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ABSTRACT

This study aimed to analyze the available amount of water in the Dragagina River to meet the different water needs
in the Municipality of Suhareka. The water problems in this city are more pronounced, especially in the vegetation
period of July—September, where the area is significantly affected by drought. The Dragacina River carries about
10 hm? of water per year, and affected neither by urbanism nor massive deforestation of the basin. However, there
are no multi-year measurements of inflows for this river, whether they are average, maximum or minimum ones.
Therefore, the study is based on several multi-annual monthly rainfall measurements and some characteristics of
the Dragagina River Basin. Knowing the average annual flow coefficient n = P_./ P,_ it is possible to convert
these precipitations to P_ [mm] flow and then to monthly flow. The inputs for other years from 1983/84 onwards
are obtained by simulating time series. Then, for such inflows, the probability distribution functions of small
waters are assigned and the usable volume balance is carried out. Assuming an average annual withdrawal from
the reservoir QA ™ = 0.63 x Q__ which should be constant throughout the years, then the length of the critical
period will be 0. 13 years or approximately 48 days, for P = 95%. Starting from the initial acquired volume of
1 hm? it is possible to achieve 95% <P, < 99%. Therefore, 1t follows from this analysis that this river can provide
a significant amount of water for the needs of the Municipality of Suhareka.

Keywords: time series, flow simulation, accumulation, statistical parameters, probability.

INTRODUCTION Analysis and simulation of feeds

From Kosovo Hydro Meteorological Insti-
tute, it was only possible to obtain monthly rain-
fall data for a period of about 80 years for the
city of Suhareka, but only a time series of 30
years is marked, while in other years there are
disconnections of measurements for various rea-
sons. Since the Dragacina River flow measure-
ments are unavailable and taking into account
that the average annual flow coefficient is | =
0.362 (Yaraslov Cerni Institute, 1983), then the

The municipality of Suhareka is located in
the southern part of the Republic of Kosovo,
has an area of 361.78 km? and a population of
about 88126 inhabitants (Municipal Develop-
ment Plan Suhareka 2020-2028). To the north-
east of Suhareka lies the Dragacina River, the
basin of which has an area of 39.6 km? and
mainly mountain vegetation cover that pro-
tectes it from the erosion process. The main

tributaries of Dragacina are the tributary that
originates in the village of Budakové at an al-
titude of 1120 m and the tributary that comes
from the village of Greigec, as well as a series
of other smaller streams that feed this river. For
this reason, the Dragacina port is more suitable
for accumulation, which would enable a more
rational use of water in this area.
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rainfall must be converted to the flow accord-
ing to the expression P . =0.362 - P, . Table 1
gives the monthly rainfall for 30 full years at the
Suhareka hydrometric station.

The average annual flow coefficient P /P
=1 = 0.362 shows that on average 36. 2% of the
total water is falling into the pond flows. The re-

gional analysis of the average water flow provides
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Table 1. Monthly rainfall for 30 years at [mm] -st. Suhareka hydrometric Station, Raingauge RG-34-02

Hydrological year

Year 0} N D J F M A M J J A S
1954/55 112 120 66 48 136 37 57 16 56 94 68 121
1955/56 93 143 50 66 121 49 70 95 50 10 18 13
1956/57 20 103 28 7 25 16 49 139 43 59 88 71
1957/58 134 22 44 97 23 222 92 58 22 9 38 25
1958/59 41 50 40 112 18 18 24 69 44 134 58 111
1959/60 37 78 77 42 72 69 54 131 27 73 2 83
1960/61 122 116 64 24 25 91 45 161 32 52 21 28
1961/62 14 125 68 44 56 127 103 30 70 70 5 48
1962/63 86 104 137 214 151 48 65 52 36 18 30 28
1963/64 44 67 160 7 46 47 126 94 128 78 60 76
1964/65 65 93 67 27 58 84 78 113 41 22 57 1
1965/66 14 107 144 157 44 78 72 52 66 50 27
1966/67 49 109 110 68 1 91 103 59 42 86 36
1967/68 23 19 94 92 50 23 22 66 98 18 96 68
1968/69 18 73 88 34 62 96 81 90 60 53 25 71
1969/70 3 54 83 116 125 108 63 79 36 76 26 13
1970/71 132 72 68 82 37 93 20 60 58 75 21 113
1971/72 10 46 22 49 15 7 33 32 41 115 60 186
1972/73 72 100 1 54 63 40 76 58 77 268 45 106
1973/74 80 97 133 52 41 29 51 159 61 24 24 31
1974/75 155 59 60 37 10 27 56 64 162 47 12 25
1975/76 41 60 40 76 17 35 57 72 114 79 56 62
1976/77 29 129 142 71 93 29 53 53 65 49 91 45
1977/78 37 115 71 81 73 116 72 134 51 1 8 230
1978/79 53 15 130 136 47 27 74 47 122 48 127 50
1979/80 78 180 58 97 33 48 21 118 69 40 36 26
1980/81 104 112 115 80 56 73 58 58 24 50 92 72
1981/82 94 120 90 24 22 121 52 26 22 60 62 19
1982/83 39 34 79 20 98 19 32 49 199 65 31 55
1983/84 44 79 71 96 82 97 58 37 60 46 96 57

