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ABSTRACT

For ungauged rivers, when there are no hydrological measurements and there is a lack of data on perennial flow
rates, the latter one to be determined based on other hydrological data. The river Suhareka catchment represents a
similar case. Since there is no data on Suhareka’s flow rates, the authors of this study aimed for the flow rate de-
termination based on rainfall measurements. From the available data on annual precipitation (monthly sums) pro-
vided by the Kosovo Hydrometeorological Institute for the Suhareka hydrometric station, the observed monthly
rainfall data for 30 years were analysed. Those gaps were initially filled by connecting the hydrometric station in
Suhareka with those of Prishtina, Prizren and Ferizaj, and as a result a fairly good fit was ensured. Moreover, the
intensity-duration-frequency curves were formed using the expression of Sokolovsky, as a mathematical model of
the dependence / (7, P). For a transformation of rainfall into flow, the American method SCS was used. As a result,
the equation for the Suhareka River basin was derived, which enabled the determination of maximum inflows, for
different return periods. The results obtained through this paper, indicates that even for ungauged river basins the
peak flows can be determined from available rainfall data.
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INTRODUCTION

For the water management process, the data
on river’s flow rates it of utmost importance.
Therefore, the river flow rate determination is
a focus of every hydrological research. Runoff
plots are very important means to monitor run-
off and soil loss (Baoyan et al., 2017). Unfortu-
nately, many catchments are ungauged, and thus
there are limitations for flood calculation using
rainfall-runoff models (Nam & Shin, 2018). As
stated, hydrological modeling is instrumental for
both scientific application and for providing pub-
lic services (Kolbjorn & Alfredsen, 2020).

When there is a lack of data on the river flow
rates and many parameters of catchment proper-
ties are missing, then another aproach must be
considered. The measurement model states in
the form of equations, the relationship between
the measurements and the true value of interest
(McMillan et al., 2018; Nearing et al., 2016).
Due to the lack of flow rate measurements, the
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relationship between rainfall and flow can help
solve this defficiency. The flow forecasting as in-
vestigated in this paper, can rely solely on using
the available rainfall data.

The Suhareka muncipality is on the sothern
part of Kosovo and is characterised with the con-
tinental climate with the Mediterenean impact.
The Suhareka river, flowing through this region
is a small river but with higher flow oscilations
through out the year, meaning that the O /0
flow relation is quite high. The Suhareka River
is also known as a dry river, but since 2015 it
has been flooding the downstream areas about 3
times and damaging the agriculture and industrial
activity in its vicinity. Therefore, the integrated
flood management is a priority in this area and it
requries the knowledge of the probabilistic flow
duration curves. On the basis of the hydrologic
data availibility, there are some methods that
can be used in this regard. The rain intensity (7)
ore rain height (H) dependence on duration time
(tk) and return period (P), can be determined in
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a pluviograph station that has a long observation
period, as a final product of statistical analyses
of rain (KHMI, 1984.). As for the pluvial floods,
these are dynamic processes influenced by rain
intensity and its distribution, catchments area,
river flow density, catchment land use, soil geo-
logic structure, soil moisture content, soil infiltra-
tion rate, etc. For the rainfall-runoff relationship
identification, the most common method is the
SCS method that is based on the dynamic inter-
action between rain intensity, soil infiltration and
surface runoff.

FLOW TREND DYNAMICS AND
DISTRIBUTION FUNCTIONS
FOR EXTREME RAINFALL

The available rainfall data, for a 30 year time
period, have some data deficiency during this
time; therefore, the statistical population param-
eters will be evaluated on the basis of the repre-
sentative group. As it is known, the larger the rep-
resentative group, the smaller will be the errors
in the population parametrs estimation and vice
versa. From the population, we have the yearly
rainfall series for 80 years, including those years
when the data are missing. The representative
group chosen is a 30 year series (Table 1).

