioł A. 2001. Wyniki obliczeń prędkości w przekroju dwudzielnym z drzewami w terenie zalewowym. Przegląd Naukowy Wydziału Melioracji i Inżynierii Środowiska, 23, 3–11. .
 
22.
Leonard L.A., Luter M.E. 1995. Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 40(8), 1474–1484.
 
23.
Lopez F., Garcia M.H. 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering, 127, 392–402.
 
24.
Meijer D.G., van Velzen E.H. 1999. Prototype-scale flume experiments on hydraulic roughness of submerged vegetation. In 28th International IAHR Conference, Graz.
 
25.
Negm A.M., Ibrahim A.A., El-Saiad A.A., Al-Brahim A.M. 2002. Flow resistance due to cylindrical piles. 5th International Conference on Hydro -Science & -Engineering 2002 Warszawa.
 
26.
Nepf H.M., Koch E.M. 1999. Vertical secondary flows in submersed plant-like arrays. Limnology and Oceanography, 44(4), 1072–1080.
 
27.
Nepf H.M., Vivoni E.R. 1999. Turbulence structure in depth-limited, vegetated flow: transition between emergent and submerged regimes. Proceedings of the 28th IAHR Congress Graz, Austria.
 
28.
Pasche E. 1984. Turbulenzmechanismen in naturnahen Fliessgewässern und die Möglichkeit ihrer mathematischen Erfassung. Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft, RHWT Aachen, Zeszyt 52.
 
29.
Rameshwaran P., Shiono K. 2007. Quasi two-dimensional model for straight overbank flows through emergent vegetation on floodplains. Journal of Hydraulic Research, 45(3), 302–315.
 
30.
Rhee D., Woo H., Kwon B., Ahn H. 2008. Hydraulic resistance of some selected vegetation in open channel flows. River Research and Applications, 24, 673–687.
 
31.
Righetti M., Armanini A. 2002. Flow resistance in open channel flows with sparsely distributed bushes. Journal of Hydrology, 269, 55–64.
 
32.
Rowiński P.M., Kubrak J. 2002. Velocity profiles on vegetated flood plains. Proceedings of the International Conference on Fluvial Hydraulics, River Flow, 2002, 303–309.
 
33.
Government Security Centre in Polish. Rządowe Centrum Bezpieczeństwa, 2013. Ocena ryzyka na potrzeby zarządzania kryzysowego. Raport o zagrożeniach bezpieczeństwa narodowego. Warszawa. http://rcb.gov.pl/wp-content/u....
 
34.
Shimizu Y., Tsujimoto T. 1994. Numerical analysis of turbulent open-channel flow over a vegetation layer using a k–e turbulence model. Journal of Hydroscience and Hydraulic Engineering, 11(2), 57–67.
 
35.
Stephan U., Gutknecht D. 2002. Hydraulic resistance of submerged flexible vegetation. Journal of Hydrology, 269, 27–43.
 
36.
Stone B. M., Shen H. 2002. Hydraulic resistance of flow in channels with cylindrical roughness. Journal of Hydraulic Engineering, 128(5), 500–506.
 
37.
Tsujimoto T., Shimizu Y., Kitamura T., Okada T. 1992. Turbulent open-channel flow over bed covered by rigid vegetation. Journal Hydroscience and Hydraulic Engineering, 10(2), 13–25.
 
38.
Wilson C.A.M.E., Stoesser T., Bates P.D., Batemann Pinzen A. 2003. Open channel flow through different forms of submerged flexible vegetation. Journal of Hydraulic Engineering, 129(11), 847–853.
 
39.
Wu F.C., Shen H.W., Chou Y.J. 1999. Variation of roughness coefficient for unsubmerged and submerged vegetation. Journal of Hydraulic Engineering, 125(9), 934–942.
 
40.
Yen B. 2002. Open Chanel flow resistance. Journal of Hydraulic Engineering, 128(1), 20–39.
 
41.
Żelazo J., Popek Z., 2002. Podstawy renaturyzacji rzek. Wydawnictwo SGGW Warszawa.