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INTRODUCTION

Chromium (Cr) and Iron (Fe) are essential 
heavy metal groups in the periodic table. They are 
needed in low amounts by living organisms to en-
hance metabolism (Witkowska et al., 2021; Yousif 
et al., 2021). Cr functions in the metabolism of 
carbohydrates, lipids, proteins, and amino acids 
(Pechova and Pavlata, 2007). In general, Cr(III) is 
classified as an essential heavy metal, while Cr(VI) 
is toxic to humans and animals (Abbas et al., 
2016; Govind et al., 2014). Bielicka et al. (2005) 
explained that Cr is a bio element often found as 
an active component of GTF (Glucose Tolerance 
Factor) and plays a role in glucose metabolism. 
Meanwhile, Fe is an essential component in the 
formation of hemoglobin, oxidative metabolism, 
cofactors for proteins and enzymes, DNA synthe-
sis, as well as electron transport (Al-Fartusie and 

Mohssan, 2017; Speich et al., 2001). Zhao et al. 
(2014) reported that Fe is an important element in 
zebrafish metabolism, because it acts as a modu-
lator of hepcidin expression in skeletal muscle, 
liver, and notochord. Although heavy metals, such 
as Cr and Fe have physiological functions in fish, 
they can also pollute the environment and become 
toxic due to excessive accumulation in aquatic 
organisms (Jaber et al., 2021; Javed and Usmani, 
2017; Shaaban et al., 2021).

The entry of Cr and Fe in marine waters can 
reduce the water quality because their accumula-
tion into the ecosystems leads to pollution (Azratul 
et al., 2017; Farombi et al., 2007; Pantopoulos et 
al., 2012). In addition, Afsan et al. (2014) revealed 
that Fe, Cu, Zn, Mn, and Cr are the heavy metals 
that pollute waters and accumulate more domi-
nantly in fish tissues. Nisha et al. (2016) showed 
that the Cr toxicity in Danio rerio fish causes body 
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discoloration, frequent opening of the mouth, 
abnormal swimming movements, and excessive 
mucus secretion, while Mamta & Trivedi (2016) 
reported that the exposure to Cr of 2.6 mg/L for 
60 days caused an increase in lactic acid in mus-
cles and blood. Aslam and Yousafzai (2017) also 
concluded that the exposure to this heavy metal 
can alter various activities of the enzymes succi-
nate, pyruvate, and lactate dehydrogenase in the 
kidneys, brain, and liver. Furthermore, the high 
accumulation of Fe in the fish body causes degen-
eration of muscle fibers and atrophy of the bundles 
(Aris and Tamrin, 2020). Jaishankar et al. (2014) 
reported that iron toxicity leads to a cellular reduc-
tion in mitochondria and lysosomes.

Biomonitoring programs are used to measure 
contaminants in a marine organism; however, 
biomarkers which are measurable parameters at 
various levels of biological organization includ-
ing molecular, cellular, or physiological have re-
cently been developed (Hamza-Chaffai, 2014). 
Biomarkers are defined as substances associated 
with observable biochemical, physiological, or 
other changes in the tissues or body fluids of an 
organism (Dalzochio et al., 2016; Leomanni et 
al., 2016). In addition, Dey et al. (2016) stated 
that they are causal intermediate effects of xeno-
biotic exposure, thereby providing an early warn-
ing signal about the potential damage at the cellu-
lar and sub-cellular levels in certain organs and/or 
tissues under contaminated aquatic environments.

