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INTRODUCTION

For several years, satellite observation has 
been used to understand several phenomena on 
the Earth’s surface. Considering the issues on 
global change, The characterization of dynamics 
linked to the earth’s surface transformations, for 
example: the extension of agricultural areas, de-
sertification, urban sprawl, etc. are essential. In 
this sense, much effort has been devoted to the 
determination of land surface temperature from 
the remote sensing data. Several authors have 
worked on LST determination by remote sensing 
for many purposes (Li et al., 2013; Qin Karnieli, 
1999; Schmugge et al., 2002; Zhou et al., 2012). 
For example: evapotranspiration modelling 
(Courault et al., 2005), soil moisture estimation 

(Sajjad et al., 2010), climatic, hydrological, eco-
logical and biogeochemical studies (Bhaga et al., 
2020) are based on the knowledge of the land 
surface temperature. Therefore, it is very impor-
tant to have access to reliable LST estimation at 
large spatial and temporal scales. It is practically 
impossible to obtain such information from field 
measurements, whereas satellite observations in 
thermal infrared are very attractive because they 
give the access to spatio-temporal data for LST 
determination. Monitoring the changes in land 
cover/cover (LULC) in a given period at regional 
scale is one of the main requirements for climate 
change analysis and LST is the most important 
environmental parameter used to determine the 
energy and matter exchange between the earth’s 
surface and the lower layer of the atmosphere 
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ABSTRACT
In order to analyze the impact of land use and land cover change on land surface temperature (LST), remote sens-
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link in the Fez-Meknes region using satellite observations. Thus, the aim of this study was to monitor LST as a 
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2009 to study the interannual variation in LST. The mapping results showed that the land use/cover in the region 
has undergone a significant evolution; an increase in the arboriculture and urbanized areas to detriment of arable 
lands and rangelands. On the basis of statistical analyses, LST varies during the phases of plant growth in all sea-
sons and that it is diversified due to the positional influence of land use type. The relationship between LST and 
NDVI shows a negative correlation (LST decreases when NDVI increases). This explains the increase in LST in 
rangelands and arable land, while it decreases in irrigated crops and arboriculture.
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(Feddema et al., 2005). Land cover change has 
been confi rmed to have a signifi cant impact on 
climate through various aspects that modulate 
LST and precipitation (Joshi et 2020; Yagoub, 
2015). Several studies are based on the vegeta-
tion index and LST for the determination of soil 
moisture and vegetation water stress (Joshi et al., 
2020; Nivedha et al., 2017; Yu and Cheng, 2010). 
However, there are no studies illustrating this link 
in the Fez-Meknes region using satellite observa-
tions. This paper concerns the use of remote sens-
ing data and GIS for the study of the relationship 
between the land surface temperature and land 
use/cover in the Saïss plain during the period 
from 1988 to 2019.

MATERIALS AND METHODS

Study area

Saïss plain with an area of    about 2260 km², 
with 95 km length and 30 km width, is located 
in northern Morocco between the Lambert coor-
dinates: 460 <X <553 km and 335 <Y <385 km 
(Figure 1) . This plain occupies an important part 
of the Sebou watershed and is home to two of 
its largest cities (Fez and Meknes) and several 
Centers. The Saïss plain is characterized by a 
low topography decreasing from South to North, 
varying between 250 m and 600 m. The region is 
drained by numerous rivers, of which Oued Fez 
and Oued Mekkes as well as their tributaries are 
the most important. However, on the past two 
decades, the region has experienced a decline in 
water resources manifested in reduced fl ows due 

to decreased rainfall. On the other hand, in the 
Saïss plain, there is the overexploitation of water 
resources which is the main cause of the drop in 
fl ow and water table levels. The climate of the re-
gion is dry and hot in summer and humid and cool 
in winter with signifi cant seasonal thermal diff er-
ences and average rainfall of 500 mm in Fez and 
600 mm in Meknes. The population of the Fez-
Meknes basin is around two million and is grow-
ing continuously at 3 to 5% per year. Agriculture 
is the main economic activity in the Saïss plain.

