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INTRODUCTION

River water quality is an essential required 
data that needs to be addressed to providing in-
formation for availability decisions and usage 
management. Human activities are the majority 
of factors greatly influencing the quality of water 
resources. On the other hand, water quality is sig-
nificantly related to public human’s health. The 
quality classification is crucial and beneficial to 
monitoring, predicting, and managing water re-
sources [Shakhman and Bystriantseva, 2021]. In 
this case, the water quality index (WQI) is a uni-
versal indicator. WQI represents a precise math-
ematic function that integrated multi-variable 

effects, stated as a single value [Yan et al., 2015]. 
Various applications of WQI had been reported 
for many purposes, i.e., protection of the urban, 
lake, groundwater environments [Talalaj, 2014] 
and development of a specific index for river 
ecosystem [Naubi, 2016]. Several conditions 
and criteria were applied to determine WQI; for 
instance, Gradilla-Hernández et al. [2020] used 
seven physical parameters, i.e., oxygen, nutrients, 
organics, heavy metals, to develop their WQI 
from historical data. On the other hand, nine pa-
rameters, such as aluminium, iron, copper, Esch-
erichia coli and nitrate, were used differently by 
De Figueiredo et al. [De Figueiredo et al., 2019]. 
Simultaneously, Gaikwal et al. [2020] used many 
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parameters between 11-14 for their WQI. In Thai-
land, WQI is formerly calculated from eight pa-
rameters: pH, DO, BOD, NO3-N, FCB, TP, TS, 
and SS. It is then deduced into five parameters: 
DO, BOD, NH3-N, FCB, and TCB. The stable 
variation of temperature and seasonal fluctuation 
of TP, TS, and SS is the main neglected reasons 
[Thammarak et al., 2020]. NH3-N replaces NO3-
N due to its direct reflection on the contamination 
of wastewater from human activities. TCB has 
been considered a critical parameter indicating 
coliform bacteria and faecal coliform contamina-
tion, while pH is neglected by its low variation 
found [PCD, 2018]. 

In the determination of WQI, the multi-
variables system is usually applied. This system 
is considered valuable in its more accuracy, but 
some weaknesses are promoted simultaneously. 
For instance, there are much variable interference, 
longer processing time-consumed, difficulty pro-
cessing of a large amount of data, errors by the 
inclusion of less accurate data, and the cost of 
analysis increase [Tung and Yaseen, 2020]. The 
use of a smaller number of some significant vari-
ables is preferred to minimize these limitations. 
However, an advance of recently developed au-
tomation programming and the supervised algo-
rithm has demonstrated its practical applicability 
to the environmental monitoring data [Dezfooli 
et al., 2018]. A machine learning-based approach 
(ML) is an algorithm used popularly in the envi-
ronmental prediction proposes, for example, clus-
tering image classification [Okwuash and Ndehe-
dehe, 2020; Najah et al., 2016], data classification 
[Braun et al., 2011], discovering the information 
for mobile’s massages data and malware data 
[Chen, 2020], determining the monitoring site for 
design the hydrometeorological monitoring net-
work by groundwater-level data [Asquith, 2020], 
and creating a visualization map for river’s water 
quality prediction [Kausar et al., 2011]. ML in-
volves the scientific study of the statistical model 
and mathematic functions in programming. The 
statistical theory is applied to build mathematical 
models and improve accuracy by recognizing pat-
terns of the experienced data consisted mainly of 
a majority training set and a minority testing set of 
all historical data [Alpaydin, 2020]. ML adapta-
tion approaches include an accuracy improvement 
via ensembles learning, comprising a scaling up, 
supervising and reinforcing the learning algo-
rithm, and then covering the complex stochastic 
model [Dietterich, 1997]. 

The mathematic function of ML that has 
been used popularly in quality classification is 
supervised learning algorithms such as a sup-
port vector machine (SVM), Naïve Bayes, and 
decision trees. SVM is a powerful function due 
to its roots in statistical learning theory and the 
optimization ability method to solve convex and 
non-convex problems. The use of a combined 
ML algorithm has also been studied, i.e., for pre-
dicting the suspended sediment concentration 
from turbidity of a stream [Bayram et al., 2012], 
predicting the water quality parameters like a 
dissolved oxygen, biological oxygen demand, 
ammonia nitrogen, and suspended sediment 
concentration from complex river system [Kur-
niawan et al., 2021], designing the water quality 
parameters and sampling frequency from sur-
fact water quality management network [Khalil 
et al., 2014], and evaluating the carbon dioxide 
emissions with the related influencing factors 
[Wei and Wang, 2017]. It was reported that SVM 
provides a more accurate result [Singh et al., 
2011], requires less time, and can operate with 
a smaller amount of data than other algorithms 
using the same data and condition [Gamble and 
Babbar-Sebens, 2012]. However, solving the 
limitation of variable interference is complicat-
ed for each environmental data set. Therefore, 
the development of water quality classification 
using a combination of learning algorithms is a 
tempting approach. In this study, an Attribute-
Realization (AR) combined with a Support Vec-
tor Machine (SVM) algorithm was implemented 
to classify the Chao Praya River’s water quality. 
The alternative and practical method optimizing 
the number of variables needed to classify the 
river water quality and its validity when apply-
ing AR-SVM to the new dataset was an aim. 

