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INTRODUCTION

Farming is one of the most important branch-
es of the Ukraine’s economy. In addition, over 
30 per cent of the country’s exports belong to 
the agricultural sector. Most Ukrainian soils are 
suitable for growing winter cereals. Winter wheat 
is one of the key crops that is grown throughout 
the country.

The crop growth and development can be 
monitored with remote sensing data of various 
spatial, temporal and spectral resolutions, ac-
quired at different platforms. A large number of 
studies are devoted to the crop growth indicators, 
such as leaf area index, leaf nitrogen concentra-
tion and their relationship with the crop spectral 
properties. Various approaches and techniques 
for providing an efficient crop monitoring are 
presented in papers. The availability of free re-
mote sensing data as well as commercial satellite 
data acquisition, and the use of ground-based sen-
sors, provides the time series data for crop growth 
monitoring.

The aboveground biomass is an important in-
dex for the crop growth and can be the basic factor 
in detecting and estimating the yield of crop. The 
traditional methods in the crop biomass estima-
tion need a large resource. They cannot effectively 
provide the crop state observation in a large area. 
In many studies, the satellite-based vegetation in-
dices (VIs) are the most commonly used models 
for the estimation of the biomass [Schlerf et al. 
2005, Zheng et al. 2004], LAI [Turner et al. 1999] 
and plant N content [Xue and Su 2017]. VI is the 
mathematical transformation of the original spec-
tral reflectance, which are used for interpreting 
vegetation biomass and canopy [Kokhan 2011, 
He et al. 2006, Rahman et al. 2003]. The vegeta-
tion indices are widely used to remove the varia-
tions caused in spectral reflectance while measur-
ing biophysical properties caused due to the soil 
background, sun view angles, and atmospheric 
conditions [Niu et al. 2000]. The assessment of 
the vegetation properties, based on the use of VIs 
and their derivatives, mainly includes the follow-
ing categories: structural (biomass) [Myneni et al. 
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ABSTRACT
In this study, the winter wheat aboveground biomass (AGB), leaf area index (LAI) and leaf nitrogen concentra-
tion (LNC) were estimated using the vegetation indices, derived from a high spatial resolution Pleiades imagery. 
The AGB, LAI and LNC estimation equations were established between the selected VIs, such as NDVI, EVI and 
SAVI. Regression models (linear and exponential) were examined to determine the best empirical regression equa-
tions for estimating the crop characteristics. The results showed that all three vegetation indices provide the AGB, 
LAI and LNC estimations. The application of NDVI showed the smallest value of RMSE for the aboveground 
biomass estimation at stem elongation and heading of winter wheat. EVI gave the best significant estimation of 
LNC and showed better results to quantify winter wheat vegetation characteristics at stem elongation phase. This 
study demonstrated that Pleiades high spatial resolution imagery provides in-situ crop monitoring. 
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1995], LAI [Turner et al. 1999], FVC [Gitelson et 
al. 2002] and FAPAR [Vin˜a1 and Gitelson 2005]; 
biochemical (chlorophyll and other pigments, 
water content, nitrogen, lignin etc.) [Xue and Su 
2017] and plant physiological / plant stress char-
acteristics [Berger et al. 2014]. VIs based on re-
mote sensing data have been widely used in the 
research implemented for quantitative and quali-
tative evaluations of vegetation cover and crop 
monitoring. Some researchers adopted red edge 
parameters of rice and maize canopy spectral to 
estimate the weight of the aboveground biomass, 
and the correlation between them was significant 
[Filella and Penuelas 1994]. 

Currently, various VIs based on remote sens-
ing (RS) data are used to effectively monitor the 
crop state. They provide regular feedback on the 
status and productivity of agricultural fields. The 
main problem of most studies is the need to use 
a comparative assessment of the values of differ-
ent VIs derived from optical satellite systems that 
must undergo mandatory atmospheric correction. 
The information on the crop growth and dynam-
ics, obtained by the RS data, provides useful, ob-
jective information for managing the agricultural 
production and crop yield estimates [Huete et 
al. 2002].

When the remote sensing of vegetation 
uses passive sensors, the information contains 
the data about various parameters of vegetation 
[Chang et al. 2016], which are determined by the 
chemical and morphological characteristics, as 
well as by the surface of the leaves [Zhang and 
Kovacs 2012].

