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INTRODOCTION

 APEs have been significant surfactants for 
more than 50 years. The most joint APE in mer-
cantile use today is the group of nonylphenol 
ethoxylates (NPEs), comprising about 80 per-
cent of the market, while octylphenol ethoxyl-
ates (OPEs) contain most of the remaining 20 
percent of the market. NPEs are used primarily 
for industrial applications, including pulp and 
paper production, textile structure, and use in the 
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ABSTRACT
The most significant source of environmental pollution derived from perilous wastes 
is the circumstantial and intentional emancipation of specific industrial wastes in-
cluding resistant and/or toxic pollutants to natural environments. Although, biological 
treatment methods have been commonly found as most effective alternatives in the re-
moval of persistent compounds in industrial wastewaters, they require some increase 
for obtaining acceptable removal efficiencies, due to the presence of refractory or 
toxic compounds in the wastewaters. In this study, the use of surfactant of nonylphe-
nol ethoxylates (NPE) in the removal of persistent organic pollutants by biological 
treatment processes was investigated as an enhancement technique. The application of 
surfactants can enhance soil and groundwater remediation by increasing contaminant 
locomotion and solubility to ameliorate the performance of practical conventional 
remediation technology and by barricading the departure of contaminants to speed 
the rate of biodegradation of contaminants in environment. The proven effectiveness 
of surfactants in soil and groundwater remediation has been considered reasonable to 
expect that surfactants can also enhance the removal of persistent organic pollutants 
in wastewaters. Different concentrations of nonylphenol ethoxylates (NPE) (1000, 
1500, 2000 ppm) were tested to optimize biosurfactant-enhanced degradation of per-
sistent pollutants in wastewaters. The results of this study demonstrate that the bio-
degradation of persistent organic pollutants in wastewaters is elevated by the use of 
biosurfactants. The principal mechanism that raises the biodegradation is the augment 
solvability of poorly soluble compounds in the wastewater. According to the results of 
this study, it can be anticipated that biosurfactant-enhanced degradation would result 
in faster and more complete degradation.
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formulation of crop protection chemicals. They 
are also used in industrial, institutional, and 
homemaker cleaners and detergents. While NP 
is used primarily as a raw material in the genera-
tion of NPE, some is also used in the production 
of plastics, resins and stabilizers. In contrast, OP 
is made in significantly lower volumes and is 
used primarily as a chemical intermediate in the 
generation of phenolic resins [APERC, 2006]. 
Derivative of Alkylohenol ethoxylates is given 
in Table 1.
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Environmental issues arising from NP

 The US Environmental Protection Agency 
(US EPA) has recently consummated ambient 
aquatic life water modality criteria for nonylphe-
nol (NP) [US EPA, 2005]. These criteria were 
expanded under Section 304(a)(1) of the Clean 
Water Act and indicate the concentration of NP in 
water at which aquatic life are safe from acute and 
chronic adverse effects. The US EPA has counsel 
an acute freshwater touchstone of 28 μg/L and a 
chronic freshwater criterion of 6.6 μg/L for NP. 
For saltwater, the proposed sharp and chronic cri-
teria are 7.0 μg/L and 1.7 μg/L.

Environmental Fate of APEs and NPE

 Biodegradation is the overcoming removal 
process for APEs and NPE in water, settlement and 
soil. The biodegradation of APEs and NPE has been 
palmate studied for the past 50 years in a diver-
sity of laboratory studies that have searched both 
primary and final degradation. Accurate screening 
tests that measure the ready biodegradability of 
different APEs and NPE, laboratory modeling tests 
of potential degradation in specific environmental 
compartments, and field confirmation studies show 
that NPE and APEs are extensively biodegraded in 
surface waters, alluvium, and soil. Collectively, the 
data from these tests indicate that NPE and APEs, 
and their degradation moderator are not forestalled 
to be persistent in the environment. Removal yield 
for laboratory scale semi-continuous or batch acti-
vated sludge and continuous flow activated sludge 
systems are generally over 90 percent.

Investigations accomplished in this Topic

 A collation of the definitive biodegradability 
(transformation of organic carbon to CO2) of AE 

and NPE was manufactured in an improved Sturm 
test [Sturm, 1973]. Habituate activated sludge 
cultures from the AE and NPE units were incu-
bated with 50 mg/l surfactant and the rate of CO2 
formation measured over 14 days at 25 °C. AE 
was quickly and extensively oxidized to 70–75% 
of the theoretical C02 yield. Organic carbon from 
the NPE ethoxylate, however, was metabolized to 
25–30% of the theoretical CO2 yield during the 
same period headings should not be indented).

Studies by Yoshimura [1986], and Stephanou 
and Giger [1982] have also shown that waste wa-
ter sewage from act NPE-type surfactants are ex-
tremely toxic (e.g., LC50 – 48 hours) to fish and 
Daphnia in the presence of residual ethoxylate (5–
10 mg/l), nonylphenol ethoxyacetate metabolites 
(9–10 mg/l) and nonylphenol (0.15–0.3 mg/l).

MATERIALS AND METHODS

Experimental system

A schematic diagram of the experimental set-
up is showed in Figure 1. A continuously stirred 
tank reactor (CSTR) was used in the experimental 
study. Volume of the aerobic reactor was 4 liter. 
The influent wastewater was continuously fed 
through the top of the reactor by a feed pump and 
the reactor was aerated by an air pump. The efflu-
ent from the precipitation tank was collected in an 
effluent tank.