MATERIAL AND METHODS

In this study, four steps were applied to de-
velop an integrated approach for water quality 
classification: data preparation for missing values 
minimization using the means substitution meth-
od, attribute-realization by recognition pattern 
study for the primary contributing parameters 
identification, a mathematic algorithm selection 
for creation of classification approach, and vali-
dation of a proposed approach for the new datas-
et. In Figure 1 the methodological procedure used 
in this study is summarized.
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The research was conducted based on the 
monitoring dataset of the Chao Phraya River, the 
largest river in Thailand. This river begins in the 
north of the country, sources from two small rivers 
named Ping and Nan, and becomes the Chao Phra-
ya River in Nakhon Sawan province, as shown in 
Figure 2. Then, the river fl ows through the central 
region, including Bangkok and exits the Gulf of 
Thailand in Samut Prakarn province [Muttamara 
and Sales, 1994]. The classifi cation approach was 
developed using the water quality monitoring 
data collected by the Pollution Control Depart-
ment (PCD), Ministry of Natural Resources and 
Environment of Thailand [IWIS, 2019]. PCD is 
responsible for river water quality monitoring. 
About 18 stations are installed in the Chao Praya 
River, divided into three zones along the river. The 
fi rst zone is downstream, starting in Samutprakarn 
province at the latitude of 13.59697 to 13.81063 
and longitude of 100.59439 to 100.51880, consist-
ing of six monitoring stations named to the PCD 
as CH01, CH03, CH06, CH08, CH10, and CH12. 
The second zone is the midstream having fi ve sta-
tions, CH15, CH16.1, CH17, CH18, and CH20, 
located in the latitude of 13.94527 to 14.34268 
and longitude of 100.53825 to 100.57916. The 
upstream area is the last zone in the northern re-
gion with seven stations, CH21, CH24, CH25, 
CH27, CH28, CH30, and CH33, in the latitude of 
14.58753 to 15.68577 and longitude 100.45550 to 

100.25335. The collection of monitoring data is 
four times a year divided roughly into two main 
seasons: wet season (two samplings in January-
March and April-June) and the dry season (two 
samplings in July to September and October to 
December). While a new dataset of the Tha Chin 
River, a branch of the Chao Phraya River, was 
applied in the validation step. This river starts in 
Chi Nart province and then runs through the west-
ern part of the country and fl ows into the Gulf of 
Thailand at Samut Sakorn. There are 14 monitor-
ing stations along the river running from Chi Nart 
to Samut Sakorn.

Data collection and data preprocessing step

From January 2008 to February 2019, the 
raw dataset of the Chao Phraya River was col-
lected by the PCD. This monitoring data con-
sists of 12 parameters characterized by physi-
cal, chemical, and biological characteristics, as 
shown in Table 1. These monitoring parameters 
indicated the water quality infl uenced by the an-
thropogenic activities which are the major con-
tamination sources of river water bodies, i.e., ag-
riculture, household, and industry located along 
the river. In practice, the raw data obtained from 
water monitoring stations contains some miss-
ing values. This incomplete, noisy, and inconsis-
tent data hinders the data processing [Balderas, 

Figure 1. The methodological approach used in this study
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2017]. Therefore, the pre-processing method 
was applied initially to reduce the impact of in-
complete and noisy values and to normalize all 
the monitoring data. The data preprocessing step 
consisted of data cleaning and data integration 
procedures. The data cleaning process was correct-
ed for inconsistencies by filling in missing values 
and minimizing the noise using the attrite mean 
process. In data integration, all monitored data were 
checked for redundancies using schema integration. 
Then, the dataset was transformed into a CSV UTF-
8 type for database creation and machine learning 
analysis. All realized parameters of water quality 
in each dataset were defined afterwards as an At-
tributes. In Table 1, the dataset between 703-815 
points for the parameters of the Chao Praya River is 
shown. It had been stated that the Chao Phraya Riv-
er is rounded wastewaters from agricultural activi-
ties, industrial activities, and household wastewa-
ter. The average value for wastewater indicates a 
sufficient quality comparing to the standard values 
in such parameters as DO, BOD, TCB and FCB, 
which are 4.05 mg/L, 2.29 mg/l, 3.0x104 MPN/100 
ml and 1.0x104 MPN/100 ml, respectively.

Attribute realization step

The attribute-realization step was imple-
mented to quantify the contribution of each 
monitoring parameter, and hereafter this step 
is called an attribute used to develop the wa-
ter quality classification approach. These con-
tributing attributes are crucial in the classifica-
tion approach because they provide the main 
constituents for index calculation [Khalil et 
al., 2014]. To determine the attributes in each 
constituent index, the different characteristic 
of water quality parameters was retrieved for 
its essence meaning of each characteristic. The 
realization was performed using three groups of 
monitored parameters indicating the water qual-
ity: (i) Turb, Cond, TDS, and SS for physical 
characteristics; (ii) DO, BOD, NO3-N, NH3-N, 
Sal, and TN for chemical characteristics; and 
(iii) TCB and FCB for biological characteris-
tics. The realization was determined using tools 
of the PostgresSQL and MySQL Workbench 
programs, with pseudocode used in program-
ming the algorithms. The mathematical models 

Figure 2. The Chao Phraya River map and the measurement station along the river
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for the water quality index and the Apriori al-
gorithm are shown in Figure 3-4.