an opportunity to approximately determine the av-
erage flow in the places where no measurements
have been made (Husno Hrelja, InZenjerska Hi-
drologija, 2007). Therefore, the average inflows
for the years given in Table 1 will be determined
according to the following expression:

Xt
Pugy, = Xt (1)

F
where: Qp,. — average flow in [m%/s],
F —basin area in [km?] and t — time in [s].

Separating Q. from eq. (1) as well as assum-
ing that Pege=H * Ppryto We obtain:

_T]XPbT.XF

; [m3/s] (1"

Qm.

The year 1988 was historically quite a dry year
and this is thought to have been the result of two
events: the explosion of the Chernobyl nuclear
power plant (1986) and the explosion of Super-
nova A (February 23, 1987). Therefore, an assess-
ment of time series homogeneity is considered
necessary. Thus, the year 1988 was used as the
year in which a change in the flow regime could
have occurred and for this reason it is necessary to
simulate the inflows from 1983/84 until today.

Time series models are often based on first-
order Markov models:

Xi = My +p1 X (Xioq — Hy) +
1 (2)
+t; X0y X (1—p2)/2
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Or for the given time series:
Xi = py + by X (1 — pi—1) +
) @)
+t; X 5 X (1 —717) /2

where: bj represents the regression coefficient
expressed as:

b; = 1; X (Si/si_l) A3)

The generation of synthetic time series
is taken according to Fiering, who gives the
following formula for a normally distributed
series:

XS

— X (qi,j—l - .uj—l) +
= (4)

+ti XSjX (1—7’}2)1/2

qij = Kj +

where: gjj— i" generated flow in time interval
tg=1,...,12);
pj — average flow in the month j
(< 12);
tj— random numbers normally distributed
N (0,1).

The statistical parameters for equation (4) are
defined as:
e average flow:

N
1
u; = NZ Xk, j (5)
k=1
e variance:
1< 1 u ’
2 _
s; = Nz Xi,j — NN =D (Z xk,j> (6)
k=1 k=1

e autocorrelation coefficient:

N
. Dk=1%k,j X Xpej—1 — N X pj X pjq
J SjXSj_1X(N—1)

(7

If the monthly feeds are not normally dis-
tributed, then the values of (¢;) need to be trans-
formed. Considering the coefficient of the his-
torical time series asymmetry (Cs), the following
transformation of the size (t) normally distrib-
uted to the size (tg) of the Gamma distribution is
recommended:

2 CojXt; Clj, 2
ty = o A+——+35) C )

where:
3
Csj R Csj—l

A -1

Cej = )

tg—random Gamma distribution numbers (0.1, C):
Csj — coefficient of asymmetry of the month j.

On the basis of what was said above, for
the series of 30-year monthly feeds, the follow-
ing statistical parameters written in Table 2 were
obtained.

Taking the initial inflow of September as the
average, i.e. g = 0.3515 and applying equation
(4) the inflow values for the respective months
are obtained.

For these 30 years, the time series and the
simulated one have these results as in the follow-
ing graphs.

