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INTRODUCTION

Precipitation constitutes the most important 
input data for all type of hydrological modelling. 
However, in practice, records of precipitation are 
related to the problem of missing data. Process-
ing the rainfall data with missing observations is 
a serious problem. Estimating missing precipi-
tation data approaches can range from the sim-
plest weighting methods to artificial intelligence-
based approaches. Spatial interpolation methods 
such as the inverse-distance weighting [Shepard, 
1968] and normal-ratio methods [Paulhus and 
Kohler, 1952] have been used for the estima-
tion of missing precipitation data. The inverse 
distance weighting method was used in many 
studies [Wei and McGuinness,1973; Simonton 
and Osborn, 1980; Garcia et al., 2008; Hurtado 
et al., 2021]. Several improvements to weight-
ing methods were proposed by Teegavarapu and 
Chandramouli [2005] and also introduced the co-
efficient of correlation weighting method. Suhaila 
et al. [2008] introduced several improvements to 
the inverse distance and normal ratio methods. 

The results indicate that the performance of these 
modified methods improved the estimation of 
missing precipitation data. Teegavarapu [2019] 
suggested probability space-based weighting 
methods to estimate the missing daily precipita-
tion data in Kentucky, USA. This proposed new 
probability space-based distances constitute con-
ceptually superior alternatives to Euclidean dis-
tances. Another spatial interpolation used method 
is based on Kriging [Ly et al., 2011; Teegavarapu 
and Chandramouli, 2005; Teegavarapu 2007, Xu 
et al., 2015; Hurtado et al., 2021].

Aguilera et al. [2020] compared three tech-
niques for missing daily precipitation data estima-
tion; spatio-temporal Kriging, multiple imputation 
by chained equations through predictive mean 
matching, and the random forest algorithm in the 
Almonte Marismas aquifer in Spain. They found 
that the spatio-temporal Kriging is the most ro-
bust method. Teegavarapu [2012] compared new 
mathematical programming models with other 
techniques (multiple linear regression, nonlinear 
least-square optimization, Kriging, global and local 
trend surface as well as thin-plate spline models) 
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for estimating the missing daily precipitation data 
in the state of Kentucky, USA. The results indicated 
that the proposed new mathematical programming 
formulations are superior to those obtained from 
all the other used methods.  Bárdossy and Pegram 
[2014] compared a new copula-based method with 
other techniques (regression, Kriging, multiple 
linear regression) for infi lling missing daily and 
monthly rain gauge data, in the Southern Cape re-
gion of South Africa, and the results indicated that 
the copula-based methods are superior to the others.

Recently, artifi cial intelligence-based ap-
proaches have been widely used in the fi eld of hy-
drology. Imputations of precipitation data using ar-
tifi cial intelligence-based approaches were report-
ed by multiple studies. Teegavarapu et al. [2009] 
proposed a fi xed functional set genetic algorithm 
method (FFSGAM). The method uses genetic al-
gorithms and a nonlinear optimization formulation 
to obtain optimal functional forms to estimate the 
missing daily precipitation data in the state of Ken-
tucky, USA. They found that the proposed method 
performed better than traditional inverse distance 
weighting technique. Random forest approaches 
were proposed by  Mital et al. [2020], to estimate 
daily precipitation records, in the Upper Colorado 
water resource region-USA. They found the cor-
relation between references and target stations that 
infl uences the performance of the proposed model. 
Artifi cial neural networks (ANNs) were applicated 
in many studies [Kajornrit et al., 2012; Teegavar-
apu and Chandramouli, 2005; Coulibaly and Evo-
ra, 2007; Teegavarapu,2007; Kim and Pachepsky, 
2010; Hasanpour Kashani and Dinpashoh, 2012; 
Londhe et al., 2015 Teegavarapu et al., 2017; Bar-
rios et al., 2018 ; Hurtado et al., 2021].

In this present paper, Long Short-Term Mem-
ory deep neural networks were tested to estimate 
missing monthly precipitation data. The appli-
cation was done on the K’sob basin in Algeria.
LSTM was compared with the most widely used 
classical methods such as the inverse distance 
weighting method and the coeffi  cient of correla-
tion weighting method.