Hamdy et al. (2016) showed that the cas-
pase-12 protein is a useful biomarker for wa-
ter pollution, while Falfushynska et al. (2014) 
stated that the caspase-3 activity can be used for 
the determination of toxic effects. In addition, 
Rumahlatu et al. (2019) argued that the TNF-α 
protein is applicable generally as a biomarker for 
marine organisms, and more specifically in the 
D. setosum species as a bioindicator. Yildirim 
and Danabas (2014) revealed that the immuno-
modulating factor TNF-α, can be used as a bio-
indicator in fish health and water quality assess-
ment. Sandri et al. (2001) & Silva et al. (2015) 
found the caspase-3 expression in dystrophic 
muscles, but not in normal ones. Meanwhile, the 
TNF-α expression can be found in skeletal mus-
cle fibers due to injury and muscular dystrophy. 
It also functions in the regeneration of these mus-
cles (Alvares, et al. 2020; Li, 2003; Li and Reid, 
2001; Wang et al., 2019). To determine the ex-
pression of caspase-3 and TNF-α in an organism 

used for biomonitoring, one type of fish that can 
be utilized is Mudskipper.

Mudskipper can accumulate heavy metals 
through sediments; hence, it is used as a biomark-
er of oxidative stress to evaluate the side effects 
of heavy metals (Santoso et al., 2021; Zaccon et 
al., 2017). The habitat is in the mangrove area 
with a muddy substrate in which various nutrients 
and heavy metals accumulate. Furthermore, this 
fish is important for biological and ecological-
toxicological studies and also known as potential 
bio-indicators in environmental monitoring and 
assessment of coastal waters as well as tropical 
or subtropical soft-bottom intertidal systems. The 
relationship with the mangrove environment cul-
minates in adaptability and increases the sensitiv-
ity to pollution; therefore, this can be the basis for 
bio ecotoxicological studies (Ansari et al., 2014; 
You et al., 2018).

Several studies related to the accumulation 
of Cr and Fe were conducted in the Maluku seas 
and various marine waters. Siahaya et al. (2013) 
reported that the accumulation of Cr in the ma-
rine waters of Poka-Rumah Tiga was greater 
in sponge tissue (Callispongia sp) compared to 
those in seawater and sediments. Manullang et 
al. (2017) showed that the accumulation rate of 
Fe (27,598–51,716 mg/kg) was higher than Cu 
(13.7–44.8 mg/kg) in the Poka coastal sediments, 
while El-Batrawy (2018) found that the degree of 
heavy metals accumulation in O. niloticus muscle 
was Fe>Zn>Mn>Ni>Pb>Cu. This shows that Cr 
and Fe are more easily accumulated in tissues due 
to their function in metabolism. Furthermore, Ari-
fin (2001) reported that the concentration of Cr is 
high in the eastern and western parts of Indonesia, 
where the elevated concentration in the waters of 
the eastern part is influenced by the high mineral 
content in the highlands.

Sediment is a container submerged by sea-
water and a colloid suspended by organic and 
mineral material; hence, it can mediate the 
transfer of heavy metals for living things such as 
macroinverts, fish, and amphibians (Greenfield, 
2012; Yunus et al., 2020). Martinez-Guijarro et 
al. (2019) explained that the presence of heavy 
metals in sediments is influenced by human ac-
tivities, and it accumulates in living tissue, caus-
ing short to long-term toxic effects. Furthermore, 
the sediments in the mangrove areas of Rutong, 
Waai, and Poka Villages function as a medium 
for the transfer of heavy metals such as Cr and 
Fe for mudskipper.
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The risk of Cr and Fe accumulation is high in 
mudskipper muscles, and this fish actively moves 
in the mud; hence, they need healthy muscles. 
Santoso et al. (2020) argued that this species can 
be used for biomonitoring in aquatic ecosystems 
as well as biomarkers to detect oxidative stress, 
genotoxicity, and immunotoxicity. Several stud-
ies also reported the accumulation of Cr and Fe 
in other species, including heavy accumulation of 
Cr in Periophthalmus modestus (Liu et al., 2019), 
Cr and Fe in Periophthalmus argentilineatus 
(Kruitwagen et al., 2008), and Fe in Gobius bod-
darti species (Ahmed et al., 2011). Adhihetty and 
Hood (2003) explained that the expression of cas-
pase-3 in skeletal muscle is caused by apoptosis 
as evidenced by myonuclear decay, while Guan 
et al. (2021) reported that the expression of IL-10 
as a pro-inflammatory cytokine in the intestinal 
organ of Boleophthalmus pectinirostris increased 
significantly in an underwater environment. Pres-
ently, there are no previous studies on the expres-
sion of caspase-3 as an executor of apoptosis and 
TNF-α as a pro-inflammatory cytokine in mud-
skipper muscles due to the Cr and Fe exposure, 
specifically in those that live in the mangrove for-
est area of Ambon Island, Indonesia. Therefore, 
this study aimed to examine the accumulation of 
heavy metals, namely Cr and Fe, in sediments and 
mudskippers as well as to analyze the expression 
of caspase-3 and TNF-α in the muscles.