The dependence between them has also been
tested through the statistical test of Durbin-Watson
(Basgkent Universitesi, Istatistiksel formiiller ve
tablolar, 2005), where the null hypothesis is laid as:

Table 2. Statistical parameters of the series of average monthly inflows in [m*/ s], N = 30 years

Month H, S, Cs r b,
o 0.3288 0.2233 0.6155 -0.1902 -0.1520
N 0.4795 0.2169 -0.0059 0.0062 0.0059
D 0.4281 0.2109 0.2911 0.1313 0.1277
J 0.3764 0.2463 1.1600 -0.1754 -0.2048
F 0.3377 0.2288 0.9378 0.1177 0.1093
M 0.3505 0.2466 1.3801 -0.2472 -0.2665
A 0.3349 0.1404 0.4533 -0.082 -0.0467
M 0.4051 0.2113 0.7686 -0.0487 -0.0733
J 0.3642 0.2320 1.6716 -0.0224 -0.0246
J 0.3352 0.2628 2.6357 -0.0126 -0.0142
A 0.2442 0.1779 0.6582 -0.2130 -0.1442
S 0.3515 0.2794 1.7415 0.0125 0.0197
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Figure 1. Comparison of time series with simulated one (1954 / 55-1983 / 84) (Maniak, 2010)
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Figure 2. Comparison of time series and that simulated series via Cv (Maniak, 2010) (data source: KHMI)

where:

Hy: p=20
Hy: p#0
Yi=a(e; — ei—1)°
DW =d= T3 (10)
i=1"i
ej=y, - y, are the residuals between the

observed and predicted values. Accord-
ing to the test, d = 2.623 was obtained,
while from the table for N = 30, k=1
and the significance level a = 0.05 the
limit values were dj, = 1.35 and dy =
1.49 (DurbinWatsonTest.dvi (nsysu.edu.
tw). Due to the symmetry, the values
(4-1.49) < d < (4-1.35) were obtained,
which means the rejection of the null hy-
pothesis and the alternative hypothesis
Ha: p # 0 was accepted, indicating auto-
correlation between the series.

To test the homogeneity of the long time
series, it was divided into two subcategories:
(N1) before the show and (Ny) after the change.
Thus, the homogeneity of the available series
was checked by testing the statistical signifi-
cance between the means (z-test) or between
the standard deviations (variances) (F-test or
Fischer test). In the following, the first N7 = 34
(1954 / 55-1987 / 88) and the second subseries
Ny =33 (1988 / 89-2020 / 21) were taken. The
authors hypothesized the testing of statistical
significance between averages:

Ho: py —pp, =0
Hy: py—p #0

Xm _Xm

1

)
z ; (n > 30)
2 ﬁ (11)
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From which:
0.374 — 0.3674
7z = =
\/0.05122 N 0.05962
34 33

= 0.4856 € [—2.81 — 2.81]

Since z < zp, then the null hypothesis was ac-
cepted, i.e., below the 5% probability level there
is no statistically significant difference. Similarly,
the possible differences between the variances
can be tested; the null hypothesis is as follows:

Hy: of = o}
H,: of + o}
st
F=S—2; dfi=n;—1;df, =n,—1 (12)
2

From which:
_ 0.05962

—m= 1.355;df1=33;df2=32

Since F = 1.355 < Fg-= 2.019, then the null
hypothesis below the significance level a = 0.05
is accepted which means that there is no statisti-
cally significant difference between the variances.

Statistical analysis of low waters

The period in which the precipitation defi-
cit occurs (in relation to any expected value) is
known as drought. Since the lack of precipitation
in the observed basin affects the reduction of river
inflows and the decrease of the groundwater level,
hydrological drought occurs, which means a lon-
ger period of time with low waters, with the river
flowing significantly more smaller than the aver-
age flow (Husno Hrelja, InZenjerska Hidrologija,
2007). In other words, a meteorological drought
causes hydrological drought or small waters. Dis-
charges below (0.15-0.5) Qayg are estimated ap-
proximately for the low water area (Ulrich Ma-
niak, Hydrologie und Wasserwirtschaft, 2010).
In our climatic zone there are periods with little
water lasting from several weeks to 3 months,
mainly from July to September.

