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INTRODUCTION

Water resources are heavily utilised natu-
ral resources. They are constantly contaminated 
and in short supply all over the world [Boretti 
and Rosa, 2019]. As a result, it is critical to pay 
close attention to improve as well as maintain 
their availability and quality. Hence, reliable ap-
proaches to evaluate water resources are required 
for long-term development and human health 
safety [Dunca, 2018]. Compared to groundwater, 
the surface water resources are most susceptible 
to domestic and industrial pollution [Walker et 
al., 2019]. Their continuous deterioration causes 
a serious harm to the environments that thrive 
therein. As a result, a thorough and attentive strat-
egy to monitor and measure surface water is re-
quired to maintain its safety, since it affects public 
health [Massoud, 2012].

In order to properly manage the water resourc-
es, the information with regard to water quality is 
critical [Tripathi and Singal, 2019]. The standards 
for water quality have been created on an interna-
tional and regional basis to successfully monitor 
and evaluate the water resources. Nevertheless, 
they provide judgement based on specific factors 
and do not present a full view of the issue [Kannel 
et al., 2007; Rosemond et al., 2008]. As a result, 
a composite index for water quality assessment, 
such as water quality index (WQI), has been de-
signed to monitor and evaluate the properties of 
surface water [Banda and Kumarasamy, 2020].

WQI is a method that summarizes numerous 
water quality metrics into a single number. The 
index enables the interpretation of water quality 
in a single number [Horton, 1965; Brown et al., 
1970]. A benefit of WQI classification is its abil-
ity to measure the heterogeneity of the system. It 
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is based on simple additive weighting (SAW) 
approach that combines independent criteria the 
relative relevance of which is reflected by sub-
jective weights [Praus, 2019]. Water quality var-
ies greatly on a geographical and temporal basis, 
and hence, frequent monitoring produces a com-
plicated and vast dataset that includes a large 
number of factors, many of which are difficult 
to interpret. Different multivariate statistical ap-
proaches such as Principal Component Analysis 
(PCA) allow better understanding the results and 
reduce subjectivity in the process [Kazi et al., 
2009; Esdras et al., 2017].

PCA is a multivariate statistical method that 
determines the interrelation between initial vari-
ables and converts them into independent prin-
cipal factors [Jolliffe and Cadima, 2016]. It re-
moved the relationship between the water quality 
variables and the effort of variable selection, thus 
considerably facilitating the analysis. When the 
water quality is represented as an index, the corre-
lation of factors might lead to inappropriate clas-
sifications. Moreover, PCA has already been used 
to analyse the water quality data and minimise the 
number of variables in the system without giving 
up any information [Mahapatra et al., 2012].

The purpose of this study was to implement 
the use of hybrid PCA and WQI methods to as-
sess and monitor the water quality of the Benga-
wan Solo River. This river is one of the longest 
rivers on the island of Java (600 km), Indonesia, 
which crosses two provinces, namely Central Java 
and East Java. The upstream and downstream 

sections of the river do not physically satisfy the 
standards for clean water, as evidenced by an un-
pleasant odour, yellow-black river water, and a 
large amount of rubbish on the riverbanks [As-
tuti, 2015]. Another issue is that the town uses the 
water from the Bengawan Solo River for fishing, 
agriculture, industry, home activities, and other 
purposes [Dani et al., 2015]. Therefore, it is es-
sential to assess the overall water quality status of 
the river by using hybrid method which has never 
been reported in previous studies.

MATERIALS AND METHODS

Study area

The research was conducted by collecting 
secondary monthly data from the Bengawan 
Solo River Basin Center (BBWS) between 2016 
and 2020. The study involved 12 water quality 
parameters such as temperature (°C), dissolved 
oxygen (DO, mg/L), total dissolved solid (TDS, 
mg/L), total suspended solid (TSS, mg/L), nitrate 
(mg/L), nitrite (mg/L), ammonia (mg/L), phos-
phate (mg/L), chemical oxygen demand (COD, 
mg/L), biological oxygen demand (BOD, mg/L), 
and total coliform (MPN/100 mL). There were 7 
sampling stations that are described in Figure 1 
and Table 1.

Figure 1. Map of sampling station for Bengawan Solo river monitoring
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Data analysis

Water Quality Index (WQI)

WQI measures water quality in terms of an 
index number that represents the overall water 
quality for any intended purpose. It is described 
as a rating that reflects the aggregate effect of 
several water quality criteria that were taken into 
account while calculating the WQI [Ewaid and 
Abed, 2017]. The formula of WQI is defined as 
follows

𝑄𝑄! =
(𝑀𝑀! − 𝐼𝐼!)
(𝑆𝑆! − 𝐼𝐼!)