Data set 

In the framework of this study, 18 images pro-
duced by Landsat 5, 7 and 8 satellites were used 
(Table 1). Satellite images have a pre-processing 
level (Collection 1 level 1) (USGS, 2019a). They 
are in the form of a quantifi ed and calibrated 
digital count representing the multispectral im-
age data. The landsat 8 data acquired by both the 
Operational Land Imager (OLI) and the Thermal 
Infrared Sensor (TIRS) are provided in integer 
(16-bit) format. Landsat 5 and 7 products are pro-
vided in integer (8-bit) format.

Extraction of physical parameters 
from Landsat images

For LULC mapping and LST extracting from 
Landsat imageries, the following steps have been 
followed (Figure 2).

Conversion of the digital count (DN) to 
spectral radiance (Lλ) at the satellite level

Each object emits thermal electromagnetic 
energy, because its temperature is above absolute 

Figure 1. Location of the study area
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zero (K). For the extraction of physical param-
eters from Landsat-5 TM and Landsat-7 ETM im-
ages, the pixel values (DN) of the images are con-
verted to spectral radiance (Lλ) at the sensor level. 
The following equation is used (USGS, 2019b):

𝐿𝐿𝝀𝝀 = ( 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀 − 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

) ∗ (𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿 − 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀 

𝐿𝐿𝝀𝝀 = ( 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀 − 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

) ∗ (𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿 − 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝝀𝝀 
(1)

where: Lλ : spectral radiance
 LMAX and LMIN: The spectral values con-

tained in the metadata (Table 2). 

 QCALMAX and QCALMIN: The pixel cali-
bration values contained in the metadata.

 QCALmin = 1 ; QCALmax = 255 ; 
QCAL : CN ;

 Lmin = 0 (BRR), 3,2 (HRR); 
 Lmax = 17,04 (BRR), 12,65 (HRR) ;

Conversion of spectral radiance (Lλ) 
into brightness temperature (Tb)

Once the digital counts (DN) are converted 
to spectral radiance, the thermal infrared sen-
sor (TIR) band data should be converted from 
spectral radiance to brightness temperature (Tb) 
(USGS, 2019c) using the thermal constants pro-
vided in the metadata file.

Tb =  K2
ln [(K1

Lλ) +  1]
–  273.15 (2)

Where 𝐾1 and 𝐾2 represent the thermal con-
version constants specific to the band n (Tables 3 
and 4). In order to obtain results in degree Cel-
sius, the brightness temperatures is corrected by 
adding absolute zero (−273.15 ° C).

 Calculation of emissivity (ε)

The emissivity is then calculated using the 
following equation (Sobrino et al., 2004).

𝜀𝜀 = (0,004 ∗ PV ) +  0,986 (3)

where: 𝑃v: the proportion of vegetation

Table 1. List of Landsat-5, 7 and 8 satellite images 
used in this study

Satellites Dates

Landsat-5 TM
02–01–1988
29–08–1988

Landsat-7 ETM
19–07–1999
26–12–1999

Landsat-5 TM
06–07–2009
11–11–2009

Landsat-8 OLI et TIRS

07–01–2019
24–02–2019
12–03–2019
13–04–2019
15–05–2019
16–06–2019
18–07–2019
19–08–2019
04–09–2019
06–10–2019
07–11–2019
09–12–2019

Figure 2. Flowchart for LULC mapping and LST retrieval
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Pv =  ( NDVI − NDVIs
NDVIv −  NDVIs )

2
 (4)

Conversion of brightness temperature 
(Tb) to Surface Temperature (Ts)

After computing the corresponding emissiv-
ity values from NDVI values for each pixel, the 
emissivity corrected land surface temperatures 
(LST) have been calculated by Artis and Carna-
han model (1982).

