
Introduction

Heavy metal ions in aquatic systems are ma-
jor inorganic pollutants in the environment [Nag-
gar et al., 2018]. Heavy metal ions in wastewater 
have a stable form and are non-degradable [Wu 
et al., 2020; Rahman, 2020]. Moreover, heavy 
metal ions can accumulate on biota and create 
high stability in a human body [Kahlon et al., 
2018]. The effect of heavy metal ions on a human 
body ranges from headache to vomiting and can 
be lethal due to the accumulation process; thus, 
the removal of heavy metal ions from wastewater 
is vital. Chromium is one of the important toxic 
heavy metal ions. Chromium has several oxida-
tion states but chromium (+6) is the most toxic 
species [Forghani et al., 2020]. Chromium can 

be produced by several activities, ranging from 
home to industrial applications such as photo film 
[Saha et al., 2011], electroplating [Hosseinkhani 
et al., 2020], painting [Begum et al., 2019], and 
also agricultural agents [Itankar and Patil, 2014]. 
The removal of chromium(VI) from an aqueous 
solution was conducted by many researchers us-
ing such methods as coagulation [Golder et al., 
2007], membrane filtration [Sun et al., 2013], re-
duction [Altun and Kar, 2016], and also adsorp-
tion [Wang et al., 2020]. Among these methods, 
adsorption is suitable way to remove chromium 
ions by fast [Sun et al., 2013] and easy processes 
[Kaykhaii et al., 2018]. 

The successful adsorption process is very de-
pendent on the adsorbent properties. Adsorbents 
can be classified as organic [Ali et al., 2012] 
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Abstract
Layered double hydroxide (LDH) Zn/Al and Cu/Al was synthesized by using the coprecipitation method under 
base condition at pH 10 following with formation of composites based on biochar (BC) to form Zn/Al-BC and Cu/
Al-BC. The materials were characterized by XRD, FTIR, BET, and thermal analyses. Furthermore, materials was 
applied as adsorbent of Cr(VI) on aqueous solution. The performance of composites as adsorbent was evaluated 
by reusability of adsorbent toward Cr(VI) adsorption process. The results showed that Cu/Al-BC and Zn/Al-BC 
can reuse the re-adsorption process with the adsorption ability of more than 60%. The adsorption capacity of Cu/
Al-BC and Zn/Al-BC was higher than that of starting materials and up to 384.615 mg/g for Cu/Al-BC and 666.667 
mg/g for Zn/Al-BC. Both composites showed the potential adsorbents to remove Cr(VI) from aqueous solution. 
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and inorganic adsorbents [Miguel et al., 2008]. 
Organic adsorbents such as chitin, chitosan [Se-
meraro et al., 2017], cellulose [Gasemloo et al., 
2019], and algae [de Bittencourt et al., 2020] have 
limitation due to the reusability of adsorbent. Al-
though these adsorbents have various active sites, 
the reusability properties of this materials are 
very limited. On the other hand, inorganic materi-
als have such advantages as stability at high tem-
perature, structural stability, and also reusability 
of materials. The examples of these adsorbents 
include zeolite [Zhang et al., 2020], bentonite 
[Castro-Castro et al., 2020], montmorillonite 
[Sivamani and Leena, 2009], metal oxide [Kaur 
et al, 2021], and also layered double hydroxide 
[Shan et al., 2015].

Layered double hydroxide (LDH) is in-
organic material consisting of divalent and 
trivalent metal ions with general formula 
[M2+

1-xM
3+

x(OH)2]
x+(An-)x/n]·nH2O, where M2+ is 

divalent ions, M3+ is trivalent ions, and An- is an 
anion on interlayer with n valence [Bouteraa et 
al., 2020]. Divalent and trivalent ions of LDH can 
be exchangeable with wide range metals on peri-
odic table [Mir et al., 2020]. The most important 
properties of LDH is the modification of these 
materials in various ways to obtain LDH with 
specific application. 