MATERIALS AND METHODS

Study area

This study was conducted in the mangrove 
ecosystem of Ambon Island, Indonesia (Figure 1).  
The locations include Ferry-Poka Port (Poka-I sta-
tion), Poka-Diesel Power Plant Area (Poka-II sta-
tion), Waai Beach I (Waai-I station), Waai Beach 2 
(Waai-II station), Waai Beach Rutong I (station Ru-
tong-I), and Rutong Beach II (station Rutong-II).

Sample collection

The sediment and mudskipper samples were 
collected from the mangrove areas of Poka, Waai, 
and Rutong Villages. The samples were placed in 
different plastic bags, labeled, and stored in a box 
filled with ice. Subsequently, all were brought to 
the laboratory for further analysis of heavy metals 
and immunohistochemistry.

Sample preparation and analysis 
of the Cr and Fe heavy metals

The heavy metal contents, namely Cr and 
Fe, were analyzed at the Research and Industri-
al Standardization Center of Maluku Province, 
the Environmental Health Center, and the Cen-
ter for Disease Control Engineering – Ambon, 

Figure 1. Sampling locations (SP-1: Station Poka-I; SP-2: Station Poka-II; SW-I: Station 
Waai-I; SW-II: Station Waai-II; SR-I: Station Rutong- I; SR-II: Rutong-II Station)
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Indonesia. The samples were initially prepared; 
then, calibration curves were made and analyzed 
using an Atomic Absorption Spectrophotometer 
(AAS) to determine individual heavy metals. Fur-
thermore, the absorbance of the sample solution 
was entered into the calibration curve, while the 
concentration of heavy metals in the sample (wet 
weight) was calculated using an equation by Ba-
ranowska et al. (2015) as follows:

Content, ppm = a/b (1)

where: a – the amount of metal μg from the 
measurement results with AAS,  
b – sample weight (5.0 g).

Caspase-3 immunohistochemical staining

Immunohistochemical staining of caspase-3 
was carried out at the Zoology Laboratory, Fac-
ulty of Mathematics and Natural Sciences, Pat-
timura University. The stages were modified 
based on the procedure of Leite et al. (2016), 
(1) each piece of muscle tissue was subjected to 
antigen retrieval for 10 minutes in citrate buffer 
(pH 6.0), allowed to stand at room temperature 
for 30 minutes, washed using phosphate buffer 
saline (PBS), and then incubated with Protein 
block (Blocking agent sniper) for 30 minutes. 
(2) Incubation was further carried out using pri-
mary antibody caspase-3 with a dilution of 150 
times dissolved in serum at room temperature; 
then, the preparation was washed using PBS. 
(3) Universal Link secondary antibody was in-
cubated, and then washed using PBS followed 
by Trecavidin-HRP at room temperature. (4) 
Re-washing was performed with PBS 2x, while 
Chromogen diamino benzidine (DAB) was 
dripped for 20–30 seconds, and immersed in 
Lilie Mayer’s Hematoxylin solution as a coun-
terstain for 1–2 minutes. (5) Immersion was 
carried out in lithium carbonate for 1 minute, 
followed by washing with running water. In ad-
dition, dehydration was carried out using etha-
nol and washing with xylol; then, the sample 
was covered with aqueous mounting media. (6) 
The slide was mounted with entelan, and lastly, 
(7) observations were made on an optilab mi-
croscope with 1000x magnification.