To determine the significant contribution 
parameters of water quality classification, the 
essential attributes representing each water 
characteristic were evaluated comparing the 
traditional method of WQI calculation, after-
wards called calculated WQI. The Apriori algo-
rithm was implemented to identify each param-
eter’s importance as a parameter that promoted 
the class similarly to WQI calculated from the 
traditional method by the PCD and USEPA. 
Two criteria for the calculated WQI algorithm 
are that firstly, the expected value of the wa-
ter quality attribute according to PCD standard 
defining as A for lower concentration and B 
for a higher concentration of attribute’s value 
compared with surface water quality standard 
value. Secondly, the classification class follows 
the Inland Water Quality Information System 
of PCD (IWIS-PCD), consisting of four classes 
classified water quality as below [IWIS, 2016].
	• class I: good water class; 70 < WQI ≤ 100 
	• class II: fair water class; 60 < WQI ≤ 70 
	• class III: poor water class; 30 < WQI ≤ 60 
	• class IV: very poor water class; 0 < WQI ≤ 30 

Algorithm selection step

Four mathematical algorithms, namely a lin-
ear regression, sigmoid, radial basis, and polyno-
mial function, were examined for their suitabil-
ity and compatibility with the monitoring data in 
developing the classification approach for river 
water’s quality. In this procedure, the SVM al-
gorithm was utilized to transform the original 
water attributes into a multidimensional feature 
space. Then, clustered data groups were iden-
tified, and subsequently, a hyperplane for data 
classification was designed. This procedure was 
conducted using PostgresSQL, the python pro-
gram, and pseudocode. The six steps in the appli-
cation procedure were: (i) the system divided the 
dataset into two, namely a training set accounted 
for 80% of the total monitoring data, and a test-
ing set accounted for 20% of the total monitor-
ing data, based on automated random sampling; 
(ii) the system acquired the data set from the 
database; (iii) the system set up the algorithm 
for classification; (iv) the system evaluated the 
optimum hyperplane by increasing the margin 
of two spaces in between the hyperplane;(v) 
analysis to optimize the kernel function was 
carried out using four functions which is linear, 
sigmoid, radial basis, and polynomial function; 
and (vi) the system performance of algorithms 

Table 1. The characteristics and monitoring data of the Cha Phraya River during 2008-2019

Group Parameter Abbr. Unit Number Min. Max. Avg Deviation Standard 
value

Physical

Turbidity Turb mg/L 809 nd a 436.0 66.6 64.3 5.0 c

Conductivity Cond µS 803 0.2 4.22x104 2.3x103 6.32x103 1.5x103 c

Total dissolved 
solids TDS mg/L 478 43.0 24575 1.1x103 2.4x103 500 b

Suspended 
solids SS mg/L 792 nd a 592.5 40.5 51.3 25 b

Chemical

Dissolved 
oxygen DO mg/L 813 0.1 10.0 4.0 1.9 4.0 b

Biological 
oxygen demand BOD mg/L 812 ND 12.8 2.3 1.8 1.5 b

Ammonia NH3-N Mg/L 748 0 8.4 1.2 4.8 0.5 b

Nitrate NO3-N mg/L 792 0.1 12.0 1.3 1.9 5.0 b

Salinity Sal ppt 799 nd a 84.0 1.2 4.7 1.0 c

Total nitrogen TN Mg/L 748 nd a 13.1 1.8 2.3 6.0 c

Biological
Feacal coliform FCB MPN/100 mL 812 1.7x102 9.2x105 1.1x104 3.9x104 1.0x103 b

Total coliform TCB MPN/100 mL 813 2.0x102 1.6x106 3x104 7.1x104 5.0x103 b

Note: a nd non-detectable when Turb < 5.0 NTU, SS < 25 mg/L, BOD < 1.5 mg/L, NH3-N < 0.5 mg/L Sal < 1.00 
ppt, and TN <6.0 mg/L; b Standard value for surface water of PCD; c Standard value for surface water of USEPA.
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was evaluated, and the suitable algorithm was 
selected based on its precision, recall, F1-score, 
and accuracy. The SVM algorithm used for the 
supervised machine and performance evaluation 
is provided in detail in Figure 5.

Validation step 

Various indications are used to determine 
mathematic function performance, divided into 
prediction and classifi cation approaches. For ex-
ample, the linear regression model is verifi ed by 

mean-absolute-error (MAE), mean squared error 
(MSE), root-mean-squared-error (RMSE), or R-
Squared (R2). However, in this study, the classifi ca-
tion model was developed. The classifi cation per-
formance of each mathematic function for the ML 
application approach was determined using preci-
sion, recall, F1-score, and accuracy [Muharemi et 
al., 2019]. The precision, recall, F1-score, and ac-
curacy are range from 0 to 1, where the minimum 
to a maximum of those values depicted the poor to 
perfect classifi cation result [Chicco and Jurman, 
2020]. In this study, the evaluation criteria were 

Figure 3. Mathematical model used to determine water quality index

Figure 4. Apriori algorithm for analysis of relationship retrieval 
scenario using variable’s temporal information data
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accuracy, precision, recall, and F1-score. Accuracy 
is a standard measure of accurate prediction of the 
results. Accuracy performance can be implemented 
by several correct predictions per total number of 
predictions described in Eq. (1). While precision 
represents the positive predictive value, criteria 
computed from the ratio of positive observations 
incorrectly predicted results per the total positive 
observations predicted. The equation of precision is 
described in Eq. (2). A recall is based on the sensi-
tivity of the ratio of correct predicted observations 
from all observations. A recall is calculated by true 
positive per total of true positive and false negatives 

of prediction as shown in Eq. (3). The point of the 
F1-score is the weighted average of precision and 
recall. When the model gives a diff erence of false 
positive and negative predicted results, evaluating 
the weighted average of precision and recall as an 
F1-score is better to apply. The equation of F1-
score is described in Eq. (4).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇
 (1)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃
 (2)

Figure 5. SVM algorithms of the supervised machine learning approach
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 (3)

𝐹𝐹𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2 ∗ (𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃)
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃

 (4)

where: TP – true positive predicted results; TN –
true negative predicted results; FP – false 
positive predicted results; FN – false neg-
ative predicted results.

The new dataset of the Tha Chin River from 
Jan 2017 to Feb 2019 was applied to validate the 
model. The validation of the proposed approach 
of AR-SVM in classifying the water quality class 
was evaluated. The obtained finding from the attri-
bute realization and algorithm selection step were 
performed. The validation process was discussed 
for the greatest contributing attributes, based on 
precision, recall, F1-score, and accuracy.