In order to evaluate the arithmetic mean
of population, of the representative group, the

Table 1. Representative group of the rainfall population
(KHMI, 1984)

Year P, .. (mm) Year P .. (mm)
1954/55 931 1970/71 831
1955/56 778 1971/72 616
1956/57 648 1972/73 960
1957/58 786 1973/74 782
1958/59 719 1974/75 714
1959/60 745 1975/76 709
1960/61 781 1976/77 849
1961/62 760 1977/78 999
1962/63 969 1978/79 876
1963/64 933 1979/80 804
1964/65 716 1980/81 894
1965/66 818 1981/82 712
1966/67 773 1982/83 720
1967/68 669 1983/84 823
1968/69 751 Xmes. = 794.8333
1969/70 779 o= 97.16218

standard deviation of the population (SDP) (Bek-
tesh B, 2005) has to be found first, as follows:

n

SDP = |g% x

()

n—1

where: o — standard deviation of the representa-
tive group; n — number of cases in group.

On the basis of the equation (1) it can be
said that:

30
97.162182% x 3

SDP =
0-1

= 98.82

While standard deviation of the arithmetic

mean (SDXavg) will be:
SDP
SDXavg = — (2)
Vn
respectively,
SDX 2882 18.04
avg = ———=
7730

The results enable the finding of the bound-
ary interval of the arithmetic mean of the popu-
lation. As per the obtained results, for the prob-
ability coefficients 95%, the boundary interval is
calculated as follows:

794.833 + (1.96 x 18.04)

794.833 — (1.96 x 18.04) = 759.47
and
794.833 + (1.96 x 18.04) = 830.19

With the probability as high as 95%, it was
found out that the mean arithmetic of population
is within the range 759.47 mm and 830.19 mm.

Standard error of the standard deviation
(SEoSD) (Bektesh, 2005) is:

SEoSD —SD 3
0 =
o (3)
and
98.82  98.82

SEoSD = =12.75

V2 x30 7.746

Boundary intervals for the 95% probability is
as following:

98.82 + (1.96 X 12.75)

98.82 — (1.96 x 12.75) = 73.83
and
98.82 + (1.96 x 12.75) = 123.81

In theory and scientific research, trends are cal-
culated as is regression, with the following formula:
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Annual Rainfall Trend
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Figure 1. Annual series trend of the representative group

y=a+ bx 4

Parameter (a) shows the mean value of the
time series, while parameter (b) shows the mean
of the phenomena that is a study object, while (x)
are stanadard values given for each year (Figure 1).

Y

a= 27 (5)
XY

= éxz (6)

Regression and correlation analyses

In scientific research, the regression analyses
is a very useful method of identifying the cor-
relation between two or more variables or phe-
nomena. The correlation between two variables
1s a bivariate correlation, while the correlation
between three or more is known as a complex or
multivariate correlation.

When ther is no linear function with the
needed correlation coefficient of the (y) as de-
pendent variable, from a single (x) as an inde-
pendend variable, then a possible correlation
could be tested through multi linear regression.
At double linear regression, the results can be
stated as a line y = b, + b x, where b is dependent
from (z) (Maniak, 2010). Thus, a relationship y
= y(xl,; Z) is obtained:

y(xi; zi) = by + bix + by, (7

112

To determine the b , b, and b, coeficients, the
sum of all small quadrates S should be kept in
minimum:

N
S = Z — y(xi; zi]?
=1

L
(®)
bo + bl X xi +

+ b2 X zi )] = min

'MZ

=1

By partaill derivation of this equation, through
b, b, and b, coefficients, the 3x3 equation system

is obtained:
)(—1) =0

N 7 yi—bo—
0—>Z<—b1xxl’—

dbo i=1 \ —bh2Xzi
N — bo —

abl 0—>Z( b1 X xi )(—xi)=0 )
i=1 \ —b2 X zi
N bo -

or S oo

Knowing that and the relevant expressions
for Axi and Azi, following some transformations,
the needed coefficients are the following:

bo =ym—blXxm—>b2Xzm (10)
Y AxiAyi x ¥ Azi? —
— Y AyilAzi X Y. AxiAzi (11)

b1 = .
Y Axi? x ¥ Azi? — (¥ AxidAzi)
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Y AyiAzi X Y, Axi* —
_ — Y AxiAyi X Y, AxiAzi
» Axi? x » Azi* — < AxiAZi)2

(12)

b2

The degree of determination is B=r, *and is
defined as follows:
2 . .
2 _p_ sy (xi, zi) B
yxz — - 2 -
Sy

TN (y(xi, zi) — ym.)? (13)
N—1

?I=1(yi —ym.)?