A number of studies showed that spectral in-
dices have a high correlation with the state of N 
in crops [Fitzgerald et al. 2010, Tian et al. 2011]. 
The correlations of LAI and biomass with spec-
tral data, using linear regression methods are 
shown in papers [Glenn et al. 2008, Verrelst et al. 
2012]. The leaf area index (LAI) is a major can-
opy biophysical parameter. It can be used in the 
study of the physiological processes in vegetation 
[Mulla 2013]. The RS data provides a quick ap-
proach to the evaluation of crop LAI and to the 
development of various methodologies for LAI 
estimation at diverse scales and for different types 
of vegetation canopies [Hansen and Schjoerring 
2003]. There are two common types of remote 
sensing methods that can be used for the LAI esti-
mation. The first is the statistical method based on 
a regression analysis. Expression is obtained from 
the relationship between the spectral reflectance 

at the crop canopy level and the ground-measured 
LAI [Baret et al. 2007]. The other type is inverted 
radiative transfer model. It includes the spectral 
reflectance at the crop canopy level [Boissard et 
al. 1992].

Niu et al. showed, that fresh LNC can be es-
timated using the reflection spectrum of the first 
derivative at 2120 nm and 1120 nm [Niu et al. 
2000]. Cho and Skidmore reported the alloca-
tion of two optimal regions of the red edge with 
high sensitivity to N [Cho and Skidmore 2006]. 
Two vegetation indices, Normalized Difference 
Nitrogen Index (NDNI) and Normalized Differ-
ence Lignin Index (NDLI) were used to assess N 
and lignin in native shrubs[Serrano et al. 2002]. 
Li et al. showed, that partial least square regres-
sion (PLSR) could accurately predict LNC in 
winter wheat and winter oilseed rape [Ecarnot et 
al. 2013].

The quality of wheat is based primarily on 
the content of protein, the main component of 
which is nitrogen. Nitrogen must be in sufficient 
quantities to obtain a high level of protein [Wuest 
and Cassman 1992]. The presence of nitrogen in 
plants can be estimated using the spectral reflec-
tivity of crops [Hinzman et al. 1986, Bsaibes et 
al. 2009]. Evaluation of various spectral indica-
tors of vegetation is an important factor in deter-
mining the requirements for the use of N in the 
middle of the season.

Most of the previous studies related to the N 
and biomass estimation used low and moderate-
resolution remote sensing data [Goetz 1997]. In 
this research, the authors have applied the Pleia-
des data with a high spatial resolution to quantify 
the winter wheat characteristics. 

THE SUBJECT OF RESEARTH 
AND METHODS

Per-field measurements were conducted in 
field locations within the production areas in 
western part of Forest-Steppe on typical cherno-
zem soil and chernozem podzolic soil. The ex-
perimental variables included high agricultural 
fertilizer background and different varieties of 
winter wheat. The data, obtained within the ex-
perimental fields in northern Forest-Steppe, are 
not included in this paper. 

The plant sampling locations were established 
at the centroids of clusters, which differed in the 
crop state based on Landsat satellite imagery. 
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ArcGIS 10.4 software was used for sampling 
points and geodata processing. The coordinates 
of centroids were loaded into a Trimble GPS and 
used for plant sampling. The field samples of the 
aboveground biomass were gathered using two 
1.13 m rows in three places along the diagonal of 
the plot. The plants were cut at ground height. The 
plant samples were dried at 105°C and weighed. 
The leaf N concentration was determined accord-
ing to the Kjeldahl method. The ground data col-
lection was done quasi synchronically with satel-
lite image acquisition. 

The Pleiades-1A (1B) satellite image data 
with a spatial resolution of 0.5 m obtained in the 
visible and near infrared ranges were applied 
in the research [ASTRIUM GEO-Information 
2012]. The Pleiades-1A/1B multispectral data 
were acquired at stem elongation of winter wheat 
and at heading phase. The satellite images were 
atmospherically corrected. TerrSet(IDRISI) was 
used for the satellite image processing.

The vegetation indices derived from the Ple-
iades high-resolution imagery were used to devel-
op regression models in order to assess the leaf 
nitrogen concentration (LNC), the above ground 
biomass (AGB) and canopy biophysical param-
eter leaf area index (LAI). The goal of a research 
was to estimate the relationships between the 
vegetation indices and the crop canopy character-
istics. The Normalized Difference Vegetation In-
dex (NDVI), Enhanced Vegetation Index (EVI), 
which is sensitive to the vegetation growth levels, 
and SAVI (Soil-Adjusted Vegetation Index) were 
used in the study. The following tasks were to be 
resolved in the research: pre-processing of time 
series remote sensing data; monitoring the winter 
wheat state through the period of stem elongation 
to heading based on different VIs and crop pro-
ductivity indicators; evaluation of various vegeta-
tion indices for quantifying the winter wheat pro-
ductivity indicators. The vegetation indices used 
in the study are shown in Table 1.