TNF-α immunohistochemical staining

TNF-α immunohistochemical staining was 
carried out at the Zoology Laboratory, Faculty 

of Mathematics and Natural Sciences, Pattimu-
ra University. It was performed by modifying 
the stages of Neves et al. (2015). (1) The slide 
was immersed in 0.3℅ of H2O2 for 30 minutes, 
then rinsed with water followed by 1x PBS. 
(2) Incubation was carried out with 1℅ nor-
mal serum/PBS [Mix 1x 3.5 ml PBS, pH 7.4 
and 1 drop containing approximately 35 l/drop 
of normal serum in a tube for 30 min at room 
temperature and (3) normal serum was dropped 
from the slide. (4) Incubation of the first sam-
ple was diluted using PBS sections by optimiz-
ing antibody titer before starting Immunohisto-
chemistry in a humid chamber for 1h at room 
temperature. (5) The slides were then rinsed 
with 1x PBS 3 times each for 5 minutes and (6) 
they were incubated with diluted PBS Biotin-
labeled secondary antibody of 1,4 1x PBS, pH 
7.4 ml, and 1 drop containing approximately 35 
l/drop of biotinylated anti-mouse and TNF-α 
in a tube for 30 min at room temperature. (7) 
The slides were rinsed with 1x PBS 3 times, 
each for 5 minutes. (8) Preparation of the de-
tection solution includes Mix 1xPBS 1.33 ml 
of 1 drop with 35 l/drop of solution A and 1 
drop of solution B in a tube. The mixture was 
incubated at room temperature for 30 minutes 
before use, (9) the detection solution was add-
ed to the tissue portion, and then incubated at 
room temperature for 30 minutes. (10) Rinsing 
was carried out with 1x PBS for 3 times, each 
for 5 minutes. (11) A fresh expansion solution 
was prepared with Mix 1.6 ml of DAB buffer 
and 1 drop of liquid DAB in a tube. (12) Solu-
tion development was added to cover the net-
work for 5–30 minutes. (13) The reaction was 
stopped by immersing the tissue in water. (14) 
Counter stain slide was used when necessary, 
while Harris Hematoxylin was used for core 
staining. (14) Slide installation with entelan 
was conducted, and (15) observations were per-
formed on an optical microscope with 1000x 
magnification.

Data analysis

The data were analyzed descriptively to ex-
plain the average value of heavy metal concen-
trations of Cr and Fe, as well as the expression 
of TNF-α. In addition, visualization in the form 
of images was carried out to show the condition 
of mudskipper body tissue expressing caspase-3 
and TNF-α.
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RESULTS AND DISCUSSION

Heavy metal concentration in sediment 
and mudskipper

The heavy metals accumulated in the man-
grove areas of Poka, Waai, and Rutong Villages 
were in the order Fe>Cr (Table 1), while those in 
sediments were Cr>Fe (Table 1).

The results presented in Table 1 are in line 
with several studies which reported that the ac-
cumulation of Fe in fish is higher than Cr in the 
Bay of Bengal (Rakib et al., 2021). The order 
of heavy metals accumulation in Karachi Paki-
stan and the coral ecosystem of Krakatau Island 
is Fe>Zn>Cu>Mn and Fe>Zn>Cr, respectively 
(Yousif et al., 2021; Murwani et al., 2019). Fur-
thermore, Fe was reportedly higher than Cr in 
the body of Rasbora tornieri fish (Intamat et al., 
2016) and shrimp (Ezemonye et al., 2019). The 
accumulation of Fe is also greater than other es-
sential heavy metals in various weights of Oreo-
chromis mossambicus (Shinde et al., 2020).

