TY - JOUR JO - Journal of Ecological Engineering J2 - J. Ecol. Eng. VL - 19 IS - 1 PY - 2018 ID - Asiedu2018 TI - Assessing the Threat of Erosion to Nature-Based Interventions for Stormwater Management and Flood Control in the Greater Accra Metropolitan Area, Ghana AB - Perennial floodinghas become a major feature in urban areas in developing economies generating research interest towards finding alternative approaches to stormwater management which could complement the existing systems and help address the challenge of flooding. One of such alternative approaches is nature-based stormwater management and flood control, the implementation of which could be affected by soil erosion. This paper, as part of a wider research, was developed to determine the extent of the threat of soil erosion to stormwater management in an urban area on the example of Greater Accra Metropolitan Area, Accra Ghana as the focus of the research. Landsat 8 images (2014) were used in the research to prepare the Landcover maps. Daily rainfall data from 6 raingauge stations from 1972 to 2014 were utilized to prepare the rainfall erosivity factor maps, whereas DEM was used to prepare the slope and slope length (SL) factor maps. The land cover map with an overall accuracy of 73.6 and Kappa 0.7122 was combined with literature sources to prepare the vegetative cover factor map, and conservation practice factor map. A soil series map, prepared and updated with literature sources and data from the Harmonized World Soil Database on physical parameters, was used to calculate the soil erodibility factor (K factor) for each soil series. These were integrated into RUSLE model as 30 m raster maps to generate a soil loss map at tons/ha/yr. The results produced rainfall erosivity index values based on the modified Fournier index ranging between 0.058 and 23.197 which is classified as low. Low soil erodibility factor (K) ranging between 2.9×10 –5 and 8.5×10 –2 (t ha/MJ mm) indicated low susceptibility to erosion, SL factor value showing areas of low to almost flatrelief with a few isolated areas of moderate slope length were generated. A soil loss of 69,5918 tons/ha/yr classified the soils as having high potential soil loss. The results showed a very low soil loss threat of 0–5.1853 tons/Ha/yr for more than 90% of the study area. Targeted intervention for source areas with high potential soil loss will contain any threat of erosion and sediment yield to the implementation of an infiltration-based stormwater management and flood control system AU - Asiedu, Joel Bernard Kofi SP - 1 EP - 13 DA - 2018 DO - 10.12911/22998993/79418 UR - https://doi.org/10.12911/22998993/79418 ER -