RESULTS AND DISCUSSION

The remote sensing vegetation indices, that 
measure the plant spectral characteristics based 
on reflectance in the visible wavelengths and 
near-infrared diapason are often used to estimate 
the aboveground biomass, the plant nitrogen con-
tent and crop biophysical parameters. The vegeta-
tion indices obtained from red and near infrared 
bands have the small sensitivity to the vegetation 
growth conditions. A group of VIs developed to 
minimize the effect of the soil background on re-
trieving the vegetation information is represented 
by SAVI, TSAVI, MSAVI, and MSAVI2. How-
ever, they also reduce their sensitivity within the 
period of crop growth. The Enhanced Vegetation 
Index (EVI) is more sensitive to the topographic 
conditions than is the NDVI, and it has improved 
sensitivity to the high biomass areas. The vegeta-
tion indices used in the present research, such as 
NDVI, EVI and SAVI were derived from the Ple-
iades satellite imagery at two periods – stem elon-
gation of winter wheat within the second decade 
of May and at the heading phase at the beginning 
of June. 

The regression analysis was conducted to 
correlate the NDVI, EVI and SAVI values with 
the aboveground biomass. The regression analy-
sis between VIs using the linear equation both 
for NDVI (R2 = 0.90) and SAVI (R2 = 0.89), 
and exponential model for EVI with the coeffi-
cient of determination R2 = 0.93 showed signifi-
cant correlations at p < 0.050 at stem elongation. 
The higher value of the R2 was obtained at stem 
elongation compared to the winter wheat heading 
(Tables 2–3).

The exponential models provided higher 
correlations between all VIs and the aboveg-
round biomass at heading. The relationships be-
tween VIs and aboveground biomass are shown 
in Figures 1 and 4. The estimated winter wheat 
biomass was validated with the ground-based 

Table 1. Definition of spectral indices. Bands are designated in the formulas as R (red), B (blue), G (green), NIR 
(near-infrared), and L (soil line)

Index Name Citation Formula

NDVI Normalized Difference Vegetation Index Tucker (1979) (NIR−R)/(NIR + R)

EVI Enhanced Vegetation index Huete et al. (2002) 2.5(NIR−R)/(NIR + 6×R−7.5×B +1)

SAVI Soil-Adjusted Vegetation Index (L = 0.5) Huete  (1988) [(NIR−R)/(NIR+R+L)](1 + L)
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measurements. The results suggested that the 
root mean square error (RMSE) of aboveground 
biomass estimated for the three VIs was not sig-
nificant at stem elongation and had smaller values 
compared to the results at heading (Figure 7). 

The results shown in Figure 3 and Figure 6 
indicate that NDVI, EVI and SAVI have strong 
relationships between VIs and LAI. In the expo-
nential model, EVI provided the most significant 

relations with the R2 value of 0.87 for both stages 
of crop development. As the EVI has sensitivity 
to the high biomass areas and to the changes in 
the solar elevation and azimuth angles, its RMSE 
value has become similar to the NDVI RMSE at 
winter wheat heading (Figure 8). 

The highest coefficients of determination 
of the linear regression between the LNC and 
VIs were obtained both for the NDVI and EVI 

Table 2. Correlations between VIs and agricultural crop characteristics. Correlations are significant at p < 0.050 
(stem elongation of winter wheat)

VI/Parameter Mean Std.Dv. r(X, Y) R2 Equation
NDVI 0.720 0.043 y=27.872x-14.535
AGB 5.504 1.337 0.95 0.90
NDVI 0.720 0.043 y=0.1001e4.7853x

LAI 3.218 0.692 0.90 0.82
NDVI 0.720 0.043 y=8.4155x-1.8612
LNC 4.195 0.388 0.97 0.94
EVI 0.518 0.084 y=1.067e3.1047x

AGB 5.504 1.337 0.96 0.93
EVI 0.518 0.084 y=0.8206e2.5908x

LAI 3.218 0.692 0.93 0.87
EVI 0.518 0.084 y=4.4519x+1.8922
LNC 4.195 0.388 0.97 0.95
SAVI 0.468 0.064 y=19.756x-3.7415
AGB 5.504 1.337 0.94 0.89
SAVI 0.468 0.064 y=0.6891e3.2406x

LAI 3.218 0.692 0.89 0.79
SAVI 0.468 0.064 y=5.7323x+1.5155
LNC 4.195 0.388 0.96 0.91

Table 3. Correlations between VIs and agricultural crop characteristics. Correlations are significant at p < 0.050 
(heading of winter wheat)