These explanations indicate that Fe has a high 
affinity for fish bodies, Fytianos and Lourantou 
(2004), stated that its high affinity is bound to or-
ganic matter, while Rosli et al. (2018) explained that 
it tends to accumulate more in some species of fish 
compared to other essential heavy metals, and plays 
a role in the formation of red blood cells. According 
to Galbraith et al. (2019), Fe is one of the essential 
metals that can accumulate in red muscle organs 
containing myoglobin. Meanwhile, Mansour et al. 
(2019) stated that the location in fish is on the side 
of the body under the skin and serves to perform 
muscle contractions for movement. The accumula-
tion of heavy metals in the body of mudskipper fish 

is also influenced by habitat and bioaccumulation 
through the food chain. The fish that live in mud 
accumulate more heavy metals than pelagic species 
(Jiang et al., 2018; Mirghaed et al., 2018).

The characteristics of Fe are inversely pro-
portional to Cr which has a high bond with the 
sediment fraction, amounting to 89% (Morillo et 
al., 2004). Several studies reported that the accu-
mulation of Cr in sediments was higher than in 
seawater (Li et al., 2013; Rifkin et al., 2004; Fer-
rans et al., 2021). Morillo et al. (2004) explained 
that the marine sediments with high amounts of 
Cr were associated with the residual fraction of 
80% and 10% organic-sulfide matter. This study 
is also in line with that by Soulivongsa et al. 
(2020) which reported that the Cr in sediments 
was higher than in fish with values of 20.71 mg/kg  
and 4.72 mg/kg, respectively.

Cr and Fe pollute the environment and aquat-
ic organisms. On the basis of the location of the 
mangrove area, the analysis showed that the order 
of Cr and Fe concentrations, in the sediment was 
Waai>Rutong>Poka and Rutong>Poka>Waai, 
while in mudskipper was Poka>Waai>Rutong 
and Poka>Rutong>Waai, respectively (Table 1). 
Differences in the accumulation of both are influ-
enced by the source of pollution in the particular 
location. The high Cr in the Waai mangrove area 
is due to a large number of fishing activities in 
the forms of painting and coating on speedboats 
or paint peeling off the walls of the boat and dis-
solving in seawater and then accumulating in the 
sediment. Castritsi-Catharios et al. (2014) re-
ported that heavy metals pollute the aquatic en-
vironment through human activities such as agri-
culture, transportation, pharmaceutical products, 

Table 1. Heavy metal concentrations in sediment and mudskipper

Location Station
Mudskipper (ppm) Sediment (ppm)

Cr Fe Cr Fe

Poka
S.P-I 0.0445 0.0521 0.2193 0.0984

S.P-II 0.0387 0.0884 0.1446 0.0768

Mean±SD 0.0416 ± 0.0041 0.0703 ± 0.0257 0.1820 ± 0.0528 0.0876 ± 0.0153

Waai
S.W-I 0.0405 0.1207 0.1100 0.1117

S.W-II 0.0432 0.1120 0.1347 0.1009

Mean±SD 0.0419 ± 0.0019 0.1164 ± 0.0062 0.1224 ± 0.0175 0.1063 ± 0.0076

Rutong
S.R-1 0.0669 0.076 0.1839 0.0733

S.R-II 0.0429 0.0917 0.1761 0.0814

Mean±SD 0.0549 ± 0.0170 0.0839 ± 0.0111 0.1800 ± 0.0055 0.0774 ± 0.0057

Note: S.P-1: Station Poka-I; S.P-2: Station Poka-II; S.W-I: Station Waai-I; S.W-II: Station Waai-II; S.R-I: Station 
Rutong-I; S.R-II: Station Rutong-II.
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or naturally through biogeochemical processes 
in the waters. The sources of Cr pollution in ma-
rine waters are through anthropogenic means, 
namely electroplating and the paint industry, as 
well as naturally through geoaccumulation, rain, 
and innate particles that accumulate heavy met-
als from rivers (Afshan et al., 2014; Harikumar et 
al., 2010; Tabari et al., 2010). According to Yunus 
et al. (2020), Cr is used in wood preservatives, 
cement protective coatings, paints, paper, rubber, 