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑇𝑇
(1 +  [(𝜆𝜆𝐿𝐿𝑇𝑇

𝜌𝜌 ) 𝑙𝑙𝑙𝑙𝑙𝑙])
 (5)

where: LST: the surface temperature in degrees 
Celsius (°C), 

 Tb: the brightness temperature in degrees 
Celsius (°C), 

  𝜆 : the wavelength of the emitted radiance 
(𝜆 = 10.895) 

 ε: the emissivity 

ρ =  h ×  c
σ = 1.438 × 10−2 m K (6)

where: 𝜎: the Boltzmann constant (1.38 × 
10–23 J / K),

 ℎ: the Planck’s constant (6.626 × 10–34 J s) 
 c: velocity of light (2.998 × 10–8 m/s)

Land use mapping by remote sensing

For land use mapping, the supervised clas-
sification method by maximum likelihood algo-
rithm was employed. The process of land cover 
mapping consists of several steps. First, the sec-
tor is covered by two Landsat scenes (Path-Row) 
(201–36 and 201–37); therefore, two images were 
formed to form a single one that covers the en-
tire study region. Then, the collection of training 
samples was carried out. Six main LULC classes 
were identified: water bodies, urban, rangelands, 
irrigated crops, arboriculture and arable lands. 
The relevance of these samples and the separabil-
ity of land cover classes are graphically analyzed 
by point clouds (Figure 3). An automatic classi-
fication was then performed using the maximum 
likelihood algorithm. 

The accuracy of the classification was as-
sessed using the confusion matrix (Bontemps, 
2004). From this matrix, the global precision and 
the Kappa coefficient were generated. The overall 
accuracy of the classification is equal to the num-
ber of well-classified pixels compared to the total 
number of pixels probed. The Kappa coefficient 
reflects the reduction in the error made when us-
ing the classification compared to the error that 
would occur with random assignment of classes. 
The Kappa coefficient provides an overall as-
sessment of the accuracy of the classification 
(Yagoub, 2015).

Table 4. Specific thermal conversion constants for 
band 6 of Landsat 5 and 7

Landsat ETM
K1 666.09
K2 1282.71

Landsat TM
K1 607.76
K2 1260.56

Table 2. Landsat 5 and 7 conversion constants

Satellites Bands LMIN LMAX

Landsat ETM

1 6.2 191.6
2 6.4 196.5
3 5.0 152.9
4 5.1 157.4
5 1.0 31.06
6 3.2 12.65
7 0.35 10.80
8 4.7 158.3

Landsat TM

1 -1.52 193.0
2 -2.84 365.0
3 -1.17 264.0
4 -1.51 221.0
5 -0.37 30.2
6 1.2378 15.303
7 -0.15 16.5

Table 3. Specific thermal conversion constants for 
Landsat 8 bands 10 and 11

Specific thermal constants (band 10)
K1 774.8853
K2 1321.0788

Scale factors (band 10)
ML 0.0003342
AL 0.1

Specific thermal constants (band 11)
K1 480.8883
K2 1201.1442

Scale factors (band 11)
ML 0.0003342
AL 0.1
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RESULTS AND DISCUSSION

Diachronic study of LULC in Saïss plain

After pre-treatment, the images were indi-
vidually classifi ed into six LULC categories: 
water bodies, urban, rangelands, irrigated crops, 
arboriculture and arable lands. Before starting the 
analysis and interpretation of these LULC maps, 
validation of the classifi cation was performed by 
visual comparison with fi eld reality and by cal-
culation and analysis of the confusion matrix. In 
practice, a layer of polygons distributed randomly 
over the entire study area was generated. A total 
of 100 samples for the six classes were defi ned 
based on the Google Earth images. This layer ras-
terized thereafter will be used as fi eld data. An 
operation of intersection of this layer with that 
resulting from the classifi cation was made to ob-
tain a layer in which the points are assigned to 
their LULC class. Using a SQL query in ArcGIS 
software, the data for the confusion matrix was 
extracted. The percentage of overall accuracy and 
the Kappa coeffi  cient for all classifi cations ex-
ceed 80%. This suggests that the classifi cations 
are reliable and usable (Bonn, 1996; El Hadraoui, 
2013) (Table 5). In order to improve the classifi -
cation, a post-classifi cation processing was con-
ducted (application of a majority fi lter). Indeed, 
due to the quality of the image (30 m pixel) and 
the processing process (each pixel is processed in-
dividually), the classifi ed image by the maximum 
likelihood method may incorrectly classify some 
cells (noise random) and create small incorrect 
regions. Therefore, to improve the classifi cation, 

it is advisable to use a majority fi lter. The result-
ing map from the application of this cleaning tool 
is more aesthetic. 