N—-1
with:
N (bl X xi —)2
= _ .
sp(xi, zi) = Nb_ZXZl =

b1 X Z AxiAyi +
/(N —1)
+b2 X Z AyiAzi

Since -1 <r<1, it implies that 0 < B<I.

In the considered case, the triple regression
was obtained, connecting the hydrometric station
of Suhareka (y) with those of Prizren (x), Ferizaj
(z) and Prishtina (f) (Maniak, 2010). From these
analyses of variance, an important, but not suffi-
cient correlation was obtained (Table 2, Figure 2).

According to this analysis, the regression
equation will be:

y = 455.2839 + 0.3215x +
+ 0.2394z — 0.1634t

The inadequacy of this relationship is also no-
ticed by the high values of t-test and low ones of
F-test as well as P-value which should be below
the 5% probability level (<0.05). However, the
cause of the failure of a linear regression is usu-
ally the nonlinearity between the variables.

Non linear regression and transformations

The cause of failure of a linear regression is
mainly nonlinearity between variables (Maniak,
2010; Husno, 2007). When using a nonlinear
regression, the curve function is often unknown
(Karakus, 2020). If the multiple nonlinear regres-
sions are taken into account, then:

al,.az2,.a3

Y =ag*x{ xgxg® Lxpt

(14)
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Figure 2. Normal probability plot

Table 2. Summary output of the multiple regression analyses

Summary output
Regression statistics
Multiple R 0.449555
R Square 0.2021
Adjusted R Square 0.052494
Standard Error 91.1738
Observations 20
ANOVA
Parameters df SS MS F Significance F
Regression 3 33688.216 11229.41 1.35088 0.293297
Residual 16 133002.58 8312.661
Total 19 166690.8
Parameters | Coefficients Stgr;r(il;rd t Stat P-value Loéer 95% | Upper 95% ;502902 gsp '8;:
Intercept 455.2839 | 177.71444 | 2.561884 0.020895 78.54608 832.0217 78.54608 832.0217
690 0.321528 | 0.2162926 | 1.486541 0.156575 -0.13699 0.780048 -0.136992 | 0.780048
757 0.239476 | 0.2685362 | 0.891782 0.385725 -0.3298 0.808747 -0.329796 | 0.808747
695 -0.16346 0.3472157 -0.47076 0.644163 -0.89952 0.572608 -0.899521 0.572608
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which can be linearized using the following
transformations:
logy =logay + a; logx; +
+a,logx, + -+ aylogx,

On the basis of what was said above, similar-
ly as in the case of linear regression, the Suhareka
hydrometric station was connected with all three
other stations. The nonlinear triple regression
equation has the formy = a, * x,a' * x a® * x @’ or
logy = loga, + a, * logx, + a,* logx, + a, * logx,,
where after determining the coefficients a, a,, a,
and a, the same takes the form:

logy = 0.3057 + 0.384 xlogx; +
+0.358 * logx, + 0.172 * log x3

or after anti-logarithm:

— 0.384 , ,.0.358 _ ,.0.172
y =2.02xx; * Xo * X3

The results of these calculations are shown in
the Figure 3.

Distribution functions for extreme rainfall

At a first glance, it seems that between indi-
vidual cases that produce mass phenomena, there
is an irregularity and chaos, but when they are
studied scientifically, it is seen that there are gen-
uine regularity, principles and laws. These rules,
principles and laws are best revealed by the law
of large numbers of Laplace and Gauss.