The use of Zn/Al LDH as an adsorbent of 
Cr(VI) was studied by [Cocheci et al., 2010]. 
Zn-Al LDH with carbonate on interlayer space 
and contains small impurities. Cr(VI) was an ad-
sorbent within the cavities of metal hydroxide 
at the edge of the brucite layer. The removal of 
Cr(VI) from an aqueous solution was also con-
ducted by MgAl LDH [Otgonjargal et al., 2017]. 
This MgAl was thermally treatred after copre-
cipitation to improve the Cr(VI) adsorption with 
the adsorption capacity of 88.07 mg/g. All these 
results showed that the use of pristine LDH has 
low adsorption capacity for Cr(VI) removal. 
Modification of LDH to improve the adsorp-
tion capacity of Cr(VI) was reported by several 
researchers. Sand coated Mg/Al LDH was pre-
pared by coprecipitation and in-situ process. The 
Cr(VI) adsorption by sand coated Mg/Al LDH 
follows pseudo second-order kinetic model and 
has high Langmuir adsorption capacity [Gao et 
al., 2018]. On the other hand, Mg/Al LDH was 
modified by biochar following with intercala-
tion by ethylenediaminetetraacetic acid on in-
terlayer space of LDH as adsorbent of Cr(VI) 
form aqueous solution. Although the adsorption 

capacity was only 38 mg/g but biochar has a im-
portant key for the binding of Cr(VI) on adsor-
bent [Huang et al., 2019]. On the basis of these 
works, it is intriguing and vital to conduct the 
modification of LDH to improve the adsorption 
capacity and mechanism. 

In this research, LDH of Cu/Al and Zn/Al 
with different divalent ions was prepared and 
modified by biochar (BC) to form composites 
of Cu/Al-BC and Zn/Al-BC. The high structural 
stability of composites was expected, which was 
equal to the increasing surface area properties. 
The composites of Cu/Al-BC and Zn/Al-BC 
were used as adsorbents of chromium(VI) from 
aqueous solution. The first aim of this research 
was to evaluate the stability of adsorbents to-
ward Cr(VI) re-adsorption process after desop-
tion by ultrasonic system. The second goal was 
to determine the isotherm and thermodynamic 
properties of Cr(VI) adsorption on composites 
and starting materials. 

Materials and methods

Chemical and instrumentation

Chemicals used in the study were purchased 
from Merck and Sigma-Aldrich, including as 
copper(II) nitrate, aluminum(III) nitrate, zinc(II) 
nitrate, potassium dichromate, and sodium hy-
droxide. BC was obtained from Bukata Organic® 
Java Island, Indonesia. BC was produced from 
Java rice husk by pyrolysis according to [Vieira 
et al., 2020]. Water was supplied from Research 
Center of Inorganic Materials and Complexes 
FMIPA Universitas Sriwijaya, Indonesia after 
purification using Purite®. The materials were 
characterized by XRD, FTIR, BET, and thermal 
analyses. The analysis of powder XRD was per-
formed by means of a Rigaku Miniflex-600 dif-
fractometer. The sample was scanned at 1o/min. 
IR spectra were obtained by FTIR Shimadzu 
Prestige-21 using KBr pellet and sample was 
scanned at 400-4000 cm-1. The BET data was 
obtained from N2 adsorption-desorption analysis 
using a Quantachrome micrometric 2020. Ther-
mal analysis was conducted using a TG-DTA 
Shimadzu analyzer by N2 flow. The concentra-
tion of Cr(VI) on solution was analyzed with a 
UV-Vis Bio-Base BK-UV 1800 PC spectropho-
tometer at 543 nm after complexation by diphe-
nylcarbazide as a ligand. 
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Synthesis of Cu/Al and Zn/Al LDHs 

Synthesis of Cu/Al and Zn/Al LDHs was con-
ducted by coprecipitation method under base con-
dition at pH 10 as similar procedure by [Palapa 
et al., 2019]. A solution of copper(II) nitrate and 
aluminum(III) nitrate with molar ratio 3:1 was 
mixed with equal volume under constant stirring 
at room temperature. The pH of reaction was ad-
justed to 10 by the addition of the sodium hydrox-
ide solution. The reaction was constantly stirred 
at 80oC for 30 hours to form solid material. A 
similar procedure was repeated for zinc(II) nitrate 
and aluminum(III) nitrate. Solid material was fil-
tered, washed with water, and dried at 110oC. 