The classifi cation results for the four years 
show a signifi cant change in the LULC classes 
(Figure 4). The dynamics of LULC in the region 
between 1988 and 2019 is marked mainly by a 
decrease in rangelands, irrigated crops and arable 
lands, and an increase in urban, water bodies and 
arboriculture.

The result analysis shows that the arable land 
class covers more than 77% of the total area dur-
ing the four observation years but with a signifi -
cant drop of 5.6% between 1988 and 2019. The 
urban area covers about 6.5% of the territory on 
2019 while 30 years earlier (1988) it only 2.7%. 
This period was also marked by a remarkable in-
crease in the urban area which increased by 140% 
during this period. The   water bodies are also in-
creasing, and this change depends not only on 
the natural conditions of rainfall but also on the 
construction of two dams to protect Fez against 
fl oods (El Gaada Dam and Mehraz Dam) and on 
the irrigation activities (creation of several water 
storage basins). The results also show a signifi -
cant increase (more than 43%) of arboriculture 

Table 5. Overall accuracy and Kappa coeffi  cients of 
images classifi cation

Year Overall accuracy (%) Kappa coeffi  cient
1988 84.18 0.81
1999 86.15 0.83
2009 84.18 0.81
2019 84.32 0.80

Figure 3. Test of classes separability (sampling sites) by point cloud
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(fruit plants and olive trees mainly). Rangelands 
show a signifi cant decrease (-82%) and this is due 
to cultivation and/or urbanization activities.

Determination of LST in Saïss plain

Figure 5 below shows the maps of LST in Sa-
ïss Plain during the four seasons of 2019. Figure 6 
shows the maps of LST in Saïss Plain during the 
winter and summer of 1988, 1999, 2009 and 2019. 
Throughout the region, there is a strong thermal 
heterogeneity: between urban, agricultural, water 
bodies, etc. (from -4°C to 46°C). The cool zones 
are well individualized and correspond to urban 
and arboriculture landscapes. The warm zones 
correspond to agricultural land and rangelands.

Relationship between LST 
and vegetation index

In order to highlight the eff ect of biomass 
on LST distribution, the Normalized Vegetation 
Index (NDVI) was calculated, which is a very 
good indicator of biomass. The result of the cor-
relation between LST and NDVI is represented 
in two ways. Firstly, the correlation between LST 

and NDVI for 1988, 1999, 2009 and 2019 with 
one image in winter and one image in summer for 
each year (Figure 7). In a second step, the correla-
tion between LST and NDVI over 2019 (one im-
age per month) (Figure 8). In all cases, it can be 
seen that there is a negative correlation between 
the LST and the vegetation index with very high 
correlation coeffi  cients that can reach 0.93.

For 2019, in all graphs, it was noted that for 
low NDVI (between 0 and 0.1 corresponding to 
dry bare soil) an increase in LST occurs. From 
the NDVI values above 0.1, LST decreases as 
the NDVI values increase, which is quite normal 
because the increase in biomass reduces the heat 
release from the surface.

LST variations for di� erent LULC 
types for the period 1988–2019

In order to explain the variation of LST for 
the same land cover over time (Figure 9), graphs 
were created. LST increases slightly from water 
bodies to arable lands over years (Highest in No-
vember 2009 and lowest in January 1988) and it 
is explained by the variation air temperature dur-
ing these days. For the summer season, LST is 

Figure 4. LULC maps for 1989, 1999, 2009 and 2019
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low for water bodies, irrigated crops and arbori-
culture, whereas for rangelands and arable lands 
it is quite high. 