carpets, and teals. This topic was also examined 
by Praveena and Lin (2015) who stated that Cr is 
sourced from the shipping activity at the Dickson 
port of Malaysia. Meanwhile, the highest source 
of Fe pollution in the mangrove area of the Ru-
tong village is due to a large number of household 
waste activities. A similar result was also reported 
by Shu et al. (2020) and Li et al. (2020) which 
found that the source of Fe pollution is anthro-
pogenic activity in the form of household waste.

Figure 2. The TNF-α expression in mudskipper muscle cells. Black arrows indicate the TNF-α 
expression. Staining using immunohistochemistry at 1000x magnifi cation. Captions: PG1, PG2, PG3 
(Poka Figure 1,2,3); WG1, WG2, WG3 (Waai Figure 1,2,3); RG1, RG2, RG3 (Rutong Figure 1,2,3)
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TNF-α expression in mudskipper

The immunohistochemistry test results for 
the TNF-α expression in mudskipper are shown 
in Figure 2. The calculation of the total TNF-α 
expressed in mudskipper muscle tissue can be 
shown in Table 2.

The results show that the accumulation of 
heavy metals in mudskipper causes muscle 
damage; hence, it can be a biomarker in the 
aquatic environment. Steinhagen et al., (2004) 
explained that Cr is toxic to Cyprinus carpio 
fish, causing a decrease in the immune cells. 
Meanwhile, Kaur et al. (2018) reported that 
the Zn, Pb, Mn, Cu, and Cr contained in Labeo 
rohita muscle tissue cause damages such as 
shortening and elongation of muscle bundles, 
edema, and necrosis. Shah et al. (2020) also re-
vealed that the Cr in Ctenopharyngodon idella 
induced inflammation, necrosis, degenera-
tion, edema, muscle fiber zigzags, and lesions. 
Khan et al. (2020) showed that Fe accumula-
tion was higher than Cr, while Abdel-Khalek et 
al. (2020) explained that the Fe bound to fish 
muscles is higher than Al. Mudskipper muscle 
is not a metabolic tissue, but an organ of heavy 
metal accumulation, because it is covered by 
skin that is constantly in water and mud. This 
is consistent with Bibak et al. (2021) and San-
toso et al. (2021) who stated that mudskipper 
muscle is a skin-wrapped tissue that is in con-
tact with pollutants dissolved in seawater and 
mangrove sediments.

Furthermore, Sharma et al. (2014) argued 
that heavy metals are one of the causes of reac-
tive oxygen species (ROS) production in tissue 
through oxidative stress conditions. Powers et al. 
(2011) explained that high levels of ROS cause 
contractile dysfunction of skeletal muscles, lead-
ing to fatigue. Excessive Fe in cells leads to in-
creased production of reactive oxygen species 
(ROS) such as hydroxyl radicals (H2O), superox-
ide radicals (O2-), or hydrogen peroxide (H2O2). 
These activities can trigger mitochondrial respi-
ratory dysfunction (Galaris et al., 2019; Chen et 
al., 2018). The increase in TNF-α is in line with 
the rise in ROS production (Suematsu et al., 
2003; Jiang et al., 2020). Valenzuela et al. (2017) 
reported that skeletal muscle in Paralichthys ad-
persus responds to pathogens by expressing the 
pro-inflammatory cytokine TNF-α. The results in 
Figure 2 show that the mudskipper muscles can 
express TNF-α when heavy metal accumulation 
causes inflammation and edema. The expres-
sion in muscle tissue marked with brown color 
indicates a mechanism against oxidative stress 
by the accumulation of Fe and Cr. According to 
Rumahlatu et al. (2019), it stated that the higher 
the Cd level, the higher the TNF-α expression in 
the liver of Diedema setosum. In addition, Yin et 
al. (2018) reported that TNF-α expression also 
appears due to the exposure to Cu, Cr, Cd, and Pb.