Preparation of Cu/Al-BC and Zn/Al-BC

A composite of Cu/Al-BC and Zn/Al-BC was 
prepared by the co-precipitation method [Palapa 
et al., 2020a]. The solution of M2+ (M2+ = Cu or 
Zn) was mixed with aluminum(III) nitrate with 
molar ratio 3:1 at equal volume. The reaction 
mixtures were constantly stirred at room temper-
ature, then 3 g of BC was added with vigorous 
stirring. The solution of sodium hydroxide was 
added to reach pH 10. The reaction mixtures were 
constantly stirred for 72 hours to form the Cu/Al-
BC and Zn/Al-BC composites. Th ecomposites 
were filtered and washed with water three times. 
The composites were characterized after dry ma-
terials at 110 oC. 

Regenerations studies

Regeneration studies were performed to eval-
uate the structural stability of composite and pris-
tine materials toward Cr(VI) re-adsorption. The 
materials were desorbed by ultrasonic system 
for 30 minutes after the adsorption process, then 
dried at 110 oC. Re-adsorption was performed by 
the same adsorbent after the desorption process. 
Re-adsorption was conducted until five cycles 
adsorption-desorption of Cr(VI). 

Adsorption experiment

Adsorption of Cr(VI) was conducted by batch 
system equipped with magnetic bar, and shaker 
systems [Oktriyanti et al., 2019]. Adsorption was 
performed by variation of Cr(VI) initial concen-
trations and adsorption temepartures. The initial 
concentration of Cr(VI) was adjusted at 10, 20, 

30, 40, 50 mg/L and adsorption temperatures at 
30, 40, 50, 60oC. The concentration of Cr(VI) 
on solution was analyzed after complexation of 
Cr(VI) by diphenylcarbazide to from a [Cr-diphe-
nylcarbazide] complex. The wavelength of analy-
sis was adjusted at 543 nm. 

Results And Discussion

The XRD powder patterns of Zn/Al LDH, 
Cu/Al LDH, BC, and composites were presented 
in (Fig. 1). Main diffraction peaks of layered ma-
terials were identified at (003), (006), and (110) 
at 10-15o, 20-24o, and 60-61o [Palapa et al, 2020; 
Silaen et al, 2020]. These peaks were assigned 
as well-known formation of layered materials of 
LDH. Both Zn/Al and Cu/Al LDHs had high crys-
tallinity materials [Mandal et al., 2013]. The dif-
fraction peak at 30o on Zn/Al LDH was found due 
to the formation of metal oxide on LDH, which 
was mixed on the interlayer material [Marques et 
al., 2020]. The diffraction peak of BC as shown in 
Figure 1c showed that a broad peak occurred due 
to high carbon content on BC as organic mate-
rial. The diffraction at 22.30o (002) was attributed 
to carbon on BC [Amen et al., 2020]. The com-
posites of Zn/Al-BC and Cu/Al-BC had all dif-
fraction peaks of LDH and BC at 10-15o, 22-24o 
and also at 60-61o, as shown in Figures 1d and e. 
Although both Zn/Al-BC and Cu/Al-BC had dif-
fraction of pristine materials but the crystallinity 
of these composites was a slightly different. Zn/
Al-BC had higher crystallinity properties than Cu/
Al-BC. This was probably due to involvement of 
d empty orbital on Cu which can slightly decrease 
the crystallinity properties in comparison to Zn. 

The FTIR spectrum of Zn/Al and Cu/Al 
LDHs had vibrations at 3448 cm-1 (u O-H stretch-
ing), 1635 cm-1 (u O-H bending), 1381 cm-1 (u 
N-O nitrate stretching), 794 cm-1 (u Al-O) and 
462 cm-1 (u Zn-O, Cu-O), as shown in Figures 
2a and b [Palapa et al., 2020b]. BC was an or-
ganic material; thus, it had vibrations at 3448 
cm-1 (u O-H stretching), 2368 cm-1 (u C-H), 
1635 cm-1 (u O-H bending) , and 1095 cm-1 (u 
C-O stretching) [Amen et al., 2020]. The compos-
ites of Zn/Al-BC and Cu/Al-BC had all vibrations 
of LDH and BC, as a results of two components 
were involved in composites. 