The normal distribution is a symmetric two-
parametric distribution with density function:

) 1 1 [x—xm.]2

X)=———=xexp ——*|——

o *\2m 2 o (15)
—0o<x <40

For standardization, take the standard vari-
able k = (x-x )/ X and forx =0, 0= 1 we have:

2
* exp — [%2] =~ 0.4 e_(k?),

—o < k < +4oo

1
k) =
S \2rm (16)

The normal distribution function for calculat-
ing the stagnation probability is:

1
PX<x)=——x
( ) o *\2T
x (17)
J‘ 1x—xm.2d
% —_ [ —_
exp — 5 [——1dx

The normal distribution is represented by the
surface under the density function, which can be
formed by the area x =+ ko arranged symmetri-
cally with the center. This area x + o contains
68.26% of all cases.

Normal distribution symmetry is used to
represent the distribution as right in a suitable
probability diagram. The straight line is easily
determined by points, i.e the average x in P, =
50% and the values x =+ o, which are 84.13% and
15.87% (or 1/6 of all values). With a linear divi-
sion of the axes, the distribution function P (x)

The degree of connections between hydrometric stations
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Figure 3. Degree of connections between hydrometric stations — triple nonlinear regression
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is an S-shaped curve. Taking an annual series of
38-year rainfall and dividing it into classes with
width b = 50 mm, the statistical parameters of

normal distribution are obtained:
N , ,
m = =i *xxi
N

29050 76447
=—3g = 47 mm

and

Ynix (xi—xm.)?
N-1 B

630789.47

= 36 —1 = 130.569 mm
F h cv=-"= 130.569 0.1707
rom here, Y = T 76447

while due to symmetry Cs = 0.

The normal distribution function takes the
following values:

For P = 50% — x = x = 764.47 mm; for P,
=84.13% — x =x + ¢ =895 mm; and for P,
=15.87% — x = x -6 = 633.9 mm. The Table 3
presents these calculations for different probabil-
ity factors (Figure 4).

Whereas, the density function takes these values:
forx=x —fo=1/(c* \2m) * b * exp -1/2 * (0)
=50/ (130.569 * \2m) = 0.1527, similarly for the
casesx=x +0,x=x +20;x=x + 30 are obtained

1400

P year. (mm)

1200

1000

800

Table 3. Normal distribution values of the distribution

function

Pu=50% : X=X = 764.4736842 Mm
Pu=84.13% X=X +S = 895.0430687 Mm
Pu=15.87% X=X__-S, = 633.9042998 Mm
Pu=95%: | x=x_ +1.96s= | 1020.389678 Mm
Pu=99%: | x=x, +2.58s= | 1101.342696 Mm
Pu=5% : x=x__-1.96s = | 508.5576907 Mm
Pu=1% : x=x . -2.58s= | 427.6046723 Mm

% Pu Gauss (mm) Galton (mm)

1 427.6046723 | 471.7654729

5 508.5576907 | 527.8134886

15.87 633.9042998 | 628.0165127

50 764.4736842 | 752.6742906

84.13 895.0430687 | 902.0759428

95 1020.389678 | 1073.331016

99 1101.342696 | 1200.847922

Table 4. Calculations

x=X . Ko ku; k =+1,+2,13
X=X, f,=0.152772476
X=X,  *o f,=0.092661191
x=x_ + 2o f,=0.020675506
x=x__* 3¢ f,=0.001697149

(Figure 5), in which case the calculations are formed
in tabular form together with the Table 4.

On the surface + 36, which includes 99.73%
of all cases (0.9973 * 38 = 37.897), almost all

Normal and Log-Normal Distribution-Station Suhareke

R

600

7

0 10 20 30 40

Normalvert. Log-normalvert.

X
® 3
S 1
@ >
\ 4

50 60 70 80 90 100

Pu (%

«<—Series3 Series4d ~ €—Series5 (%)

Figure 4. Normal and log-normal distribution — Station Suhareke
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Frequency distribution
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Figure 5. Normal distribution density function

cases of our group fall within the curve bounded
byx=x +3o.