Statistical analysis of low waters is usually
based on the analysis of a series of minimum an-
nual inflows with a certain duration (At = 7, 10,
14, 20, 30,... days). These series should be statis-
tically sufficient in length and of satisfactory qual-
ity. If the statistical hypotheses are satisfied, then
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a satisfactory theoretical distribution is defined,
where in small waters the Pearson I1I distribution,
the log-Pearson III distribution, the extreme III-
Weibull distribution and the Galton distribution
are satisfactorily applied.

Annual extremes method

In the statistical analysis of the extreme val-
ues of the hydrological series, and consequently
of the minimum annual inflows, the method of
annual extremes was most often used. This meth-
od is based on the analysis of annual values (one
data per year) over a multi-year period. The pur-
pose of the analysis is to determine the probabil-
ity of occurrence, namely the function of distrib-
uting the probability of minimum annual inflows.
The probability distribution function F p F(Q) =
P[Q < Q"] or ¢(Q) = P[Q > Q™] is a complete
distribution characteristic. This means that all
results of a random variable (Q) can be obtained
from the probability distribution function F(Q) re-
spectively ¢(Q).

The values of the minimum annual inflows of
a given return period (T) are determined by the
equation:

1

Qr = Q)

(13)

For this purpose, the series of minimum an-
nual inflows (an extreme value per year) is tak-
en, simulated from 1988/89 to 2020/21 (N = 33
years) and with duration At = 30 days. The statis-
tical parameters of this group are calculated and
an empirical probability distribution for the previ-
ously adjusted sample of the random variable is
determined according to Weibull.

e = P[Q < Qmin.] = L

N+1 (14

Some theoretical probability distribution
functions, which serve to calculate the largest ab-
solute differences between the empirical and the-
oretical probability distributions were selected.
These include: Gaussian, Galton, Gumbel, Pear-
son, and log-Pearson distributions. All these theo-
retical probability distribution functions fit satis-
factorily with the empirical distribution accord-
ing to Kolmogorov’s test, satisfying the condition

dmax < ¢ below the 5% probability level, re-
spectively P (d < c¢) = 1- a. However, the function
that has a lower value of:
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Table 3. Statistical parameters of the series of minimum annual inflows (HRELJA, 2007) (data source: KHMI)

N =33 Q, . cv Cs
Q 0.08486 0.06251 0.73663 0.4922
logQ -1.25835 0.48689 -0.38692 -0.90077
F(/l):limP[D <i] 15) xr=p+K,Xs,=pux[1+K,xC] @1
n—-oo n-= \/ﬁ

or higher value of [1 - F(A)], has a better fit
of the empirical probability distribution function
with the theoretical distribution. Therefore, based
on the latter, the theoretical probability distribu-
tion functions of Pearson III and log-Pearson 111
have lower values of F(A), but since the theoreti-
cal log-Pearson distribution is defined for any
x>0 (y = log(x)), it was also chosen as the final
theoretical distribution of probability.

The probability density function for the Gam-
ma 3-parametric distribution (Pearson III distri-
bution) is as follows:

f&) =

X—Xo

_ . a1 5
B % T'(a) X (= xo) xe F '(16)

Xg<x <o

where, the three parameters of the function are:
a — form parameter;
B — scale parameter;
Xo — position parameter.

The corresponding cumulative probability
distribution function is:

x 1 % ( )a—lx
——x(x—x
F(x) = f BE X T(@) ol
_X~Xo 17
¥o xe B dx (17
x0<x<00

The characteristic statistical moments of the
distribution are:
e Average value:

EX]=u=xo+axp (18)
e Variance:
Var[X] = 0% = a x B2 (19)
e Coefficient of asymmetry:
s =32 20
S = o3 - \/E ( )

Using the frequency factor for this distribu-
tion K, = f(Cs; T) the flow for the respective re-
turn period was calculated:

If the logarithms of the variable X have a
Pearson 111 distribution, then the variable X is said
to follow the log-Pearson III distribution. There-
fore, in equations (16), (17) and (20) the trans-
formations were applied y = In (x) or y = log (x),
x> 0, so that the flow is:

y(T) =w, +K, xs,; K, = f(Csp; T) (21

The value of the random variable (x) for the
corresponding return period will be:

xr = YD ose xp = 10YM (22)

There is great practical interest in defining
the boundaries within which, with a certain prob-
ability, a population distribution function can be
found, provided that the type of this function is
known. In other words, the confidence intervals
of the probability distribution function, the pa-
rameters of which are estimated on the basis of
the group, must be determined. For this purpose,
empirical methods will be used, assuming a nor-
mal xT event distribution function, a confidence
interval with a security factor of 1 - 7.