The N2 adsorption-desorption isotherm of 
composites and starting materials was shown in 
(Fig. 3). All materials had hysteresis loop because 
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adsorption was different from the desorption pat-
terns. The materials had micropores and meso-
pores sizes, which were mixed with each other 
on the lattice of composites and starting materials 
[Moller and Pich, 2017]. The hysteresis loop was 
largely found on BC, Zn/Al-BC, and Cu/Al-BC 
probably due to carbon based material involve on 
inorganic layer of LDH [Palapa et al, 2020b]. The 
Brunauer-Emmett-Tellerbioc (BET) of materials 
was obtained by calculation of data in (Fig. 3) and 
the results were presented in (Tab. 1).

Table 1 showed that Cu/Al-BC and Zn/Al-BC 
had the surface area four-fold and six-fold higher, 
respectively, than pristine LDH. This was prob-
ably due to the high crystallinity of Zn/Al-BC 

which affected by the large increasing surface 
area of Zn/Al-BC than Cu/Al-BC. The surface 
area of Zn/Al LDH was smaller than Cu/Al LDH 
due to the formation of metal oxide, as previously 
mentioned on the XRD results. 

The thermal analysis of materials was shown 
in (Fig.4). LDH consists of inorganic compo-
nents; thus, the thermogavimety patterns had only 
exothermic phase [Magri et al, 2019]. Exother-
mic peak of both Zn/Al and Cu/Al LDH was at-
tributed to the decomposition of water at around 
100-110oC, loss of anion on interlayer at around 
200-300oC and decomposition of layer at around 
650oC. On the other hand, BC had organic con-
tent; thus, the endothermic peak was found due to 
the oxidation of organic moiety at around 490oC. 
The composites had inorganic and organic com-
ponents; thus, they had two kinds peaks i.e. exo-
thermic and endothermic peaks, as shown in Fig-
ures 4d and e for Zn/Al-BC and Cu/Al-BC. 

The performance of composites of Zn/Al-BC, 
Cu/Al-BC, and starting materials were evaluated 
by reusability and regeneration process toward 
re-adsorption of Cr(VI) as shown in (Fig. 5). 

In proportion to the increase in surface area, 
the performance of the composite material was 
better in the five reusability cycles. The adsorp-
tion of Cr(VI) on composite was higher than that 
of the starting materials. The results of reusabil-
ity of composites toward re-adsorption of Cr(VI) 
showed that Cu/Al-BC had higher structural sta-
bility than Zn/Al-BC. The adsorption of Cr(VI) 
on Cu/Al-BC was still greater than 60% after be-
ing used five times as adsorbent for Cr(VI). On 

Figure 1. XRD powder patterns of Zn/Al LDH (a), 
Cu/Al LDH (b), BC (c), Zn/Al-BC (d), Cu/Al-BC (e)

Figure 2. FTIR spectrum of Zn/Al LDH (a), Cu/
Al LDH (b), BC (c), Zn/Al-BC (d), Cu/Al-BC (e)

Figure 3. Nitrogen adsorption-desorption 
isotherm of Zn/Al LDH (a), Cu/Al LDH (b), 

BC (c), Zn/Al-BC (d), Cu/Al-BC (e)
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the other hand, the reusability of Zn/Al-BC was 
stable until three times cycles with more than 
60% adsorption ability. The adsorption of Cr(VI) 

was drastically decreased after four cycles ad-
sorption by Zn/Al-BC. Thus, the structural stabil-
ity of Cu/Al-BC was higher than Zn/Al-BC. On 

Table 1. Physical properties of composites and pristine LDH
Materials Surface area (m2/g) Pore Size (nm), BJH Pore Volume (cm2/g)BJH