The calculation results show that the amount 
of TNF-α expression in mudskipper muscle tissue 
varies (Table 2). The mudskipper muscle cells that 
express the most TNF-α originate from the Rutong 

Table 2. Total TNF-α expression in mudskipper muscle

Location Figure-
Total TNF-α expression in each observation

I II III IV V

Poka

1 1 0 3 0 0

2 0 2 0 0 1

3 1 0 0 1 1

Mean ± SD 0.6667 ± 0.5774 0.6667 ± 1.1547 1 ± 1.7321 0.3333 ± 0.5774
0.6667 ± 0.5774

3.4

Waai

1 2 0 1 1 0

2 0 0 0 2 2

3 0 2 2 0 0

Mean ± SD 0.6667 ± 1.1545 0.6667 ± 1.1545 1 ± 1 1 ± 1 0.6667 ± 1.1545
4.1

Rutong

1 4 1 1 1 2

2 2 0 1 2 0

3 2 0 0 0 0

Mean ± SD 2.6667 ± 1.1547 0.3333 ± 0.5774 0.6667 ± 0.5774 1±1
0.6667 ± 1.1545

5.4
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coast. In the case of this study, it can be explained 
that the household waste and human activities in 
the Rutong mangrove waters are able to accumu-
late heavy metals in the mudskipper’s body. This 
accumulation can induce the TNF-α expression in 
mudskipper muscle cells. Muscle cells, although 
not metabolizing tissue, can be damaged like any 
other tissue. Trovato et al. (2016) explained that 
muscle is one of the tissues that can be damaged 
due to various factors. The large amount of TNF-α 
expression is the activity of muscle cells to fight 
oxidative stress due to the accumulation of Cr and 
Fe. The same opinion that TNF-α expression does 
appear under the conditions of muscle damage and 
muscle inflammation is also expressed by Ren-
ström et al. (2017). Tidbal et al. (2010) explained 
that the TNF-α expression that appears in muscle 
cells can regenerate damaged muscles.

Caspase-3 expression in 
mudskipper muscle cells

The immunohistochemical test results on the 
expression of caspase-3 in mudskipper muscle 
tissue are shown in Figure 3, while the amount 
expressed is shown in Table 3.

The results show that the accumulation of 
heavy metals also activates the protein caspase-3 
which is involved in the cell apoptotic pathway. 
Due to the continuous accumulation of oxidative 
stress, the cell will enter a death phase through 
the caspase-mediated apoptotic pathway (Ott et 
al., 2007; Alarifi et al., 2014; Lushchak, 2014). 

Furthermore, the high increase in ROS in muscle 
cells can affect the mitochondrial metabolic pro-
cesses. This induces an increase in Ca2+ which 
then mediates the apoptotic pathway through cas-
pase-3. The consequences include atrophy, which 
leads to muscle weakness, as well as loss of mass 
and function, sarcopenia, and inflammation (Bar-
bieri and Sestili, 2012). 

Several previous studies reported that 
heavy metals affect cell apoptosis mediated by 
caspase-3. Anvarifar et al. (2018) found that Cr 
causes apoptosis in fish cells, while Rumahlatu 
et al. (2014) explained that high concentrations 
of Cd increase the caspase-3 expression and ac-
tivate apoptosis in D. setosum liver cells. Ab-
del-Emam and Ali (2021) also reported that Pb 
causes oxidative stress in rat liver cells which 
stimulates the caspase-3 expression as an indi-
cator of inflammation and liver cell apoptosis. 
According to Jiaxin et al. (2020), Cd also acti-
vates the expression in carp neutrophil cells. In 
addition, Shaw et al. (2022) reported that low 
levels of Cr(VI) can be toxic and cause apop-
tosis in zebrafish liver. Renu et al. (2021) re-
vealed that the exposure to Cr can activate cas-
pase-3 in the liver of living organisms, while 
Jiang et al. (2015) reported that the accumu-
lation of Cu causes oxidative damage to carp 
muscle while activating caspase-3 signaling. 
Furthermore, da Silva et al. (2014) showed that 
the high accumulation of iron (Fe) in rat brain 
cells affects mitochondrial metabolism and 
leads to the loss of synaptic signaling processes 