RESULTS AND DISCUSSION 

Preprocessed data

The application of AR-SVM for the classifi-
cation of the river water quality was herein in-
vestigated for the Chao Praya River. An approach 
considered the minimum number of attributes 
for using in the SVM algorithm to classify water 
quality. The results were based on the analytical 
pattern and statistical correlative frequency in the 
analysis of water attributes. The historical data 
indicated substantial variations in the majority 
of contributing attributes, which affected water 
quality classification. Table 1 summarizes the av-
erage values of water quality parameters in the 
Chao Phraya River. The results of data prepro-
cessing showed the consistent trends of each attri-
bute after applying the preprocessing process for 
missing data correction and noise minimization. 
The dataset consisted of 815 points. The missing 
data is 561 from 9,780 data in 815 points: Turb (6 
data), Cond (12 data), Sal (16 data), DO (2 data), 
BOD (3 data), TCB (2 data), FCB (3 data), NO3-
N (23 data), NH3-N (67 data), TN (67 data), SS 
(23 data), TDS (337 data). They indicated that 
the river’s water was good (DO more than 4.0 
mg/L) at Nakornsawan. Pollution contamination 
was then found where the river passed through 
communities and industrial areas due to inflow 
from wastewater from agricultural and industrial 
activity, recreation, and household wastewater. 

Limitations cause the missing data in this study 
during water quality samplings such as critical 
weather, equipment, which is call missing com-
pletely at random (MCAR) type and limitation 
during analysis water quality in the laboratory 
like a non-detection limit of equipment and miss-
ing record, which is missing at random (MAR). 
Those of missing value affects an error in analy-
sis results. The data set after pre-processing be-
come a quality dataset due to pro-processing.

Realized attributes

The results of the attribute realization identi-
fied the crucial contribution of the monitoring pa-
rameters to the water quality classification. The 
highest contributing attributes were NH3-N, TCB, 
and FCB for the chemical and biological character-
istics, as shown in Table 2. These realized results 
promoted contribution support values of 0.80, 0.79 
and 0.78, while BOD, DO, Sal, Turb, TDS, TN, 
SS, NO3-N, and Cond were the lower contribut-
ing attributes with values of 0.76, 0.69, 0.64, 0.64, 
0.59, 0.57, 0.54 0.54, and 0.25, respectively. This 
realization procedure can remove the redundant or 
irrelevant attributes. The result was a minimized 
number of calculated attributes from the large 
dataset. This finding was similar to Ilayaraja [Il-
ayaraja and Meyyappan, 2013], who identified the 
frequency of significant diseases that affect pa-
tients by implementing large and complex health 
care data. The applied realization using the Apriori 
algorithm reduced the number of attributes and 
shortened the overall processing time, similarly to 
Al-Maolegi [Al-Maolegi and Arkok, 2014].

From Table 2, the chemical parameter real-
ization’s results based on its frequency correla-
tion and the pattern of occurrences indicated that 
the concentration change in NH3-N promoted the 
highest contribution affecting water quality clas-
sification accounted for 0.80 contributed support 
compared to 0.79, 0.78, 0.76, 0.69 and 0.64 of 
TCB, FCB, BOD, DO, and Sal, respectively. This 
finding confirmed that NH3-N was one of the main 
attributes that indicated the quality of river water 
contaminated by agricultural and household activ-
ities. NH3-N is the product of aquatic organism ex-
cretion and organic residue decomposition in ami-
no acid catabolism [Mallasen and Valenti, 2015], 
precipitation, anthropogenic source, and bacterial 
activities [Frazier et al., 1996]. The second and 
third-order of the highest contribution affecting 
water quality classification was TCB and FCB. 
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of the recreational water quality standard and 
quantify gastrointestinal illness [USEPA, 1986; 
Francy et al., 1993; Cude, 2005]. In particular, 
TCB is a crucial parameter that can affect human 
health as the initiator of many illnesses. While 
FCB represents contamination from sources of the 
intestinal tracts of warm-blooded animals and oth-
ers such as plants, soil, or seeds [Cude, 2005]. The 
four and five orders of the highest contribution 
affecting water quality classification were BOD 
and DO with contributed support 0.79 and 0.69, 
shown in Table 2. Both BOD and DO also pro-
vide a direct indication of the quality level of river 
water. These parameters depict the carbonaceous 
biological oxygen demand to digest the remaining 
organic via biological metabolism and oxygen in 

These biological parameters provided the contrib-
uted support values of 0.79 and 0.78, respectively. 
TCB’s data pattern had the highest frequency of 
water quality class, while FCB had a bit low-fre-
quency effect. Both TCB and FCB are indicators 
used as a recreational water quality standard and 
represent gastrointestinal illness [USEPA, 1986; 
Francy et al., 1993]. Even though these attributes’ 
concentrations were lower than the standard limit 
were defined as good water quality.