Although only 0.26% of all values are out of
bounds x = x + 3o, it is still a shortcoming of
the normal distribution that its smallest value -
is not physically meaningful. To obtain only the
positive range (space) of cases, instead of x, we
obtain y = logx, or y, = Inx, (log-normal, Galton
or Fechner distribution). In this case the function
will be defined in the interval (0, o).

Autoregressive models for simulating
monthly precipitation

The time series models used are often based
on the equation

X = fy + p1* (X—1 — Uy)
+t; * oy x4/ (1 — p1?)

known as the first-order equation of Markov
models.

(18)

For the rainfall of a season or a year with av-
erage u_and autocorrelation coefficient p with
time shift 1 we have:

g =u+tpx*(q-1—u+e (19)

The recursion link for the generation of
synthetic time series is the Fiering model. The
application of the Fiering model to a normally
distributed group with mean p, standard devia-
tion ¢ and autocorrelation coefficient r, is giv-
en by the recursion expression (Maniak, 2010;
Mujumdar, 2019):

116

g =ux1—r)+rq_,+

+ tio/(1 —12)

To establish the recursion equation, the aver-
age monthly rainfall is initially calculated as:
N

(20)

1
ki=~%*/ *kij
N k=1

€2y

The variance of the individual time intervals

(monthly) t will be:
N
P
k=1
N

1
"R Q"

While the autocorrelation coefficient is calcu-
lated with the expression:
N
. D=1 Xk, j X1, j—1 — Npjpj—1
! 0j0j-1 (N — 1)

2|~

2 _
O'] =

(22)

(23)

The general form of the equation suitable
for use is:
Ti0;
J9%
Qij =1+ =+ (qijo1 — #j-1) +
Oj-1

+ ti,jo-j ’(1 - T}Z)

where: di 5 — the precipitation generated by
string (i) in the i-th time interval, e.g for
t = 1 per month we have j = 1,2,..., 12;

24
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. — monthly precipitation averages (f)
(=<12); o,— standard monthly deviation (j);
r—- the correlation coefficient between qj
and gj-1; ¢, — random numbers normally
distributed with p=0and 6 = 1.

The ratio ;Ji = bj otherwise is known as the
regression coeijﬁéient.

On the basis of what was said above, the 30-
year series of monthly rainfall were takend and the
statistical parameters were set as in the Table 5.

The model is based on equation (24), where
12 consecutive equations are described. The start-
ing point is the average rainfall in October, 61.33
mm. To generate synthetic time series, a sequence
of randomly distributed random numbers were
computed z,, z,,.... These numbers z can be gen-
erated from a table of random numbers such as
-0.313, -0.951, 0.590 and so on.

However, according to the model, z numbers
should be converted to random gamma distribu-
tion numbers according to the equation:

2
Ct,j ti Ct,j

2 3
tg=—@Q++—2—-—L)3 ——
Ct,j

(25)
Ct, ]

6 36
where C, is the coefficient of asymmetry ex-
pressed by the equation

3
Csj —Ti—1 Csj—l

(1-72)

where: ¢, — random numbers normally distributed
0; 1), l, — random gamma distribution
numbers (0; 1; Cg), Cy_ — coefficient of
asymmetry for months.

Cej =

(26)

After converting these numbers, new num-
bers are obtained according to equation (25);
where the 12 equations were then laid out for
each month and the values were simulated:

First year:

qn = 86.7 + 0.0057 * (q;, — 61.33) +

+t; % 39.22 % /(1 — 0.0062)

Table 5. Statistical parameters of monthly precipitation in (mm) for 30-year series