VI/Parameter Mean Std.Dv. r(X, Y) R2 Equation
NDVI 0.645 0.049 y=0.1565e5.7746x

AGB 6.796 2.044 0.90 0.81
NDVI 0.645 0.049 y=0.3646e3.0278x

LAI 2.602 0.402 0.92 0.84
NDVI 0.645 0.049 y=4.2905x+1.3101
LNC 4.078 0.231 0.91 0.83
EVI 0.507 0.083 y=1.0771e3.5395x

AGB 6.796 2.044 0.93 0.86
EVI 0.507 0.083 y=1.0217e1.8182x

LAI 2.602 0.402 0.93 0.87
EVI 0.507 0.083 y=2.5654x+2.776
LNC 4.078 0.231 0.92 0.84
SAVI 0.502 0.069 y=0.8422e4.0655x

AGB 6.796 2.044 0.90 0.81
SAVI 0.502 0.069 y=0.929e2.0262x

LAI 2.602 0.402 0.87 0.76
SAVI 0.502 0.069 y=2.9957x+2.573
LNC 4.078 0.231 0.91 0.81
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Figure 4. The relation between VIs and AGB (Heading)

Figure 1. The relation between VIs and AGB (Stem elongation)

Figure 2. The relation between VIs and LNC (Stem elongation)

Figure 3. The relation between VIs and LAI, m2/m2(Stem elongation)



125

Journal of Ecological Engineering  Vol. 21(4), 2020

Fig. 7. Root mean square errors of estimated aboveground biomass 

Fig. 8. Root mean square errors of estimated LAI 

Fig. 9. Root mean square errors of estimated LNC 

Figure 5. The relation between VIs and LNC (Heading)

Figure 6. The relation between VIs and LAI, m2/m2 (Heading)
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(R2 = 0.94 and 0.95 at stem elongation, 0.83 and 
0.84 at heading phase respectively), (Figures 2, 
5). The results suggest that RMSE for the three VI 
was 0.12% for NDVI, 0.09% for EVI and 0.10% 
for SAVI at stem elongation, and 0.03% for all 
VIs at heading (Figure 9). 

On the basis of the given results it can be con-
clude, that all three vegetation indices provide the 
AGB, LAI and LNC estimations. Each spectral 
VI has its own limitations and positive features. 
Traditional application of NDVI during the pe-
riod of intensive biomass development provided 
the smallest value of RMSE for the aboveground 
biomass estimation at both stages. Meanwhile, it 
gave higher errors for the estimation of LNC. 

EVI provided significantly better estima-
tion of the leaf nitrogen content. In general, this 
VI showed better results to quantify the winter 
wheat vegetation characteristics at the stem elon-
gation phase. For an efficient application of the 
vegetation indices in agriculture, many factors 
should be taken into consideration, such as sen-
sitivity to biophysical parameters, topographic 
effects, noise caused by canopy background, at-
mospheric effects, solar elevation and azimuth 
angles, fraction of vegetation cover, vegetation 
density, features of cultivated crop and stage of 
crop development.

CONCLUSIONS

In this study, the authors estimated the winter 
wheat aboveground biomass (AGB), leaf area in-
dex (LAI) and leaf nitrogen concentration (LNC) 
using the vegetation indices, derived from a high 
spatial resolution remote sensing imagery Pleia-
des. The AGB, LAI and LNC estimation equa-
tions were established between the selected VIs, 
such as NDVI, EVI and SAVI. Regression models 
(linear and exponential) were examined to deter-
mine the best empirical regression equations for 
estimating agricultural crop characteristics. 

The results showed that all three vegetation 
indices provide the AGB, LAI and LNC estima-
tions. The application of NDVI during the period 
of intensive biomass development provided the 
smallest value of RMSE for the aboveground 
biomass estimation at the phase of winter wheat 
stem elongation and heading. EVI provided the 
best significant estimation of LNC and showed 
better results to quantify the winter wheat vegeta-
tion characteristics at the stem elongation phase. 

This study demonstrated that high spatial res-
olution satellite data provides the in-situ monitor-
ing. In addition, the remote sensing technology 
can capture the variability of the crop vegetation 
characteristics under different conditions. The 
Pleiades data could be used in test polygons and 
within the small farm areas. The potential use of 
high spatial resolution satellites could be useful 
for precision farming.

Many factors should be taken into consider-
ation for the efficient application of the vegetation 
indices in agriculture. 
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