In addition, we found that both TCB and FCB 
were highly essential attributes for water qual-
ity analysis. Those parameters have an enormous 
impact on water quality as it indicates intestinal 
bacteria, and it is also correlated with water-borne 
disease. TCB and FCB are the leading indicators 

Table 2. Realized result of the attribute contributed to the classification of river water quality

Characteristic Variable Condition
(Contributed support of each class)

Avg of contributed 
support g

Physical

Turb Aa -> Ic (0.00)
Bb -> IIIe (0.90)

A -> IId (0.02)
B -> IVf (1.00) 0.64

Cond A -> I (1.00)
B -> III (0.00)

A -> II (0.00)
B -> IV (0.00) 0.25

SS A -> I (0.81)
B -> III (0.23)

A -> II (0.81)
B -> IV (0.34) 0.54

TDS A -> I (0.54)
B -> III (0.48)

A -> II (0.54)
B -> IV (0.81) 0.59

Chemical

Sal A -> I (0.96)
B -> III (0.20)

A -> II (0.96)
B -> IV (0.63) 0.64

DO A -> I (0.63)
B -> III (0.19)

A -> II (0.50)
B -> IV (0.85) 0.69

BOD A -> I (1.00)
B -> III (0.99)

A -> II (1.00)
B -> IV (0.15) 0.76

NO3-N
A -> I (1.00)

B -> III (0.07)
A -> II (0.98)
B -> IV (0.11) 0.54

NH3-N
A -> I (1.00)

B -> III (0.33)
A -> II (1.00)
B -> IV (0.95) 0.80

Biological

TN A -> I (1.00)
B -> III (0.09)

A -> II (0.99)
B -> IV (0.20) 0.57

TCB A -> I (0.90)
B -> III (0.77)

A -> II (0.50)
B -> IV (1.00) 0.79

FCB A -> I (0.85)
B -> III (0.78)

A -> II (0.50)
B -> IV (1.00) 0.78

Note: a A is the lower concentration of attribute’s value when compare with surface water quality standard value 
from PCD and USEPA except DO;
b B is the higher concentration of attribute’s value when compare with surface water quality standard value from 
PCD and USEPA except DO;
c-f I-IV are the surface water-quality class that calculated from WQI,
c I (good water class),
d II (fairwater class), 
e III (poor water class), and 
f IV (very poor water class, respectively;
g Avg of contributed support is the average of the lower concentration of attribute’s value than standard value that 
contribute to water quality class I and II and the higher concentration of attribute’s value than standard value that 
contribute to water quality class III and IV
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the water. In practice, an analysis of DO is easier 
and quicker than BOD. Thus, DO is an essential 
indicator of dissolved oxygen for clean water, 
while BOD measurements is sometimes affected 
by nitrogenous contaminants that also demand 
oxygen, which refers to water quality. This extra 
oxygen demand can arise from algal respiration 
during intensive radiation [Bayram et al., 2012]. 
Also, DO is a critical factor for aquatic life and 
the aquatic ecosystem, making it one of the most 
crucial water quality attributes. Simultaneously, 
the data realized the DO pattern had the highest 
frequency effect on water quality classification 
and was a significant attribute regarding chemical 
characteristics [Franklin, 2014; Qureshimatva et 
al., 2015; Best et al., 2017].

Furthermore, for the physical parameter, less 
contribution was found. These monitoring parame-
ters such as Sal, Turb, TDS, SS, and Cond prompt-
ed a minor role in the realization pattern, contribut-
ing the support values of 0.64, 0.64, 0.57, 0.54, and 
0.25, respectively shown in Table 2. The classifica-
tion level was defined as good, where the concen-
tration of a parameter was lower than the standard 
amount. The quality of this river water was then 
classified as good quality. This finding was simi-
lar to the traditional calculation assumption that 
these physical characteristics affected the overall 
water quality less significantly. Turb and TDS are 
related to the amounts of the suspended solids, col-
loids, and organic-inorganic particles. However, 
Turb refers to particles in water and is determined 
by the amount of light scattered by particles. Turb 
includes dissolved particles in the water like TDS 
and affects by colour, fluorescent dissolved organic 
matter, SS, and TS. These are particulate matters 
of sediment, soil erosion, runoff, discharges, and 
algal blooms. Turb is a clear indicator of water 
quality more than TS and SS because the former 
includes the colour of dissolved organic matter 
(DOM). Furthermore, it is not affected by settled 
solids during the rainy and dry seasons. Despite 
Turb not being an inherent property of water, it is 
an indicator of water bodies’ environmental health 
and is used to regulate drinking water, determine 
water clarity for aquatic organisms [Anderson, 
2005], and marine ecosystem [Srivastava and Ku-
mar, 2013; Parra et al., 2018].

It was found that the Chao Phraya River’s 
water quality was significantly affected by riv-
erbank activities on both sides, such as com-
munities discharging waste, commercial waste, 
agricultural contamination, and industrial waste 

[PCB, 2018]. These variations influenced the 
contamination and quality of the river. The up-
per part of the river tended to have lower density 
communities than the middle and downstream el-
ements, so better water could be expected in the 
upper reaches. For example, Cond, TS, and SS 
values were similar to WQI of the upstream part 
of the river (CH01, 03, 06, 08, 10, and 12). Slight 
differences were observed in the midstream to 
the beginning of downstream (CH15, 16.1, 17, 
18, 20, 21, 24, 25, 27, and 28), while a signifi-
cant change was evident downstream (CH30 and 
CH32). From the attribute-realization step, it 
was concluded that NH3-N, TCB and FCB were 
the most realized parameters contributing to 
the quality index classification. These attributes 
were then applied to develop the classification 
approach via algorithm selection.

The probability distribution of data char-
acteristics and distribution frequency is related 
to water-quality classification, weighting order 
criteria. Like, NH3-N, TCB, FCB, and BOD are 
continuous exponential probability distribution 
of data characteristic (ordering value) that same 
occurrence with water classes, so they are high 
accuracy relationship with the water-quality class 
result (represented as contributed support). Those 
results are similar to the finding by Rodrigues 
et al., [2016]. While DO is a normal probabili-
ty distribution and results in dataset some in the 
missing classification. For Sal, is combination of 
detached island type and exponential probability 
distribution cause missing water-quality classifi-
cation. Two criteria were applied to analyze the 
contributed attributes with the expected to obtain 
more accuracy in values and classification. Ac-
cording to the attribute concentration, lower (A) 
than standard value classifies to good (I) or fair 
(II) water class, while higher (B) than standard 
value classifies to poor (III) or very poor (IV) wa-
ter class. Otherwise, WQI classification is based 
on aggregated weighting criteria; therefore, it 
causes errors in detail classification to compare 
with WQI classification. Otherwise, WQI classi-
fication is based on aggregated weighting criteria; 
therefore, it causes errors in detail classification 
to compare with WQI classification.