Figure 1. A schematic diagram of the activated 
sludge bioreactor used in experimental studies

Preparation of activated sludge

A mixed culture was used in the aerobic re-
actors. The activated sludge culture was received 
from the wastewater treatment plant of Oil Na-
tional Company in Tehran, Iran. The aerobic reac-
tor was inoculated with this culture. The constitu-
ents of wastewater used throughout the studies 
are given in Table 2. Whilst the main substrate 
requirement is for carbon, the growth also de-

Table 1. Acronyms of Alkylphenol Ethoxylates and 
their derivatives

Compound or Chemistry Acronym

Alkylphenol ethoxylates APE

Alkylphenol AP

Alkylphenol ether carboxylates APEC

Carboxylated alkylphenol ether carboxylates CAPEC

Nonylphenol ethoxylates NPE

Nonylphenol NP

Octylphenol OP

Octylphenol ethoxylates OPE
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pends on the intake of nitrogen and phosphorus. 
The optimum ratio of C:N:P in the mixed liquor 
is generally thought to be 100:5:1. The ratio of 
these nutrients in settled domestic sewage is vari-
ously reported as 100:17:5 or as 100:19:6. This 
indicates that nitrogen and phosphorus will not be 
limiting for growth. Trace ingredients, which in-
clude S, Na, Ca, Mg, K, and Fe are also required, 
and are available in plenty in domestic sewage. 
By contrast, wastewater from brewing, pulp and 
paper, and food-processing industries can be defi-
cient in nitrogen and phosphorus. Nutrients there-
fore need to be added to the mixed liquor to re-
ceive maximum bacterial growth and to optimise 
carbonaceous treatment. From an operational 
point of view, lack or insufficiency of a critical 
nutrient may result in incomplete treatment, be-
cause the bacteria are unable to grow optimally.

Phosphor, Nitrogen, Carbon and Oxygen are 
required that were added every day. In the starting 
test, first and second day the sludge settling time 
was two hours then collected the dead cells. On 
the third day sludge feeding began. The amount 
of feed was equal to glucose 7.5 g/day, Ammoni-
um phosphate 0.34 g/day and Ammonium nitrate 
0.93 g/day. The feeding was done for a week. So 
the culture was ready for testing.

Table 2. Inorganic constituents of microorganismos

Chemical Compounds Percent

MgO 8

K2O 6

Fe2O3 1

P2O5 50

SO2 15

Na2O 11

CaO 9

Experimental procedure 

Four reactors with the same structure and vol-
ume, as explained above, were used in parallel 
tests. Experiments were start up batchwise. Acti-
vated sludge from wastewater treatment plant was 
added to the reactors as seed. The similar value 
of sludge was inoculated in four parallel reactors. 
The test reactors (R1, R2 and R3) contained bio-
surfactant. The NPE biosurfactant concentration 
were added to R1, R2 and R3 respectively: 1000, 
1500, 2000 ppm. In the control reactor (R4), the 
feed water did not contain any surfactant in or-

der to specify the effect of surfactant. Each of the 
test series dissolve in distilled water and make up 
1 litter. All of the reactor was aerated by an air 
pump. These conditions were Fixed for the en-
tire duration of the experiment. The temperature 
and pressure were 25 0C and 625 mmHg and pH 
adjusted to 7. A schematic diagram of the experi-
mental setup is showed in Figure 2.

Figure 2. Schematic diagram of the experimental 
setup

RESULT AND DISCUSSION

A set of experiments were performed in three 
different surfactant concentration, for two weeks. 
The method was based on measurements of Amer-
ican Public Health Association (APHA), 1998.

The rate of MLSS and MLVSS of activated 
sludge in the experimental period is shown in Fig-
ure 3. When sludge age was increased for 14 days, 
MLSS and MLVSS ratio were increased 2605 to 
2805 mg/l and 2555 to 2780 mg/l respectively.

COD removal efficiency with the increase of 
residence time as shown in Table 3. At the 3 days, 
COD removal efficiencies was from 5.19% to 
48.24 in R1, it was from 7.61% to 48.91 in R2 and 
8.14 to 34.89% in R3. Reduction was observed in 
the first week, equal to 97.49% in R1,90.58% in 
R2 and 84.69% in R3. Although,in this period at 
R1 and R2 greater amount from COD were elimi-
nated, in the last, the overall results show that the 
highest COD decrease was in R3.

Figure 3. The rate of MLSS and MLVSS of activated 
sludge in during the test



Journal of Ecological Engineering  vol. 15(3), 2014

4

Figure 4 depicts a shift of COD volumetric re-
moval rates with over time. Sharp slope increase 
in COD volumetric removal rate with the time in 
R1, R2 and R3 because of high decreases in COD 
concentrations occurs in the first 7 days. After 
that, the removal rate is linearly. The results show, 
decline slope in the R1 and R2 is more than R3. 
But at the end of the test, the maximum removal 
occurs at the highest concentration. At the end of 
two weeks, more than 98% of COD removal was 
observed in R3 with concentration Equivalent 
2000 ppm NPE

Figure 4. The effect of surfactant concentration on 
COD volumetric removal rates in the test reactors

CONCLUSIONS

In this paper, the authors investigate the im-
pact of NPE at activated sludge system and COD 
removal in conventional systems of biological 
treatment. Increasing the concentration of surfac-
tant would lead to treatment plant efficiency en-
hance. Also the results showed that increasing the 

concentration of solids MLSS makes the removal 
efficiency increase.

According to the results of this study, it can 
be completely proven by further investigations 
that biosurfactant-enhanced degradation would 
result in prompter (reduced treatment times) 
and modified water quality, and overall cheaper 
treatment costs.

The interaction between biosurfactant and the 
pollutants in wastewater is a very complex phe-
nomenon and is not the subject of this study. But 
it is possible to say that biosurfactants are very 
effective in the COD removal as demonstrated 
in this study. So, the effectiveness of different 
biosurfactants in the removal of more pollutants 
should be investigated in the future studies in or-
der to distinguish the best combination.
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