LST variations for di� erent 
LULC types during 2019

In order to highlight the eff ect of LULC 
change on LST over seasons a graph for change 
for 2019 was plotted (Figure 10). From this pre-
sentation, it can be seen fi rst of all that LST show 
a general variation according to the climate of the 
region characterized by four seasons (cold winter, 
warm summer and moderate spring and autumn). 
This general variation follows the same pattern as 
the variation in air temperatures in the region over 
the year (Figure 11). In addition to LST variation 
over time, there is a variation with LULC for 
each month of 2019. It can see that LST increases 
from water bodies, irrigated crops, arboriculture, 
urban areas, rangelands and arable lands. Urban 
areas, rangelands, and arable lands correspond 
to high LST. 

Among the remarks regarding this study of 
LST and its relationship with LULC, there are 
no islands of heat visible in urban area in relation 
to their surroundings peri-urban or agricultural 
areas.

LST variation for di� erent LULC types 
according to AB transect for 2019

A cross-section (AB transect) was made 
across the study area to represent the LST varia-
tion for diff erent LULC types, (Figure 12). The 
cross-section profi le (Figure 13) for July 2019 
(Summer Season) shows that water bodies, ur-
ban and arboriculture have average LST between 
32°C and 34°C, while rangelands and arable lands 
have mean LST between 37°C and 40°C. During 
this month, there is a coeffi  cient of variation of 
LST between water bodies and arable land with a 
17% variation. In April 2019 (Spring season), the 
diff erentiation of LULC classes from the point of 
view LST is less evident compared to July. LST 
values are low in general but with less diff erence 

Figure 5. LST maps for the four seasons of 2019
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between LULC classes. For other seasons (De-
cember: autumn and February: winter) the diff er-
entiation of LULC classes from the point of view 
LST is even less clear. 

CONCLUSIONS

The modifi cation of vegetation cover has an 
important consequence, particularly on the hy-
drology and the land surface temperature in the 
Saïss plain. In order to quantify the amplitude of 
LST linked to land use land cover change at the 
local and regional scale, several maps of LST and 

LULC for the period (1988–2019) were produced 
in the framework of this study.

In order to analyze the evolution of LULC in 
relation to cultivation practices in the study area, 
remote sensing data is the most appropriate tool. 
Numerous vegetation indices combining red and 
near infrared channels such as the NDVI (Normal-
ized Diff erence Vegetation Index) have proved 
their interest in studying biomass. The time series 
of this index allow temporal monitoring of the 
vegetation cover representative of plant growth, 
which is both an indicator of LST as a response 
of LULC conditions. Thus, the NDVI index can 
serve as an indicator of changes in LULC like an 

Figure 6. LST maps during winter and summer of 1988, 1999 and 2009
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Figure 7. Correlation between LST and NDVI for 1988, 1999, 2009 and 
2019 (one image in winter and one image in summer)
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a)

b)

Figure 8. Correlation between LST and NDVI over 2019 (One image per month)
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intensification of urbanisation and agricultural 
practices. This classification is done for making a 
relationship between NDVI of different intensity 
levels, LST and changing cropping pattern,

Results show that the sectors where bare soil is 
dominant have high LST, compared to those where 
the plant cover is dominant or in urban. On the basis 
of these maps, the analysis of the spatio-temporal 
changes in LULC over the period 1988–2019 was 
carried out. LULC in Saïss plain has undergone 
significant changes over the past 30 years. There 

is an increase of   arboriculture and urban areas to 
the detriment of arable lands and rangelands. The 
relationship between LST and LULC for the peri-
od 1988–2019 shows that the surface temperature 
varies during phases of plant growth in all seasons 
and that it is diversified due to the positional influ-
ence of the type of the existing LULC. In general, 
the modification of land use/cover with regard to 
urbanization and the exchange of arable lands in 
arboriculture are the main causes of the change in 
surface temperature in the study area.

Figure 11. Variation of air temperature for 2019 (Average of Fez and Meknes stations)

Figure 10. LST variation for different LULC types during 2019

Figure 9. LST variation for different LULC over time (For winter and summer seasons)
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