Month X os S, Cs r b,
N 86.7 39.22187 -0.00594 0.006158 0.005767
D 80 39.41906 0.291129 0.13133 0.13199
J 70.33333 46.03097 1.160096 -0.17544 -0.20487
F 57 38.62017 0.937803 0.1177 0.098751
A 65.5 46.08968 1.380183 -0.24722 -0.29504
M 60.56667 25.39303 0.453322 -0.08208 -0.04522
M 75.7 39.49784 0.768659 -0.0487 -0.07574
J 65.86667 41.95789 1.671599 -0.02247 -0.02387
J 62.63333 49.11737 2.635784 -0.0126 -0.01475
A 45.63333 33.25501 0.658228 -0.21308 -0.14426
S 63.56667 50.52939 1.741598 0.012554 0.019075
O 61.33333 41.87776 0.600436 -0.19055 -0.15792

Coefficient of variation

Empirical

6 7 8 9 10 11 12

Simulation t (month)

Figure 6. Model summary according to equation (24), for a 20-year simulated monthly rainfall hydrograph
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qp =80+ 0.132 * (q;y — 86.7) +
+t; % 39.41 % /(1 — 0.3132)
Second year:

qn = 86.7 + 0.0057 % (q;_1,, — 61.33) +

+t; % 39.22 % /(1 — 0.0062)

The similarity of the empirical values with
the simulated ones give a coefficient of variation
which expresses the ratio of standard deviations
and their arithmetic means (Figure 6).

RESULTS AND DISCUSSION

Processing of IDF curves

Assuming that the rainfall series follow the
Pearson III distribution, and based on the data
on the maximum daily rainfall for the Suhareka
region, the probability distribution of heavy 24h
precipitation (according to the Pearson-III and
log-Pearson-1II distributions) for the combined
series of maximum rainfall is determined.

Pearson-I1I distribution for a 30-year series of
maximal daily precipitation has the following sta-
tistical parameters: X =27.116 mm; C = 0.338;
C _=0.845, while log-Pearson-III: ¥ = 1.409; C,
=0.104; C =-0.129. '

As a mathematical model of the depen-
dence / (7, P) the following expression is taken
(Babac, 20006).

Iy(P)

TP = v 18

27

where: A and B are dimensionless parameters,
lo (P) is the rainfall intensity limit, i.e.

P Daily P,
0.9

0.8 ®
0.7

0.6

0.5

0.4

0.3

0.2

0.1

%i_r)lg I(T, P). According to the Russian au-
thor Sokolovsy, this model was used for
the territory of the European part of the
former Soviet Union. If it is assumed that
parameters 4 and B of equation (27) can
be presented in the form of a map for the
observed territory, then the intensity val-
ues of the boundary /o (P) for a point can
be determined through the corresponding
values of the maximum daily rainfall Hd
(P). According to this model for rain du-
ration 7= 1440 min. and probability P:

Iy(P)
(1440« A+ 1)B
Relationship H(1440,P) = a*H (P) is quite
logical, and that coefficient (a) is close to unity
because these are magnitudes determined by a se-
ries of annual maximum daily rainfall. Then, the
following is derived from equation (28):

H(1440,P) = x 1440

(28)

a
I(T,P) = 1770

(29)
(1440 *A+1

B
H.(P
A*T +1 ) * Ha(P)

Using the last equation and the coefficients
for Suhareka (4 = 0.3; a = 1.0; B = 0.79) the fol-
lowing expression is obtained:

I, P) =125

1440 * 0.3 + 1),%7°
( 03+T +1 ) * Ha(P)

(30)

It is worth noting that the parameter A4 in the
model in most cases is constant, while B is the

- Hydrometric station Suhareka

5 25 45

® Pe

log-Pearson typ-IlI

65 85 105
P (mm)

Figure 7. Probability of 24h heavy rain distribution according to Pearson type-III
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Figure 8. Precipitation intensity curves for different return periods

‘coefficient of reduction of rainfall intensity over
time’ or as it is otherwise known the ‘continen-
tal coefficient’ which seems more acceptable be-
cause it has a physical interpretation.

According to the Pearson type-III distribution
(Figure 7), the maximum daily rainfall heights for
different return periods are calculated according
to the expression x7= xp, + 0 % k(Csy, T), where
k- represents the frequency factor.