Selected algorithm for classification 
approach development

In this step, the classification performance 
of four mathematic functions, which were linear 
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regression, sigmoid, radial basis, and polynomial 
function, were evaluated. The dataset was divided 
into two sets: training data which accounted for 
80% of total data or around 653 data points, and 
testing data, around 162 data points. The testing 
results from this approach were compared to the 
calculated WQI. The crucial attributes were se-
lected as a primary set, representing the pollutant 
from anthropogenic activities and harmful patho-
gen effects to disease and illness from surface 
water utilization. Besides, each attributes supple-
mentation effect on classification performance af-
ter applied different classification functions were 
also considered. The performance of classifica-
tion is summarized in Table 3. The result dem-
onstrated that the different number of attributes 
and mathematic function classification promoted 
different performance measurements as accuracy, 
precision, recall and F1-score. The linear was 
the most suitable function for river water quality 
classification. The linear algorithm’s best classi-
fication performance was obtained when six at-
tributes (NH3-N, TCB, FCB, BOD, DO, and Sal) 

were applied. This condition provided an accura-
cy of 0.94. However, about three to six attributes 
also promoted satisfactorily performing in clas-
sification depicted as an accuracy between 0.79-
0.94. Table 3 shows the training results gathered 
by increasing attributes based on contributed sup-
port from more to less. As a result, we found that 
the accuracy of the classification was expanding 
in each classification function. On the other hand, 
classification with over six attributes promoted a 
slightly decreasing trend due to lower contributed 
support value and un-distributing in a wide range 
of data patterns.

The classification using different attributes 
and mathematic functions promoted production 
performance differently, as shown in Table 3 and 
Figure 6. The proper attributes for 3-6 were found 
a suitable condition for classification. The higher 
number of attributes application was seemed un-
necessary and promoted a reduction of classifi-
cation performance significantly subsequently. 
Linear regression promoted higher classification 
performance than other mathematic functions. 

Table 3. Trained results of AR-SVM for the Chao Phraya River
Function

Class
Precision Recall F1-score Accuracy

3Pa 4Pb 5Pc 6Pd 3P 4P 5P 6P 3P 4P 5P 6P 3P 4P 5P 6P

Linear 0.79 0.89 0.91 0.94

Good Water 0.88 0.94 0.95 0.94 1.00 0.04 0.98 0.97 0.94 0.08 0.97 0.95

Fair Water 0.70 0.78 0.70 0.67 0.54 0.86 0.76 0.70 0.61 0.63 0.73 0.68

Poor Water 0.70 0.88 0.94 0.92 0.85 0.82 0.89 0.88 0.77 0.87 0.91 0.90

Very poor Water 0.67 0.88 0.92 0.82 0.20 0.75 0.85 0.82 0.31 0.67 0.88 0.82

Sigmoid 0.76 0.78 0.81 0.83

Good Water 0.87 0.89 0.91 0.92 1.00 0.98 0.98 0.97 0.93 0.94 0.95 0.94

Fair Water 0.67 0.62 0.62 0.71 0.46 0.42 0.62 0.65 0.55 0.50 0.62 0.68

Poor Water 0.70 0.75 0.83 0.85 0.80 0.84 0.80 0.85 0.75 0.79 0.82 0.85

Very poor Water 0.55 0.55 0.40 0.40 0.30 0.38 0.31 0.36 0.39 0.44 0.35 0.38

Radial basis 0.78 0.83 0.90 0.91

Good Water 0.88 0.00 0.94 0.90 1.00 0.92 0.98 0.95 0.94 0.00 0.96 0.93

Fair Water 0.80 0.51 0.71 0.65 0.46 0.63 0.71 0.57 0.59 0.62 0.71 0.60

Poor Water 0.70 0.89 0.90 0.87 0.93 0.80 0.92 0.91 0.80 0.88 0.91 0.89

Very poor Water 0.80 0.67 1.00 0.75 0.20 0.90 0.62 0.55 0.32 0.57 0.76 0.63

Polynomial 0.73 0.80 0.83 0.86

Good Water 0.90 0.95 0.98 0.97 1.00 0.97 0.97 0.95 0.95 0.00 0.98 0.96

Fair Water 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.04 0.00 0.62 0.00 0.08