P[x% <xTSx$] =1- (23)

where: x ¢ and x £ are the lower and upper limits
of the confidence interval, respectively,
which are defined using the following
expressions:

e Lower limit of confidence interval:

x¢ = xp — 2y, X SGr (24)
e Upper limit of confidence interval:
xd =xr + 27}, X SGr (25)

where: z7.¢/2— is the value of the standardized
normal variable for the selected security
factor (confidence level) of 1-1/2;
SGt — represents the standard estimation
error, which according to this empirical
method, for a random variable of a given
period of return T, is calculated using the
following expression:
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S
SGr =67 X \/_ﬁ
where: S — is the standard deviation based on the
series (group),
61— 1s a function of the frequency factor
(K) and a certain number of statistical mo-
ments, depending on the applied theoreti-
cal distribution function.

(26)

The standard estimation error for the log-Pear-
son III SGT (y) distribution (y = logx), can be cal-
culated according to the same equations as for the
Pearson III distribution (Husno Hrelja, Inzenjerska
Hidrologija, 2007), but including the logarithmic
group values (Sy, Csy). The standard estimation er-
ror thus defined for the logarithmic group SGT(y) is
converted to the standard error of the group (with-
out calculation) SGT (x), through the equation:

xr X [exp(SGr(y) —

— exp(SGr(y)]
2

SGr(x) = @)

Finally, we can written the confidence inter-
vals for log-Pearson I1I distribution function:

X9 = xp + 21 X SGr (%) (28)

The selected theoretical probability distribu-
tion function (log-Pearson III) together with the
corresponding empirical function as well as the
95% confidence interval limits are graphically
presented in Figure 3.

0.5
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0.35
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0.15
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Aspect of low water management

From the point of view of water use and pro-
tection, the following two management regimes
are especially important:

a) Minimum water management (Qyp;) and
b) Guaranteed ecological minimum (Qep).

Guaranteed ecological flow should always be
provided in the water flow for the survival and
normal development of the flora and fauna in it.
It enters management tasks as a constraint, as op-
posed to minimum water management as a man-
agement variable.

Dordevi¢ and Dasi¢ propose to determine Qg
1. In the extra-vegetative period (October-

March), Qem is selected based on the relation:

Qem = 0.1 X Qg4 for Qgsg, < 0.1 X045 (29
Qem = Qose, for 0.1 X Oy < Qg5

Qem = 0.15 X Qg for Qosy, = 0.15 X Q5 (31)

(30)

where: Og represents the average multi-year wa-
tercourse flow, while
Qys,, — 18 the average minimum monthly
flow with 95% certainty.

In the vegetation period (April-September),
Qem 1s selected by the conditions:

Qom = 0.15 x Og for Qgoy, < 0.15 X Oy (32)

Qem = Qgov fOr 0.15 X 0y < Qgooy  (33)

0 10 20 30 40

50 60 70 80 90 100

Likely P[Q<Qmin.] (%)

@ Qmin. simulated

log-Pearson IlI

= « = |ower limit = « = upper limit

Figure 3. Graph of the log-Pearson III probability distribution function and corresponding
95% confidence intervals for the minimum annual Dragagina River inflows

252



Journal of Ecological Engineering 2022, 23(7), 246-256

0.45

0.1 | Qos%=0.007
Q0% = 0.0232

0 10 20 30 40

50 60 70 80 920 100

P [Q<Qmin.] (%)

Figure 4. Distribution probability function of the average monthly average inflows of the Dragacina River

Qom = 0.25 x Og for Qgoy, = 0.25 X Og (34)

where: Qy,, — is the average minimum monthly
flow with 80% certainty.

For Og= 0.366 m* /s and for Q,, and Q,, read
in Figure 4, analogous to the graph in Figure 3, the
following can be obtained:

e For the extra-vegetative period Qem =371/,

e For the vegetation period Qe =551/ s.