To assess the suitability of the theoretical
distribution with the empirical one, statistical
testing was performed according to the test y,.
The same resulted in the value c2 = 2.64 < ¢
= 7.81, which means that the hypothesis is ac-
cepted below the 1-a = 5% probability level or
statistical certainty is 95%.

By substituting the rainfall heights for the re-
spective return periods in eq. (30), rain intensities
are found (Figure 8).

Flow curves

Since no flow measurements have been
performed in the Suhareka region, then it is
necessary for high waters to be indirectly de-
termined by the transformation of rainfall into
flow. For this purpose, the American SCS
method is used, which uses the following char-
acteristics of the basin: the length of the flow
(L), the length to the center of gravity of the
river basin (Lc), the slope of the flow (i ) and
the surface of the river basin (F).

Numerous analyses have shown that in the
triangular-shaped synthetic hydrograph, the rela-
tionship between rain duration (7,) and delay time
(tp) is linear. The latency time of the basin is de-
fined by the expression:

ty =Ty +axtg (31)

where: a — represents the regression coefficient
which is a function of the surface a = f(F),
while 7, depends on the topographic char-
acteristics of the basin and is determined
by the empirical expression:

L % LC)O.OSG (32)

T, = 0.4 % 1063 « (

lur

By recognizing precipitation with different
durations and different return periods the effec-
tive precipitation can be determined according to
the SCS method:

_(P—-02+d)?

- 33
e P+08xd 33)

, [mm]
where: d — soil moisture deficit, which is deter-
mined by the formula:

(34

- * 4
CN A, |mm

Whereas, the CN number expresses the char-
acteristics of the soil in the catchment, which in
the considered case is more complicated, since
there are two groups of soils (B and C) with
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different composition: group B with about 40%,
and group C with 60% participation. Thus, it
turns out that the number CN = 73,

) 1000
while d = (? — 10) * 25.4 = 93.945 mm.

Precipitation from IDF curves, due to the cli-
matic effect and non-uniform distribution of pre-
cipitation is increased by 8%, and the effective pre-
cipitation is determined according to equation (33).

For the Suhareka river basin the following
characteristics can be used: L = 15 km; Lc = 7.5
km;i =5% and F'=80.2 km?, of which according
to equation (32) and (31) results: T, =3.761h dhe
tp =3.761 + a * ty. For F'=80.2 km? the regres-
sion coefficient is @ = 0.44. The setting time of the
synthetic hydrograph is defined as: Tp, = t /2 +
Tty =To+0.94 * tj = 3.761+0.94 * tj.

300

Qmax. (m3/s)

250

200

150

Due to the small surface area of the basin, it
can be assumed that in the synthetic hydrograph
it is Tp = Tr (rise time = fall time). Eventually,
by condition:

1
Pe*FZE*Qmax.*(Tp'i'Tr)

Derives,

0 _ P, x F
max. Tp

(35)

By adjusting the units in the last equation, the
maximum inflows for different return periods are
obtained, which are presented in the Figure 9.

Finally, the dependence of the flow factor (X) of
the area for different durations (h) and different re-
turn periods (years) is given. In this case, the effec-
tive rainfall is expressed according to the formula:

Q(Tk) - Suhareka River

----- PU=10%

Pu=5%

— - - Pu=2%
Pu=1%

— . -Pu=0.5%

Pu=0.1%
Pu=0.01%

Tk (h)

Figure 9. Maximum flows for different probabilities

Flow factor for n-year frequencies

100

10

0.05 0.5

10a = - = 20a

t(h)

50a

100a — - - 200a

Figure 10. Flow factor for different return periods
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2
P, = (36)
e 800
P+r—8

where: P — precipitation for different return peri-
ods and CN = 73.

The flow factor is determined according to
the expression (Ven, 1962):
Fe

x==

. (37

where: ¢ — time in hours (h).