Poor Water 0.60 0.70 0.71 0.70 1.00 0.97 1.00 0.94 0.75 0.82 0.83 0.81

Very poor Water 1.00 0.86 1.00 0.78 0.15 0.75 0.62 0.64 0.26 0.20 0.76 0.70
a 3P is three (NH3, TCB, FCB) attributes used for classification;
b 4P is four (3P+BOD) attributes used for classification;
c 5P is five (4P+DO) attributes used for classification;
d 6P is six (5P+Sal) attributes used for classification.
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However, a similar trend was found that when in-
creasing the number of attributes from three to six, 
the classification performance increased similarly 
in all functions. For example, the six attributes 
provided the highest accuracy result for the linear 
regression function for 0.86-0.94. The second to 
last was 5, 4, and 3 attributes, which gave 0.83-
0.91, and the latter were 0.78-0.89 and 0.73-0.79, 
respectively. With 3-6 attributes, classification re-
sults represent that the linear function was suitable 
for classification. The best performance evaluation 
was the linear function with six attributes; NH3-
N, TCB, FCB, BOD, DO, and Sal, which provide 
0.94 of accuracy value. The linear function has 
promoted the precision, recall and F1-score evalu-
ation 0.94-0.97 for class I, 0.67-0.70 for class II, 
0.88-0.92 for class III, and 0.82 for class IV. The 
redial basis is a second of higher performance clas-
sification. The precision-recall and F1-score results 
from applying an redial basis are provided by 0.90-
0.95 for class I, 0.57-0.65 for class II, 0.59-0.65 
for class III and 0.55-0.75 for class IV. The third 
higher performance classification by precision, re-
call and F1-score is polynomial. It is represented 
performance classification as class I (0.95-0.97), 
class II (0.04-0.33), class III (0.70-0.94), and class 
IV (0.64-0.78). Lastly, sigmoid presented the low-
est performance classification by using precision, 
recall and F1-score evaluation. Sigmoid is present-
ed as 0.92-0.97 for class I, 0.65-0.71 for class II, 
0.0.85 for class III, and 0.36-0.40 for class IV.

The comparison of the classified results done on 
the developed AR-SVM approach and the traditional 
calculation of WQI using classification by the one to 
twelve attributes and four functions with the conven-
tional WQI. The conventional water classification 
results from WQI were used for comparison and rep-
resented as calculated-WQI. NH3-N, TCB, and FCB 
were the highest contributing attributes from chemi-
cal and biological characteristics, which are the pri-
mary pollutants from municipal wastewater. Those 
attributes are provided with a proper performance 
classification over 0.70. When applying BOD, DO, 
and Sal, the accuracy classification is increasing ac-
cording to more comprehensive data range (4-10 
ranges) and high data distribution frequency. Turb 
provide lower classification accuracy than Sal when 
utilizes at the 6th attribute, which might cause from 
1) missing training of class I, where Sal classifica-
tion accuracy is 96% (110 from 115 data) while Turb 
is 0% (0 from 115) and 2) limitation to classifica-
tion class I and II. due to Turb being able to classify 
class I and II lower than 1% on the other hand, Sal 

contributes to classifying class I and II over 95% 
and class IV 63%. In addition, Sal is representing 
the saltwater intrusion in the current situation of the 
Chao Phraya River. Due to the lower amount of wa-
ter downstream of the river then saltwater invasion 
from the Gulf of Thailand into the river, especially 
during dry season and rain delay period. In addition, 
typhoon Linda in 1997 and tropical storm Pabuk in 
2019 cause widespread along the Gulf of Thailand 
then affect rising sea levels downstream of the river 
[Charoensuk et al., 2019]. The over standard Sal 
concentration in the river also affect agriculture and 
irrigation usage, water supply process and quality, 
aquatic life and aquatic plant in the river, ecosys-
tem along the river, and human health. Therefore, 
Sal could be included in water quality analysis and 
classification for river water sources.

Figure 6 shows the classification performance 
comparisons of four algorithms when increasing 
attributes. Furthermore, the results from each func-
tion in this approach give a similar trend result of 
Bui et al. [2012], Ravi [2016] and Kalcheva et al. 
[2020], which is reported that the linear function 
had better performance than the radial basis func-
tion, sigmoid function, and polynomial function. 
Due to linear function is the best function to deal 
with the linear data type and binary and multiply 
class [Fan et al., 2008], while radial basis func-
tion, polynomial function and sigmoid function 
are powerful ability to classify the nonlinear data 
and s curve data type [Keskes and Braham, 2014].

From prediction results for water quality classifi-
cation of the Chao Phraya River found the optimum 
condition for water quality classification at six attri-
butes with linear function. The optimum condition 
provided over 80% accuracy in each classification. 

Class I: classification accuracy is 85.81% (48 
corrected classification from 56 calculated WQI). 
The 18.18% error is from class I cause by miss-
ing classification to class I (9.09% or two missing 
classifications) and class III (9.09% or two missing 
classification). 

Class II: classification accuracy is 81.82% 
of class II (18 corrected classification from 22). 
The 18.18% error is from class I cause by miss-
ing classification to class I (9.09% or two miss-
ing classifications) and class III (9.09% or two 
missing classification).

Class III: classification accuracy is 86.76% 
of class III (59 corrected classification from 68). 
Then 14.24% error occurred in class III with 
missing classification to class I (9.50% or six 
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missing classifi cation) and class IV (4.74% or 
three missing classifi cations).

Class IV: classifi cation accuracy is 86.76% of 
class III (13 corrected classifi cation from 15) and 
86.67% of class IV (13 corrected classifi cation from 
15). Error 2 missing classifi cation (13.33%) are ap-
peared as class I and III. The result from optimum 
condition classifi cation is shown in Figure 7.

Validation of the developed approach 

AR-SVM approach was validated using the 
new set of monitoring data of the Tha Chin River. 
A similar approach fi nding from the realization and 
SVM-algorithm selection step was adopted. The 
results showed that the proposed approach could 
classify river water quality depicted a performance 
accuracy of 0.95, 0.90, 0.86, and 0.86 for six to 

Figure 6. Prediction results for water quality classifi cation of the Chao Phraya River

Figure 7. Comparison of AR-SVM classifi ed WQI and the calculated WQI
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three attributes applied, as shown in Table 4. The 
comparison of water quality classifi cation results 
by the proposed approach compared to the calcu-
lated WQI in 16 sampling points (TC01-TC28) in 
2017-2019. The prediction results were accurate 
and corresponded well with the traditional WQI 
values, with the same result for 15 of the 16 data-
sets or 93.75% accuracy. Regarding non-accurate 
results, being out by two classes compared to the 
traditional WQI results occurred in 1 of 16 da-
tasets or 6.25%. The comparison of prediction 
classifi cation with the traditional WQI of the Tha 
Chin River is shown in Figure 8.