The feed defined by the relations above is
also consistent with the expression used in

France and Austria:
(0.15-0.20) X Q4 (35)

Water management plan based
on the cumulative curve

The water management plan is designed to
assess the long-term compensatory effect of a

[
o

V [hm3]
O R, N WA U O N K O

dam. The usable space is determined based on the
storage equation, where the left side of the equa-
tion contains the mean values over the increase of
the calculation of At:

Z-Qa+N-v="2
QZ-Q =

where: QZ — average flow in the dam in the time
interval At in [m?/ s],
QA — average discharge (including over-
flow) in the time interval At in [m?/ s],
N — precipitation on the surface of the res-
ervoir during At in [m?®/ s],
V — evaporation from the reservoir sur-
face during At at [m?/ s],
AS — change of reservoir volume in At to
[m*] (AS= St + at — Sp)-

(36)

If the inflow amount is above the discharge
amount, a surplus is displayed, while a deficit ex-
ists if at any time the total discharge exceeds the

'

=y
[ane
N
w
>
w

—@— Reservoir entrances.

= ® = Exits from the reservoir.

7 8 9 10 11 12

t (month)

The difference in the reservoir.

Figure 5. Cumulative inlet, outlet and change reservoir curves for a characteristic year
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=
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V [hm3]

O R, N W H U N 0w

t [month]

Figure 6. Cumulative inlet, outlet and change reservoir curves for a dry year

total inflow. In addition to the deficit, its duration
also plays a role, for which there is no longer a
complete planned supply. Deficits in individual
years are taken accordingly as the maximum dif-
ference between the cumulative input and out-
put curves. The following graphs show the cu-
mulative curves (Jasna Plav§i¢ & Zoran Radié,
Inzenjerska hidrologija-reSeni zadaci, 2015) for
a characteristic year and another extremely dry
year (1967/68), whereas discharges in 8§ months
are taken from 200 1/ s, while in other 4 months
from 150 1/ s without counting here Qgp, in the
respective periods.

As it can be seen from the graphs in Figures
5 and 6, the cumulative curve is presented in the
orthogonal coordinate system as an ascending

2.5 4

Q [hm3/muaj]

3 4 5 6 7

curve. It is more convenient to choose the av-
erage flow as the reference value, which corre-
sponds to the curve connecting the start and end
point of the cumulative curve. The sum of suc-
cessive surpluses and deficits gives the size of
the usable volume of the dam for the respective
successive wet or dry periods. The required vol-
ume size for the entire period under review is the
largest value of the amount of surplus and subse-
quent deficit. At the end of each filling phase, the
tank volume indicates the highest filling level
during this period.

On the basis of the above, inflows of three
consecutive typical years are taken, the average
of which corresponds to about 0.34 m?® / s, and
the usable volume of the reservoir is examined.

- 35

SQ*At [hm3]

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

SAt [month]

=) Average monthly feeds

Cumulative curve.Qmes.

----- Qmes. (MQ)

Displacement of sum (Qmes.)

Cumulative feed curve

tg

Figure 7. Usable volume of the reservoir for three consecutive ordinary years (Maniak, 2010)
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0 4 8 12 16
t [month]

= = =Qmes. (MQ)

20 24 28 32 36

Discharge of the tank.

Figure 8. Usable volume Vsh. optimal reservoir for the relevant period (Maniak, 2010)

Here, the average is setas Y (Q X At) /(3 X 12),
respectively 31.93725 /36 = 0.8871 hm?/ month
and represents a continuous discharge for each
month. The parallel displacement of the cumu-
lative discharge curve is done because an initial
volume is needed to cover the maximum deficit,
which in this case is D = 0.89 hm’. This volume
may be required only in extremely dry periods.

The usable volume for this 3-year period will be:

Ve, = 13.354 — (—0.89)| = 4.248 hm?®

Acquiring an initial volume of 1 hm’ and that
from eq. (36) V< N we obtain the usable volume
of the reservoir Vg = 4.5 hm?.

The following graph gives the relevant down-
loads along with Qep, for a dry hydrological year

Q [m3/s]

like that of 1967/68 (the Jaroslav Cerni Institute
in this year had organized measurements of daily
river inflows for 9 consecutive months, respec-
tively October—August).