	𝑥𝑥	100 (1)

𝑊𝑊𝑊𝑊𝑊𝑊 =
∑ 𝑊𝑊!𝑄𝑄!
"
!#$
∑ 𝑊𝑊!
"
!#$

 (2)

where:	 Qi = rating for i-th parameter; 
	 Wi = unit weight for i-th parameter;
	 Mi = measured i-th parameter; 
	 Ii = ideal value for i-th parameter; and 
	 Si = standard value for i-th parameter. The 

weight values in this study were taken 
from various studies [Alobaidy et al., 
2010; Ahmed et al., 2019].

Principal Component Analysis (PCA)

The benefit of PCA is that it decreases the 
number of variables to a smaller number of fac-
tors that can then be used to sort variables and 
clusters of observations with similar features 
based on these factors. It also eliminates explana-
tory factors that are not relevant. The sample size 
of data must be large enough for correlations to 
converge into mutually exclusive variables when 
doing the PCA [Hutcheson and Sofroniou, 1999]. 
Therefore, a sampling adequacy test that uses the 

KMO test is required. Additionally, by using the 
Bartlett test, the homogeneity of datasets need 
to be tested [Mohd Matore et al., 2019]. Every 
principal component for a complete set of data is 
a linear function of the parameter variables and 
may be expressed as follows:

𝑃𝑃𝑃𝑃! = 𝑒𝑒₁	𝑋𝑋₁	 + 𝑒𝑒₂	𝑋𝑋₂	 +	…	+ 𝑒𝑒ₙ	𝑋𝑋"	 (3)

where:	 ei = i-th loading factor; 
	 Xi = i-th explanatory factor; 
	 i = 1, 2,…, p; and 
	 p = number of explanatory variables.

The general procedure of PCA involves con-
struction of a correlation or covariance matrix of 
the dataset, dimension reduction that is based on 
the explained variance of principal components 
(>80%), and factor rotation for clearer interpreta-
tion of individual variables [Rencher and Chris-
tensen, 2012].

Principal Component-Water Quality Index (PCWI)

A hybrid method that is obtained by integrat-
ing PCA and WQI is called PCWI. The main idea 
of PCWI involves replacing the weight unit of 
WQI with eigenvalue of principal component that 
is resulted from PCA. Therefore, the determina-
tion of weight unit is data-driven or more objec-
tive than the classic WQI. The formula of PCWI 
is expressed as follows [Praus, 2019]:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 	
∑ 𝜆𝜆!"
!#$ 𝑃𝑃𝑃𝑃!
∑ 𝜆𝜆!"
!#$

 (4)

where:	λi = eigenvalue of i-th component and 
	 PCi = the i-th principal component.

Data transformation

In this study, standard normal (Z-score) trans-
formation was used for each variable, since the 
research variables have different units and mag-
nitudes. Moreover, it is also utilised to compare 
the result between WQI and PCWI. The formula 
of Z-score transformation is denoted as follows 
[Lusiana and Mahmudi, 2020]:

𝑍𝑍!" =
𝑋𝑋!" − 𝑋𝑋%!
𝑠𝑠!

 (1)

where:	 Zij = Z-score of i-th parameter and j-th 
observation; 

Table 1. The location of station used for collection of 
water samples

Station number Location
1 Bacem Bridge Area of Surakarta City
2 Jurug Bridge Area, Sukoharjo Regency
3 Kajangan Area, Ngawi Regency
4 Ketonggo Bridge, Ngawi Regency
5 A. Yani Area, Madiun City
6 Napel Area, Ngawi Regency
7 Cepu Bridge, Bojonegoro Regency
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	 Xij = value of i-th parameter and j-th 
observation; 

	 X̅ i = mean of the i-th parameter; 
	 si = standard deviation of the i-th param-

eter; i = 1, 2,…, p; 
	 j = 1, 2,…, n; 
	 p = number of parameters/explanatory 

variable; and 
	 n = number of observations.

Applicability of PCWI

The application of PCWI to assess the wa-
ter quality of the Bengawan Solo river was car-
ried out by performing the classification that 
was proposed by [Praus, 2019] and box-whisker 
plot, along with one-way ANOVA and Tukey test 
[Midway et al., 2020; Musa et al., 2020].