METHODOLOGY

Long short-term memory model

Long short-term memory was introduced 
by  [Hochreiter and Schmidhuber, 1997]. It is a 
powerful architecture of the recurrent neural net-
work (RNN). LSTM is designed to overcome the 

error backfl ow problems. LSTM has the ability 
to perform complex artifi cial tasks that no other 
recurrent net algorithm has solved [Hochreiter 
and Schmidhuber, 1997]. The architecture of the 
LSTM unit is presented in Figure 1. The LSTM 
equations are listed below. l

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚

−𝑘𝑘𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑚𝑚𝑚𝑚
−𝑘𝑘𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚

𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑚𝑚𝑚𝑚
𝑛𝑛
𝑖𝑖=1

 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (11) 

 
 

(1)

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚

−𝑘𝑘𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑚𝑚𝑚𝑚
−𝑘𝑘𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚

𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑚𝑚𝑚𝑚
𝑛𝑛
𝑖𝑖=1

 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (11) 

 
 

 (2)

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚

−𝑘𝑘𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑚𝑚𝑚𝑚
−𝑘𝑘𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚

𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑚𝑚𝑚𝑚
𝑛𝑛
𝑖𝑖=1

 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (11) 

 
 

 (3)

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚

−𝑘𝑘𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑚𝑚𝑚𝑚
−𝑘𝑘𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚

𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑚𝑚𝑚𝑚
𝑛𝑛
𝑖𝑖=1

 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (11) 

 
 

 (4)

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚

−𝑘𝑘𝑛𝑛
𝑖𝑖=1

∑ 𝑑𝑑𝑚𝑚𝑚𝑚
−𝑘𝑘𝑛𝑛

𝑖𝑖=1
 (7) 

 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑅𝑅𝑚𝑚𝑚𝑚

𝑛𝑛
𝑖𝑖=1

∑ 𝑅𝑅𝑚𝑚𝑚𝑚
𝑛𝑛
𝑖𝑖=1

 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖|𝑁𝑁

𝑖𝑖=1
𝑁𝑁  (11) 

 
 

 (5)

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
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𝑁𝑁  (11) 

 
 

 (6)

where: it, ft, and ot – the input gate, forget gate, 
and output gate, respectively;

 Wi, Wf, and Wo – the weights linking the 
input, forget, and output gates with the in-
put, respectively;

 Ui, Uf, and Uo – the weights from the in-
put, forget, and output gates to the hidden 
layer, respectively;

 bi, bf, and bo – the input, forget, and output 
gate bias vectors, respectively; 

 C̃t – the state of the cell at the previous 
time; Ct is the current state of the cell;
ht-1  – the output of the cell at the previous 
time point; ht refers to the output of the 
cell at the current time.

Traditional methods 

The LSTM was compared with the most 
widely used classical methods including the in-
verse distance weighting method and the coeffi  -
cient of correlation weighting method.

Inverse distance weighting method

The IDWM is one of the most traditionally 
used methods for estimating missing precipitation 

Figure 1. The memoru unit structure fo the 
LSTM layer [Rahimzad et al., 2021]
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data. The estimation of missing value of an obser-
vation, Pm, at a base station m, is calculated us-
ing the observed values at other stations and the 
distance between the base station and the other 
stations using the following equation:

	

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
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∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚
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∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁
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 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁  (10) 
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𝑁𝑁  (11) 

 
 

	 (7)

where:	Pm is the precipitation at the base station m;  
n is the number of stations;

	 Pi is the precipitation at station i, 
	 dmi is the distance between the station m 

and the station I;
	 k is referred to as friction distance [Vieux, 

2001] that ranges from 1 to 6. 		
The mostly commonly used value for k is 2.

Coefficient of correlation weighting method

In CCWM, the coefficients of correlation 
between the data of station m and the other sta-
tions are used as weighting factors and the es-
timation method is given by [Teegavarapu and 
Chandramouli, 2005]:

	

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚
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 (8) 

 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁

𝑖𝑖=1  
∑ (𝑃𝑃𝑖𝑖 − 𝑃̅𝑃)2𝑁𝑁

𝑖𝑖=1
 (9) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖̂𝑖)2𝑁𝑁
𝑖𝑖=1
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	 (8)

where:	Rmi is the coefficient of correlation be-
tween the data of station m and any oth-
er station i.

Performance measures

The performance of the proposed estimating 
methods is evaluated using the most widely used 
goodness of fit measures.

Nash-Sutcliffe efficiency coefficient

Nash-Sutcliffe efficiency (NSE) is a dimen-
sionless goodness-of-fit indicator, introduced 
by [Nash and Sutcliffe, 1970]. It has a range 
from -∞ to1. The value 1 indicates perfect fit, 
while a NSE ≤0 suggests that the mean of the 
observed values is a better predictor than the 
model. NSE is given by:

	

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 
 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
 

𝑃𝑃𝑚𝑚 =
∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑚𝑚𝑚𝑚
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	 (9)

where:	Pi is the observed precipitation;
	  

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
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𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
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 is the estimated precipitation.

Root mean squared error and 
Mean absolute error

Root mean squared error (RMSE) and  Mean 
absolute error (MAE) are frequently used, which 
describe the difference between the model simu-
lations and observations in the units of the vari-
able [Legates and McCabe, 1999]. They are given 
by the following expressions.