Volume based on the theory of probability
of inflows and reservoir fillings

If a degree of compensation « is to be guar-
anteed, the volume required for the critical period
nkr. taken as:

Sn,p =aXnXx-— Qn_p (37)

where: Qpp — is the sum of the n-year input with
a probability of stagnation P,, which is
defined as:

0 50 100 150

200 250 300 350 400

t [day]
Figure 9. Surplus and deficit during a dry hydrological year (HMI Jaroslav Cerni, 1983)
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Qup =nXx—2z, Xxnxs (38)

whereas: z, — the standard normal distribution
variable for Py, (Cs=0),
n X x=x" the n-year average of the in-

mes.

dependent series of annual feeds.

Assuming an average annual withdrawal from
the reservoir QA ™ = 0.63 X Qmes. which should
be constant throughout the years, then the length
of the critical period will be:

72

— p 2
Ny, =——— % 39
k"4 x (1 — a)? Co 39

respectively, for Py=95%, derives ny;-=0.13 years
~ 48 days.

For the same security, the degree of expan-
sion 3 will be:
2

p=—2?

2
=xa-a> C2 (40)

hence: = 0.048 x 1.2 = 0.0576, while the vol-
ume usable for the critical period will be
S=B X Qmes. 0.665 hm>.

Similar is also achieved through eq. (36) and
(37), where for the critical period of 2 months (60
days) we have Sp, , = —0.653 hm’.

With the initial acquired volume of 1 hm?* giv-
en in point 5. 95% confidence was obtained, i.e.
95% < Py <99%.

CONCLUSIONS

The performed study aimed at analyzing the
available amount of water in the Dragagina River,
for which the river does not have multi-year mea-
surements of inflows, whether they are average,
maximum or minimum. Therefore, the study is
based on a series of multi-year monthly rainfall
measurements, for the period of 30 years (1954
/ 55-1983 / 84) and some characteristics of the
Dragagina river basin, such as the average an-
nual flow coefficient n = Peﬁ/ P, . that enabled
the conversion of these precipitations to Peﬁ,ﬂow
[mm] and hence to monthly flow. Given that there
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is a lack of data on feeds for other years after
1983/84, these feeds were obtained by simulating
time series. For such inflows the probability dis-
tribution functions of small water were assigned
and then the usable volume balance was made.

Assuming an average annual withdrawal
from the reservoir QA " = 0.63 X Qmes, which
should be constant throughout the years, then the
length of the critical period will be 0.13 years or
approximately 48 days, for Py = 95%. For the
same certainty, the degree of expansion S will
be B =0.048 x 1.2 = 0.0576, while the usable
volume for the critical period will be 0.665 hm’.
The same is achieved for the critical period of
2 months (60 days) when we have Sp p=—0.653
hm?®. To increase the safety, it is recommended
that this volume be 1 hm?, which also plays the
role of the initial filling volume.

Starting from the initial acquired volume of
1 hm?, 95% confidence was obtained, i.e. 95% <
Py <99%. The amount of accumulated water will
be able to provide in 4 months of the year from
150 1/s and in the other eight months from 200 1/s
without including the ecological flow.

Finally, it follows from this analysis that this
river can provide a significant amount of water
for the needs of the Municipality of Suhareka.

REFERENCES

1. Hrelja H.2007. Inzenjerska HIDROLOGIJA, Sara-
jevo, 591-599; 628-634; 917-927; 950-957.

2. Maniak U. 2010. Hydrologie und Wasserwirtschatft,
TU Braunschweig, 126—134; 143-154; 159-161;
253-260; 366-373; 383-387.

3. Komuna e Suharekes. 2020. Draft Plani Zhvillimor
Komunal Suhareké 2020-2028, 15-16.

4. Kiirsad Demirutku. N. Can Okay. 2005. ‘Istatis-
tiksel formiiller ve tablolar’- Baskent Universitesi,
Ankara, 11; 18; 33; 40-41.

5. KHMI. 1984. Hydromeorological yearbooks of
Kosovo 1954-1983.

6. Plavsic¢ J., Radi¢ Z. 2015. Inzenjerska hidrologija-
reSeni zadaci, Beograd, 9-15.

7. Institute “Jaroslav Cerni”. 1983. Kosova Water
Masterplan Institute.