RESULTS AND DISCUSSIONS

Descriptive summary of variables

The following Table 2 shows the descriptive 
summary of the water quality parameter that was 
observed from the Bengawan Solo River. The 
standard value that was used in this study was 
based on the regulation of Indonesia Ministry of 
Environment, 2001 [Ministry of Environment, 
2001]. The result indicated that the minimum 
value of each parameter met the standard value, 
except for DO. Meanwhile, both maximum and 
mean values of nitrite, ammonia, BOD, and total 
coliform exceeded the standard value.

Correlation between variables

Table 3 revealed that BOD, COD, and DO 
have significant correlation coefficient (bold). 
These parameters were basically the oxygen up-
take measures that further indicated the intersect 
details of the water quality characteristics and 
relevance of PCA [Khelif and Boudoukha, 2018]. 
Moreover, nitrate, ammonia, total phosphate, 
TSS, and TDS also exhibited significant correla-
tions that represented organic matter characteris-
tics of the waters.

Results of principal component 
analysis on water quality parameters 
of the Bengawan Solo River

The Kaiser-Meyer-Olkin (KMO) and Bartlett 
sphericity tests were used to assess the suitability 
of PCA. These tests were used to ensure that the 
sample was adequate [Rencher and Christensen, 
2012] and that each variable was independent 
[Jolliffe and Cadima, 2016]. KMO test statistics 
was equal to 0.57 (> 0.50) and Barlett’s p-value 
was 2.2×10–16 (p-value < 0.05) that suggests that 
the data is appropriate for PCA.

Figure 2 shows the percentages of explained 
variance of each main component. The scree plot 
helped in selecting major components and com-
prehending the underlying data structure. It was 
suggested that the cumulative proportion of vari-
ance that represents the standard rule for dimen-
sion reduction in PCA may explain at least 80% 
of the variation [Rencher and Christensen, 2012]. 
As a result, the first eight main components 
were kept to account for 84.51% of the dataset’s 
variability.

Table 2. Summary of water quality parameters

Variable Min Max Mean Std. dev Standard value
Temperature 23.12 32 27.291 1.604  3
pH 0 8.89 7.374 0.787 6–9
TDS 35 840 225.663 114.555 < 1000
TSS 1 1130 83.11 146.286 < 100
DO 0 9.74 5.833 1.839 > 3
Nitrate 0.001 13.44 2.725 2.472 < 20
Nitrite 0 3.8 0.254 0.421 < 0.06
Ammonia 0 7.026 0.273 0.568 < 0.50
Phosphate 0 2.66 0.269 0.346 < 1
COD 4.3 441.7 21.319 28.439 < 40
BOD 0.3 103 6.789 6.37 < 6
Total coliform 0 24000000 553496 2630259 < 10000
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PCA often includes principal component in-
terpretation that is required to comprehend the 
data structure. Table 4 summarises the rotated 
component loadings that can be used to explain 
relationships between raw variables. COD and 
BOD were major sources of saturation in the first 
principal component (PC1). All of these vari-
ables describe oxygen uptake in water. Tempera-
ture, TDS, and TSS had an effect on the second 
main component (PC2). Meanwhile, pH, nitrate, 
nitrite, and ammonia had the greatest impact on 
PC3, PC4, and PC5. PC6 and PC7 were also af-
fected by phosphate and total coliform. Finally, 
DO (PC8) played a role in the less important PCs.

The BOD and COD levels in rivers have tra-
ditionally been used to measure the extent of or-
ganic contamination that is caused by an excess 
of organic materials [Tangahu et al., 2019]. COD 

measures the quantity of oxygen that is absorbed 
by organic pollutants, whereas BOD measures 
the amount of oxygen that is required by aerobic 
biological organisms to decompose organic waste 
[Khotimah et al., 2021]. The two measures are 
utilised as primary criterion to assess aquatic eco-
system resources because they indicate the quan-
tity of oxygen-depleting organic pollutants in the 
water body. These parameters have been widely 
recognised as major indicators for river pollution 
[Lee and Nikraz, 2015].