Several water parameters are utilized in a 
water quality study for monitoring and evalua-
tion based on their properties. In Thailand, the 
primary contamination of water resources, in-
cluding the Chao Praya River, are accordingly 
to wastewater discharged mainly from municipal 

and industrial wastewater, anthropogenic activi-
ties besides water resource. It was worth noting 
that the results depicted the possibility of the 
water quality classifi cation by AR-SVM of mul-
tiple attributes, which is comparable to the con-
ventional calculated WQI with the same water 
body’s condition dynamically changing accord-
ing to time, pollution sources, and the environ-
ment. From attribute realized found that the Chao 
Phraya River’s water quality has been aff ected by 
several variables during the past ten year. This 
approach was applied based on static analysis 
and data pattern learning to deal with dynami-
cally changing water quality data. The results 
obtained depicted a possibility of ML approach 
integrating attributes realization and SVM to 
identify attributes, order and accurate classifi ca-
tion, representing the quality of water resource. 
In addition, those results can promote the likely 

Table 4. Validation results of SVM-linear function for the Tha Chin River
Function

Class
Precision Recall F1-score Accuracy

3Pa 4Pb 5Pc 6Pd 3P 4P 5P 6P 3P 4P 5P 6P 3P 4P 5P 6P

Linear 0.86 0.86 0.90 0.95

Good Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fair Water 0.50 0.50 0.86 0.88 1.00 1.00 0.86 0.00 0.67 0.67 0.86 0.93

Poor Water 1.00 1.00 0.92 1.00 0.83 1.00 1.00 1.00 0.91 1.00 0.96 1.00

Very poor 
Water 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00

a 3P is three (NH3, TCB, FCB) attributes used for classifi cation;
b 4P is four (3P+BOD) attributes used for classifi cation;
c 5P is fi ve (4P+DO) attributes used for classifi cation;
d 6P is six (5P+Sal) attributes used for classifi cation.

Figure 8. Water quality classifi cation by AR-SVM classifi ed WQI of the Tha Chin River
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classification result and trend comparing with the 
traditional method. Some of the minority results 
are represented the slightly decreasing trend of 
performance, even though its performance is also 
possible to utilize for water quality classification. 

In detail, the attributed realization step 
provided the minimum number of water qual-
ity attributes in the WQI classification that 
covered the three characteristics of the water. 
The contributed attributes’ results were appro-
priate for classifying water quality instead of 
overall variables and covered three character-
istics with the linear function. The outcome 
based on the realized attributes produced the 
same result as Ye and Chiang [Ye and Chi-
ang, 2006], who found a regular water class 
due to each water parameters. A similar result 
in chronic responses of aquatic ecotoxicology 
analysis, which is provided accuracy of predic-
tion by a linear function and multifactor profit 
analysis [Slaughter et al., 2007]. The suitable 
AR-SVM gave a similar trend result with the 
linear weighting method of calculated WQI 
classification according to the linear function 
of SVM. A few errors were occurred due to the 
classification process’s inherent complexity 
like a margin classifies part, which is changed 
according to the new insert dataset [Zhou and 
Jetter, 2006; Gorriz et al., 2017]. Furthermore, 
the approach could be applied to another river 
system (Tha Chin) as a case study. The results 
produced a similar outcome compared with 
calculated WQI and established the minimum 
number of variables necessary (dimensionless). 

As well as AR step also including Sal ac-
cording to a current situation in Thailand, which 
facing to saltwater invasion problem in the dry 
season and rain delay period. Other also chang-
ing, the physical characteristic has highly vari-
ant during the rainy (flooding) season due to soil 
erosions. It causes a higher concentration of SS 
and Turb, while the concentration of TDS and 
Sal are lower in the rainy (flooding) season. In 
the dry season, the physical characteristic is af-
fected by the salt intrusion, and it leaks a higher 
concentration of Sal and TDS but also cause a 
low concentration of SS and Turb. So physical 
characteristics could be limited for water quality 
analysis and classification in Thailand and other 
developing countries with high variant water ac-
cording to season. Therefore, this study could 
alternate for water quality analysis and classifi-
cation in limitation areas.

CONCLUSIONS 

The results demonstrated the possibility of ap-
plying a machine learning tool integrating AR and 
SVM algorithms to classify river water quality. 
AR identified the most contributing attributes to 
promote the river’s quality. The most contributing 
attributes were orderly NH3-N, TCB, FCB, BOD, 
DO, and Sal, promoting the contributed values in 
the classification of 0.80, 0.79, 0,78, 0.76, 0.69, 
and 0.64, respectively, compared to 0.25-0.64 of 
TDS, Turb, TN, SS, NO3-N, and Cond. The SVM 
linear algorithm was the most suitable function 
for river water quality classification with six attri-
butes. It enabled the highest classification perfor-
mances depicted as the accuracy of 0.94, a preci-
sion average of 0.84, recall average of 0.84, and 
F1-score average of 0.84. While the minimum 
condition of three attributes also made it possible 
to classification with an accuracy of 0.73. The 
validation of the developed approach integrating 
AR and SVM for the Tha Chin River dataset con-
firmed the possibility of applying this alternative 
approach to classify river water, with satisfactory 
and reliable classification results being obtained 
as 0.95, 0.90, 0.86, and 0.86 for six to three at-
tributes for classification. The prediction results 
in 2019 were accurate 93.75% and corresponded 
well with the traditional WQI values. The finding 
results depicted a beneficial application of ML 
for the classification of river water quality and 
the possibility of using the different attributes that 
influencing the classification performance-related 
significantly to contamination source relatively.
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