Zn/Al LDH 9.621 12.094 0.017

Cu/Al LDH 46.279 10.393 0.117

BC 50.936 12.089 0.025

Zn/Al-BC 56.461 12.226 0.065

CuAl-BC 200.909 7.032 0.324

Figure 4. Thermogravimetric patterns of Zn/Al LDH (a), Cu/Al LDH (b), BC (c), Zn/Al-BC (d), Cu/Al-BC (e)

Figure 5. Reusability of composite and starting materials for adsorption of Cr(VI)
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Figure 6. Effect of Cr(VI) initial concentration and adsorption temperature on composites and starting materials

Table 2. Isotherm of Cr(VI) on composites and starting materials

Adsorbent Adsorption Isotherm Adsorption Constant
T (K)

303 313 323 333

Zn/Al LDH

Langmuir

Qmax 12.240 13.755 15.361 22.727

kL 0.552 0.574 0.654 0.088

R2 0.998 0.998 0.999 0.999

Freundlich

n 9.681 12.970 12.346 16.234

kF 8.078 9.963 11.097 12.990

R2 0.976 0.964 0.960 0.992

Cu/Al LDH

Langmuir

Qmax 22.923 22.676 22.026 22.272

kL 0.423 0.788 1.343 1.554

R2 0.999 0.999 0.999 0.999

Freundlich

n 9.901 28.736 33.784 28.249

kF 11.569 15.707 17.219 18.047

R2 0.982 0.921 0.979 0.899

Zn/Al-BC

Langmuir

Qmax 46.668 243.902 500.000 666.667

kL 0.504 0.038 0.024 0.030

R2 0.999 0.999 0.999 0.999

Freundlich

n 8.889 14.124 12.180 14.859

kF 15.635 19.797 21.164 23.719

R2 0.922 0.978 0.984 0.999

Cu/Al-BC

Langmuir

Qmax 30.303 61.728 92.593 384.615

kL 0.713 0.529 3.000 0.179

R2 0.998 0.970 0.999 0.999

Freundlich

n 27.548 24.213 33.557 29.155

kF 22.014 23.812 28.016 26.122

R2 0.982 0.955 0.915 0.894
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the other hand, the starting materials of LDH can 
be effective as reuse adsorbent until two cycles 
adsorption. BC was an unstable structure to-
ward the ultrasonic process; thus, the adsorption 
of Cr(VI) was sharply decreased at each cycle. 
Furthermore, the effect of initial concentration 
and adsorption temperature on the adsorption of 
Cr(VI) was studied as shown in (Fig. 6). 

Adsorption of Cr(VI) on all adsorbents had 
sharply increased along with the initial concen-
tration and reached equilibrium at almost 30 
mg/L. Adsorption was also increased along with 
temperature from 303 to 333 K. Only one step 
adsorption was found for all adsorbents probably 
due to monolayer process of Cr(VI) on all adsor-
bents. The data in Figure 6 was then used to ob-
tain the isotherm and thermodynamic properties. 

The adsorption of Cr(VI) on composites and 
starting materials was firstly evaluated by adsorp-
tion isotherm, as shown in Table 2. The Langmuir 
and Freundlich isotherm models were applied to 
study the adsorption properties.

The composites Zn/Al-BC, Cu/Al-BC, pris-
tine LDH, and BC more closely followed the 
Langmuir isotherm model than the Freundlich 
model for all temperatures. The R2 value was 
relative closer to the one for the Langmuir than 

the Freundlich models [Gupta and Balomajum-
der, 2016]adsorbent dose, and contact time onto 
the percentage removal of both Cr(VI. The Qmax 
value was achieved at almost 333 K, except for 
BC at 303 K, as a result of unstable organic adsor-
bent at high temperature. The increasing Qmax 
value of pristine LDHs to composites was twenty 
nine-fold for Zn/Al-BC and sixteen-fold for Cu/
Al-BC. The largely increased Qmax value of 
composites in comparison pristine LDHs did not 
equal to the increasing surface area properties 
[Palapa et al., 2020b]. As a result of the mono-
layer adsorption process, the chemisorption prob-
ably occurred on Cr(VI) with not only by the 
involvement of pore and layer of composite but 
also the functional groups of composite from BC 
[Jang et al., 2018]. Thus, the inorganic and organ-
ic components on the composite played a role to 
determine the high adsorption capacity of Cr(VI). 
As presented in Table 3, the composites of Zn/Al-
BC and Cu/Al-BC had the highest adsorption ca-
pacity among other adsorbents given on the table. 
Thus, the composites Zn/Al-BC and Cu/Al-BC 
were potential adsorbents to remove Cr(VI) from 
aqueous solution.