Erosion of surrounding surface soil and stream 
banks, abrasion of streambed, and accumulation 
of dissolved organic matter or chemical deposi-
tion of inorganic particles within water column 
are all processes that create TSS in streams [Hud-
son-Edwards, 2003]. Meanwhile, organic TDS in 
streams is produced by organic compounds that 

Figure 2. Scree plot of PCA

Table 3. Correlation matrix of water quality variables

Variable Temperature pH TDS TSS DO Nitrate Nitrite Ammonia Phosphate COD BOD Total 
coliform

Temperature 1.000 -0.126 0.210 -0.353 0.076 0.022 -0.086 -0.209 0.042 -0.028 -0.127 0.033

pH 1.000 -0.001 -0.008 0.119 -0.231 0.152 0.130 -0.168 -0.042 0.106 -0.101

TDS 1.000 -0.225 -0.024 0.106 -0.006 0.202 0.096 0.315 0.134 0.104

TSS 1.000 -0.060 0.108 -0.059 -0.033 -0.011 0.013 -0.021 -0.058

DO 1.000 -0.128 -0.093 -0.127 -0.051 -0.281 -0.283 0.054

Nitrate 1.000 0.067 0.070 -0.049 0.233 0.017 0.072

Nitrite 1.000 0.089 -0.081 0.037 0.115 0.068

Ammonia 1.000 0.078 0.313 0.164 -0.062

Phosphate 1.000 0.169 0.096 -0.016

COD 1.000 0.814 0.078

BOD 1.000 -0.019

Total 
coliform 1.000
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are formed during biological growth (e.g., plant 
roots and microorganisms) and breakdown of 
biological materials within the river or stream 
bank. TSS raises turbidity of a water body that 
reduces penetration of light and, as a result, in-
hibits the photosynthetic rate of aquatic plants, 
possibly leading to oxygen deprivation [Bilotta 
and Brazier, 2008]. Furthermore, TSS can cause 
fish deaths by blocking their gills [Bilotta and 
Brazier, 2008]. In sluggish stream sections, sus-
pended silt may settle to the streambed, thereby 
suffocating fish eggs or any other benthos. TDS 
is a total measurement of the quantity of soluble 
components in a river or lake. The precise ions 
and levels that contribute to TDS may have eco-
toxicological consequences [Weber-Scannell and 
Duffy, 2007]. In addition to this, TDS may pollute 
groundwater through aquifer recharge and violate 
drinking water requirements. Increases in TSS or 
TDS in the stream may indicate a human effect 
that may subsequently be examined by assessing 
further water quality measures and component 
quantities [Butler and Ford, 2018].

On the other hand, increased nitrate levels 
have a negative impact on the aquatic ecosys-
tems since they cause eutrophication, toxic algal 
blooms, and hypoxia [Mahmudi et al., 2020]. 
Furthermore, excessive nitrate levels in drinking 
water can raise the risk of illnesses and health 
impacts such as methaemoglobinaemia, diabe-
tes, spontaneous abortion, thyroid disease, and 
stomach cancer [Ward et al., 2018]. As a result, 
it is critical to determine the nitrate sources to 
develop effective nitrogen contamination mitiga-
tion techniques and ensure long-term viability of 
water resources [Bastani and Harter, 2019]. For 
instance, the river water quality in China is in 
serious jeopardy and high nitrate content in the 

water is a major contributor to poor water quality 
[Xue et al., 2016]. Even the presence of nitrite, 
a different type of nitrogen, has the potential to 
cause cancer. As a result, nitrogen pollution is a 
serious environmental issue that should be taken 
seriously [Xu et al., 2014].

Comparison of PCWI and WQI

The PCWI results were validated by compar-
ing them to the conventional approach of WQI. 
WQI relative weights were established based on 
their relevance to an aquatic system, which im-
plies that they are subjective. The values were ad-
opted from some previous studies that dealt with 
river water quality evaluation [Alobaidy et al., 
2010; Ahmed et al., 2019]. A correlation analysis 
between the Z-scores of PCWI and WQI was per-
formed. The result is shown in Figure 3.

As shown in Figure 3, WQI and PCWI have 
strong (R > 0.90) and significant (p < 0.001) coef-
ficient correlation. This implies a good consensus 
of both indices in water quality assessment. It is 
worth noting that, unlike WQI, PCWI operates 
with objective weights that are calculated for spe-
cific water components [Praus, 2019; Tripathi and 
Singal, 2019].

Application of PCWI for water 
quality assessment

The PCWI values of the Bengawan Solo river 
were evaluated by classifying them in analogy to 
Shewhart control chart [MacGregor and Kourti, 
1995; Praus, 2019]. The classification result for 
this study is shown in Table 5. It is visible that 
more than half of the PCWI values that indicate 
the water quality status of the Bengawan Solo 

Table 4. Rotated loading factor of PCA

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Temperature 0.0858 -0.5992 0.0814 -0.0149 0.2717 -0.1837 -0.1078 0.1706

pH 0.0058 0.3011 0.6179 0.0140 -0.0326 0.0443 -0.1973 0.1451
TDS -0.2699 -0.4121 0.2028 0.0483 -0.3659 -0.0906 -0.1435 -0.0133
TSS 0.0122 0.4778 -0.4136 -0.0290 -0.1680 0.1453 -0.1920 0.2245
DO 0.3147 -0.1054 0.2327 -0.0233 -0.3923 0.3121 -0.2547 0.5484