	

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (1) 
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𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊0𝑥𝑥𝑡𝑡 + 𝑈𝑈0ℎ𝑡𝑡−1 + 𝑏𝑏0) (3) 
 
 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) (4) 
 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡⨂𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡−1⨂𝐶̃𝐶𝑡𝑡 (5) 
 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡tanh ⨂(𝐶𝐶𝑡𝑡−1) (6)  
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Description of study area and data set

The case study area is K’sob watershed (Fig. 
2), located in the northeast of Algeria; it covers 
1,480 km2, between altitudes 585 m and 1,888 
m. It has a semiarid climate with a continental 
tendency with a relatively wet winter and a dry 
and hot summer. Average interannual precipita-
tion is 340 mm. Monthly rainfall data from 5 sta-
tions are used in the present work, the character-
istics of which are presented in Table 1.

RESULTS AND DISCUSSION 

The LSTM deep neural networks model and 
two weighting methods, namely, inverse dis-
tance weighting method and the coefficient of 
correlation weighting method are used to esti-
mate missing monthly rainfall data at the base 
station (i.e., Medjez). The data at this base sta-
tion are missing for the purpose of testing the es-
timation method.During the operating period of 
the five stations, there are 21 years of concomi-
tant observations that are useable in the present 
work. The monthly data of the five stations was 
divided into two parts, the first part for the cali-
bration with 70% (175 months) and the second 
part for the testing with 30% (77 months).

LSTM model 

There is no precise rule for the choice of the 
number of hidden layers and the corresponding 
number of hidden nodes. For this reason, in this 
work, the optimal architecture of LSTM model 
is adjusted by a trial-and-error-procedure. The 
number of the hidden layers is varied from 1 
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to 10. The number of hidden nodes is varied 
from 1 to 20.  In the present paper, the train-
ing applies the ADAM algorithm with constant 
learning rate of 0.05. To avoid overfi tting, a 
dropout layer with dropout probability of 0.5 

was considered. Figure 3 presents the NSE and 
RMSE evolution in the test part of data for 1 
hidden layer. From this fi gure, one can see that 
the optimal hidden node number is 12 with 
NSE and RMSE, equal to 0.77 and 10.73 mm, 

Figure 2. Location of rain gauge stations used in the study

Table 1. Used rain gauge stations
Raingauge 

stations
(code)

Elevation 
(m)

Geographic coordinates Statistical properties of monthly rainfall series

X Y Mean 
(mm)

Min 
(mm)

Max 
(mm)

Standard 
deviation Kurstosis Skewness

Medjez
(050901) 684.57 4°37’39.7” 35°53’14.3” 19.3 0.0 108.0 20.51 2.52 1.53

Bordj Ghedir 
(050904) 1101.83 4°54’23.5” 35°54’27.6” 32.6 0.0 134.2 28.57 0.36 1.00

Bordj B.A. 
(050905) 880.12 4°45’52.5” 36°3’22” 29.8 0.0 124.2 25.64 1.01 1.14

Madjana
(050906) 1051.27 4°39’44.3” 36°7’24.2” 34.1 0.0 231.0 34.93 6.33 2.07

Barrage K’sob 
(051005) 550.24 4°33’39.9” 35°48’13.4” 19.4 0.0 133.2 20.26 6.38 1.95

Figure 3. Evolution of a) NSE and b) RMSE for diff erent hidden node number (for 1 hidden layer)

a)
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Figure 3. Cont. Evolution of a) NSE and b) RMSE for diff erent hidden node number (for 1 hidden layer)

Table 2. Results from LSTM model
Hidden 
layer 

number

Training Testing Optimal 
hidden node 

numberNSE RMSE (mm) MAE (mm) NSE RMSE (mm) MAE (mm)

1 0.76 9.42 7.27 0.77 10.73 8.86 12

2 0.84 7.66 5.56 0.81 9.89 7.88 12

3 0.93 4.98 3.48 0.82 9.64 6.69 12

4 0.93 5.15 3.90 0.84 9.06 6.68 14

5 0.96 4.08 3.13 0.83 9.25 6.90 10

6 0.94 4.78 3.31 0.82 9.61 7.03 6

7 0.95 4.45 3.17 0.82 9.57 7.04 12

8 0.93 4.96 3.70 0.82 9.55 7.06 8

9 0.95 4.34 3.51 0.82 9.63 7.26 6

10 0.95 4.24 2.94 0.82 9.63 7.25 6

b)

Figure 4. Evolution of a) NSE and b) RMSE for diff erent hidden layer number

a)a)
b)

a)
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respectively. Therefore, this model was chosen 
as the best alternative for 1 hidden layer. The 
same procedure was adopted for the other hid-
den layer number (from 2 to 10). The obtained 
results are presented in Table 2. 