Secondly, the thermodynamic adsorption of 
Cr(VI) was presented in (Table 4). The adsorption 

Table 3. Adsorption of Cr(VI) by various adsorbents
Adsorbent Adsorption capacity (mg/g) Reference

Ni/Al@PAB 271.5 [Chen et al., 2018]
Sand/MgAl-LDHs 29.401 [Gao et al., 2018]
Sand/MgFe-LDHs 22.936 [Gao et al., 2018]
Expanded graphite/Mg-Al LDH 13.44 [Hu et al., 2019]
Core-shell maifanite/Zn-Al LDH 3.01 [Gao et al., 2020]
Biochar with Mg/Al LDH Intercalated with EDTA 38 [Huang et al., 2019]
Ni/Mg/Al LDHs 103.4 [Lei et al., 2017]
Magnetic litchi shell 58.769 [Li et al., 2020]
CoFe-LDHs 27.62 [Ling et al., 2016]
Fe@Mg/Al-Reduced graphene oxide 14.68 [Lv et al., 2019]
Actived clay biochar composite 6.1 [Qhubu et al., 2021]
Actived carbon 3.46 [Selvi et al., 2001]
Fe3O4-ZnAl-LDH/TiO2 composite 44.76 [Yang et al., 2020]
Surfactabt-modified bentonite 9.61 [Castro-Castro et al., 2020]
Zn-Al-CO3 LDHs 86.3 [Cocheci et al., 2010]
Mg/Al LDH 12.56 [Otgonjargal et al., 2017]
Mg/Zn-Al Hydrotalcites 25.80 [Cocheci et al., 2010]
Ni/Fe LDHs 50.43 [Abo El-Reesh et al., 2020]
Zn/Al LDH 22.727 This research
Cu/Al LDH 22.923 This research
BC 30.211 This research
Zn/Al-BC 666.667 This research
Cu/Al-BC 384.615 This research
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energy was increased after the formation of com-
posites reaching 44.738-47.116 kJ/mol. There 
were at least two contributions of the increasing 
adsorption energy on the composites. Firstly, the 
involvement of two active sites for Cr(VI) adsorp-
tion i.e. pores and functional groups. Secondly, the 
monolayer adsorption process created one by one 
adsorbent-adsorbate interaction [Mohamed et al., 
2019], which increased the adsorption energy of 
Cr(VI). The ∆G had negative values, which indi-
cated that the adsorption of Cr(VI) on all materials 
was spontaneous [Ebelegi et al., 2020]. The value 
of ∆G was more negative with increasing temper-
ature. The ∆S value was small and in the range 
0.059-0.169 kJ/mol.K. The randomness was in-
creased from the starting materials to composites 
as a result of two components involved in the ad-
sorption [Palapa et al., 2020b; Taher et al., 2019]. 

Conclusions

Formation of composites based on carbon 
material, i.e Zn/Al-BC and Cu/Al-BC, was suc-
cessfully carried out. The surface area proper-
ties of Zn/Al-BC and Cu/Al-BC were six and 
four-fold greater than that of pristine LDHs. The 

composite of Cu/Al-BC had high structural sta-
bility toward the reusability process until five 
cycles Cr(VI) re-adsorption process. The adsorp-
tion capacity of composites was higher than that 
of starting materials and amounted up to 384.615 
mg/g for Cu/Al-BC and 666.667 mg/g for Zn/Al-
BC. Thus, the composites of Cu/Al-BC and Zn/
Al-BC can be used as a potential adsorbents to 
remove Cr(VI) from aqueous solutions. 
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