Nitrate -0.1830 -0.0934 -0.4334 0.4542 -0.2087 -0.3354 -0.1754 0.3460
Nitrite -0.1135 0.1559 0.2561 0.5327 0.1979 -0.0705 0.5728 0.3851

Ammonia -0.3197 0.1395 0.2085 -0.0337 -0.5897 -0.2812 0.1865 -0.2782
Phosphate -0.1510 -0.1733 -0.1732 -0.5245 -0.1742 0.2075 0.5794 0.3494

COD -0.5996 -0.0486 -0.0327 -0.0506 0.0779 0.1517 -0.2201 0.1176
BOD -0.5372 0.0961 0.1043 -0.1131 0.3450 0.2263 -0.1967 0.1188

Coliform -0.0337 -0.2167 -0.0801 0.4629 -0.1528 0.7237 0.1036 -0.3210
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River is classified as slightly polluted. However, 
30 samples suggested that the water quality of the 
river was fairly polluted, 1 sample was heavily 
polluted, and 5 samples were unsuitable.

Furthermore, PCWI was also employed to 
analyse the seasonal variation of water quality 
of the Bengawan Solo River over various years, 
as presented in Figure 4. It can be seen that the 
highest index was found in 2020. Moreover, the 
result of ANOVA indicated that there was sig-
nificant difference of PCWIs from 2016 to 2020 
(F = 11.9, p < 0.0001). Furthermore, Tukey test 
revealed that PCWI in 2020 was statistically sig-
nificant compared to the previous years, which 
was denoted by its letter notation. This result 
suggested that the level of water pollution in the 
Bengawan Solo River has significantly increased 
from year-to-year.

The Bengawan Solo River is the largest river 
on Java Island that carries water from a drainage 
area (DPS) that spans ±16,100 km2. The water 
from the Bengawan Solo river is used for agricul-
ture, pumping, and meeting the water demands 
of households, which are now met by the local 
water company supply, community wells, or di-
rectly from rivers [Sri Wahyu Kusumastuti et al., 
2021]. The volume of wastewater that is generated 
in urban areas has grown significantly due to fast 
population expansion, economic activity, indus-
trial output, and changes in water use behaviour 
[Setyaningrum and Agustina, 2020]. As discussed 
before, the parameters that become the most domi-
nant characteristics in the Bengawan Solo River 
are COD, BOD, TSS, TDS, nitrate, nitrite, and am-
monia. Anthropogenic activities around the river 
stream contributed to organic pollutant load that 
was discharged to the Bengawan Solo River. In 
addition to this, the high level of ammonia comes 
from urine and faeces due to traditional dense 
settlement that is adjacent to the river and factory 

waste that is carried from upstream to downstream 
of the Bengawan Solo River. Furthermore, the 
concentration of BOD and COD in the Bengawan 
Solo River shows domestic waste as the dominant 
pollutant, which implies it is difficult to degrade. 
Ever since the industries were established in the 
Sukoharjo-Karanganyar region, the water quality 
of the Bengawan Solo river has been known to be 
deteriorate [Sri Wahyu Kusumastuti et al., 2021].

CONCLUSIONS

Freshwater pollution is a major concern 
worldwide, as it brings negative impact on water 
sustainability as well as public health. Compared 
to groundwater, surface water resources, such as 
rivers, are most susceptible to domestic and in-
dustrial pollution. Therefore, water resources 
monitoring and assessment is crucial for water 
management purpose. A novel hybrid technique 
that combines PCA and WQI (or PCWI) sug-
gested COD, BOD, TSS, TDS, nitrate, nitrite, and 
ammonia as the main factors that determine the 
water quality of the Bengawan Solo River. Fur-
thermore, it was also revealed that most samples 
of the river showed the water quality status as 
slightly polluted. The seasonal variation of PCWI 
values indicated significant increase of water pol-
lution in the Bengawan Solo River per year.

Table 5. Classification of PCWI values of Bengawan 
Solo River

Classification Class Range N observed
Good I -3 to -2 0

Slightly polluted II -2 to 0 329
Fairly polluted III 0 to 2 30

Heavily polluted IV 2 to 3 1
Unsuitable V >3 5

Figure 3. Correlation plot between WQI and PCWI
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