Figure 4 presents the evolution of NSE and 
RMSE for diff erent hidden layer number. It is 
possible from this fi gure that it can be shown 
as the best LSTM model with 4 hidden layer 
and 14 hidden units on the bases of 0.84 and 
9.06 mm, according to NSE and RMSE, respec-
tively. A comparison between observed and 
estimated data using the best LSTM model is 
given in Figure 5. 

Figure 5 shows that the LSTM model has 
good estimation ability, with little time shift er-
ror as the extreme events for the estimated values 

correspond to the extreme values of the observed 
values. The corresponding scatter plot indicates 
that the points are closer to the trend line and 
there are no points of signifi cant overestimation 
or underestimation. 

IDWM and CCWM methods 

The application of these two methods consists 
in calculating the distance between each station 

Figure 5. Comparison between observed and estimated data using LSTM: 
a) Observed and estimated data using LSTM; b) Scatter plot from LSTM

Table 3. Weighting factors for IDWM and CCWM
Station D (km) R

Bordj Ghedir (050904) 25.03 0.80

Bordj B.A. (050905) 20.26 0.77

Madjana (050906) 21.40 0.59

Barrage K’sob (051005) 8.70 0.90

b)

a)
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and the base station for the IDWM, and these dis-
tances are used as weighting factors to calculate 
the missing precipitation value (Eq. 7). The fi nal 
weighting factors are presented in Table 3.

For CCWM, the distance is replaced by the 
correlation coeffi  cient between the base sta-
tion and the other stations (Eq. 8). A compari-
son between observed and estimated data using 
CCWM and IDWM is given in Figures 6 and 7, 
respectively.

Figure 6 shows that the CCWM methods has 
a poor estimation ability compared to the LSTM 
model. The corresponding scatter plot indicates 
an overestimation of the precipitation data. Fig-
ure 7 is for the IDWM model that has a very poor 
estimation ability compared to the LSTM model 
and the CCWM methods with a signifi cant under-
estimation of precipitation data. Table 4 presents 

the performance measures of the best obtained 
LSTM model (CCWM and IDWM). 

In addition to the graphical results discussed 
above, one can see from this table that the LSTM 
model gives the best performance measures com-
pared to the IDWM and CCWM methods. For 
IDWM, NSE is equal to -0.11 which is an indica-
tion of a very poor model. Compared to IDWM, 
the CCWM estimation results are slightly improved 
with NSE equal to 0.37, which always remains at a 
low NSE value for an acceptable model estimation.

Figure 6. Comparison between observed and estimated data using CCWM: 
a) Observed and estimated data using CCWM; b) Scatter plot from CCWM

b)

a)

Table 4. Best obtained models
 Performance measures LSTM CCWM IDWM

RMSE (mm) 9.06 17.95 23.71

MAE (mm) 6.68 14.21 16.49

NSE 0.84 0.37 -0.11



223

Journal of Ecological Engineering 2022, 23(5), 216–225

It should be noted that the LSTM model con-
siderably improves the estimation results, com-
pared to those obtained from CCWM and IDWM. 
For NSE it has been signifi cantly improved from 
37% to 84%, also the RMSE from 17.97 to 9.06 
mm and the MAE from 14.21 to 6.68 mm, which 
is an improvement of 50%.

CONCLUSIONS 

Accurate estimation of missing precipitation 
data is crucial for practically all types of hydro-
logical modeling. This paper investigates the ac-
curacy of the Long Short-Term Memory model 
for estimating missing precipitation monthly data 
in the K’sob basin in Algeria. 

The performance of the LSTM model is com-
pared with the most widely used classical meth-
ods including inverse distance weighting method 
and the coeffi  cient of correlation weighting meth-
od. Comparison and evaluation of methodologi-
cal estimations are based on various performance 
measures, including the Nash-Sutcliff e model ef-
fi ciency coeffi  cient, the root Mean Squared Error 
and the Mean Absolute Error. The following con-
clusions can be drawn from the study.
• LSTM model performed better than the other 

methods, with 0.84, 9.06 mm and 6.68 mm ac-
cording to NSE, RMSE and MAE, respectively.

• IDWM and CCWM gave poor estimation 
results. 

• CCWM performed slightly better than IDWM, 
which can be explained by the fact that the 

Figure 7. Comparison between observed and estimated data using IDWM: 
a) Observed and estimated data using IDWM; b) Scatter plot from IDWM

a)

b)



224

Journal of Ecological Engineering 2022, 23(5), 216–225

correlation coefficient constitutes a better 
weighting factor than the distance.

	• The LSTM network architecture (number of 
hidden layers and number of hidden nodes) 
has a considerable influence on the model 
performance. 

It was noted that NSE improved from 0.77 
(for 1 hidden layer) to 0.84 (for 4 hidden layers) 
and from 0.75 (with 2 hidden units) to 0.84 (with 
14 hidden units).

On the basis of the obtained results, the 
LSTM model can be used to estimate the missing 
precipitation data in all Algerian basins. 
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