Table 3. Muscle cells expressing the protein caspase-3

Location Figure-
The number of caspase-3 expressions in each observation

I II III IV V

Poka

1 1 1 0 0 0

2 2 1 3 1 4

3 1 2 0 0 1

Mean ± SD 1.3333 ± 0.5774 1.3333 ± 0.5774 1 ± 1.7321 0.3333 ± 0.5774
1.6667 ± 2.0817

1.12

Waai

1 0 0 3 1 0

2 2 1 0 2 8

3 18 16 5 0 5

Mean ± SD 6.6667 ± 9.8658 5.6667 ± 8.9629 2.6667 ± 2.5166 1 ± 1
4.3333 ± 4.0415

4.08

Rutong

1 12 8 3 1 2

2 5 8 2 0 0

3 3 4 2 4 2

Mean ± SD 6.6667 ± 4.7258 6.6667 ± 2.3094 2.3333 ± 0.5774 1.6667 ± 2.0817
1.3333 ± 1.1547

3.74
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The calculation results showed that the 
amount of caspase-3 expression in mudskipper 
muscle tissue varied (Table 3). The mudskipper 
muscle cells that express the most caspase-3 origi-
nate from the Waai coast. In the case of this study, 
it can be explained that human activities and ship 

in brain neurons, which ultimately triggers neu-
ronal cell apoptosis. On the basis of these stud-
ies, the caspase-3 expression was caused by the 
accumulation of Fe and Cr. It causes muscular 
dystrophy and the death of cells that make up 
mudskipper muscle tissue.

Figure 3. The caspase-3 expression in mudskipper muscle cells. Brown arrows indicate the caspase-3 
expression. Staining using immunohistochemistry at 1000x magnifi cation. Captions: PG1, PG2, PG3 
(Poka Figure 1,2,3); WG1, WG2, WG3 (Waai Figure 1,2,3); RG1, RG2, RG3 (Rutong Figure 1,2,3)
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activity waste in the Waai mangrove waters can 
affect the accumulation of heavy metals in the 
mudskipper body. This accumulation can induce 
the caspase-3 expression in mudskipper muscle 
cells. The research on the expression of caspase-3 
due to accumulation of Fe and Cr metals in fish 
muscle has not been studied, but has been reported 
by other researchers on other heavy metals, Guo 
et al. (2020) reported that the Cu accumulation in 
chicken muscle further induces caspase-3 to per-
form apoptosis through endoplasmic reticulum 
stress; Wang et al. (2018) reported a similar case 
that Cu and As accumulated in chicken muscle in-
duce caspase-3 for apoptosis. Smuder et al. (2010) 
continued that oxidative stress in cells is closely 
related to myofibril proteolysis in muscle cells and 
further accelerates apoptosis by caspase-3.

CONCLUSIONS

On the basis of the results, Cr and Fe are toxic 
to mudskipper, the order of heavy metals accumu-
lation in the three mangrove ecosystems namely 
Poka, Waai, and Rutong was Fe>Cr, while the 
order in sediments was Cr>Fe. In addition, the 
TNF-α and caspase-3 expressions appeared in 
mudskipper muscle organ in varying amounts. 
The results also showed that muscle as a non-met-
abolic tissue can accumulate Cr and Fe, leading to 
inflammation and apoptosis characterized by the 
appearance of the TNF-α and caspase-3 expres-
sions under conditions of heavy metal accumula-
tion. This indicates that the accumulation of Cr 
and Fe can be used by mudskipper as a biomarker 
of mangrove water conditions in Ambon Island.
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