CONCLUSIONS

The aim of this research was to estimate the flow
for ungauged Suhareka River, based on the rainfall
data available. In the considered case, the triple re-
gression was obtained, connecting the hydrometric
station of Suhareka (y) with those of Prizren (x),
Ferizaj (z) and Prishtina (f). From these analyses of
variance an important, but not sufficient correlation
was obtained. The inadequacy of this relationship
is noticed by the high values of t-test and low ones
of F-test as well as P-value. However, the cause of
the insufficient correlationn is the nonlinearity be-
tween the variables, so after using transformation
the Suhareka hydrometric station was connected
with three other stations, using non linear triple re-
gression analyses. The correlation coefficient in this
case is higher than that of linear regression. Thus,
I'yx1x2x3 = 0.62, which represents a very important
correlation of these stations.

The next step was the calculation of the distribu-
tion functions for extreme rainfall, with the use of
Laplace and Gaussian law of large numbers. For a
series of 30 years monthly rainfall data for the Hy-
drometric station in Suhareke, the Normal and Log
Normal Distribution as well as Normal Distribution
density function were calculated. Assuming that the
rainfall series follow the Pearson III distribution,
and based on the data on the maximum daily rainfall
for the Suhareka region, the probability distribution
of heavy 24h precipitation (according to the Pear-
son-III and log-Pearson-III distributions) for the
combined series of maximum rainfall is determined.

According to the Pearson type-III distribu-
tion, the heights maximum daily rainfall heights
for different return periods, in Hydrometric Sta-
tion Suhareks, are calculated.

Statistical testing was performed (according
to the test Xy to assess the suitability of the theo-
retical distribution with the empirical one. The

results showed the acceptance of the hypothesis
below the 1- a = 5% probability level or with sta-
tistical certainty about 95%.

Aa a result, the Precipitation intensity curves
were given for different return periods. Since no
flow measurements have been performed in the
Suhareka region, the SCS method was used, by
which the high waters were indirectly determined
by the transformation of rainfall into flow. The
equation for the Suhareka Basin charcteristics is

P, xF
Ty
inflows for different return periods were obtained.

The results obtained through this paper, indi-
cates that even for ungauged river basins the peak
flows can be determined from the available rain-
fall data. This will be of great help to the water
engineers that are facing many data deficiencies
while managing water resources.

derived for this purpose and the maximum

REFERENCES

1. Baoyan L., Wang D., Fu S., Cao W. 2017. Estima-
tion of peak flow rates for small drainage areas. Wa-
ter Resources Management, 1635—-1647.

2. Kolbjorn E., Alfredsen K. 2020. Hydrology and
water resources management in a changing world.
Hydrology Research, 143—145.

3. McMillan H., Westerberg 1.K., Krueger T. 2018.
Hydrological data uncertainty and its implications.
Wiley Interdisciplinary Reviews Water. https://doi.
org/10.3390/w10111669

4. Nam K.W., Shin M.J. 2018. Estimation of peak flow
in ungauged catchments using relationship between
runoff coefficient and curve number. Water.

5. Nearing G.S., Gupta H.V., Clark M.P., Tian Y., Har-
rison K.W., Weijs S.V. 2016. A philosophical basis
for hydrological uncertainty. Hydrological Sciences
Journal, 1666—1678.

6. Maniak U.2010. Hydrologie und Wasserwirtschaft’;
Eine einfiihrung fiir Ingenieure, 6. neu bearbeitete
Auflage. TU Braunschweig.

7. VenT.C. 1962. Hydrologic determination of waterway
areas for the design of drainage structures in small drain-
age basins. University of Illinois at Urbana-Champaign.

8. Husno H. 2007. InZenjerska Hidrologija. Sarajevo.

9. Babac P. 2006. Osnovi Hidrotehnike u Sumarstvu
primeri iz teorije i prakse. Beograd.

10. KHMI. 1984. Hydromeorological yearbooks of
Kosovo 1954-1983.

11. Bektesh B. 2005. Statistika elementare Prishtiné.

12. Karakus C. 2020. Istatistiksel analiz, olasilik ve
rassal degiskenler.

121



