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INTRODUCTION

When studying the nature of the distribu-
tion of pests invading crops, in particular locusts, 
makes it possible to identify their ecological fea-
tures, find stable population parameters and build 
sound approaches to predicting their spatial dis-
tribution in the study area [Adu-Acheampong et 
al., 2017; Zhang et al., 2019; Klein et al., 2022]. 
Predictive simulation of the geographical distri-
bution of the studied object has become an impor-
tant tool in agroecology, since it uses the previous 
information about the spatial distribution of spe-
cies in the ecosystem, limiting predictive models 

to the nearest ecological niche, thus generating a 
forecast of possible areas of occurrence based on 
environmental conditions that are similar to the 
identified populated area [Latchininsky and Siv-
anpillai, 2010; Kambulin et al., 2015; Sagitov 
and Duisembekov, 2016]. In this case, the mod-
ern simulation approach deserves special atten-
tion. Such models are often referred to as species 
distribution models (SDM), habitat suitability, or 
ecological niche models (ENM) [Sergeev, 2010; 
Merow et al., 2013; Orlov and Sheludkov, 2019]. 

SDM usually does not require an in-depth 
analysis of variables and simply provides a map 
of suitable habitat for a species. A predefined (or 
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“customized”) set of variables based on the biolo-
gy of the species is usually used. SDM is a purely 
statistical approach that is loosely related to the 
natural features of the species. ENM is performed 
the same as SDM but includes an expanded set of 
factors [Malakhov and Zlatanov, 2020]. 

Meanwhile, there are differences between the 
SDM and ENM approaches. SDMs often associ-
ate known cases of species occurrence with certain 
environmental conditions characteristic of the sites 
where they were recorded to predict the possible 
places where populations could persist within the 
landscape; thus, only the main key parameters of 
environmental variables are required for simula-
tion [Latchininsky and Sivanpillai, 2010; Malak-
hov et al., 2018]. According to the ENM concept, 
the resistance of species to certain environmental 
factors limits their stability in the landscape and 
an extensive database of environmental variables 
is required for simulation [Klein et al., 2022]. 

Both SDM and ENM approaches are trend-
ing in modern science [Aguilar and Lado, 2012]. 
They are performed using the geographical infor-
mation system (GIS) technology products, such as 
the MAXENT software [Elith et al., 2011]. With 
the help of this simulation, it becomes possible to 
obtain information on the potential locust distri-
bution and reproduction sites on digital maps of 
the studied territory, where monitoring and pro-
tective measures should be directed first of all. If 
this provision finds its application in the practice 
of phytosanitary monitoring, then it can be a good 
alternative tool for the basic logical model of pest 
forecasting, which is currently used by phytosani-
tary diagnostics and forecasts services [Malakhov 
and Zlatanov, 2020]. 

As the current research results in this area 
show, SDM and ENM depend primarily on en-
vironmental factors, which include abiotic and 
biotic factors [Phillips et al., 2006; Aguilar and 
Lado, 2012]. Referring to the studies by [Latchi-
ninsky and Sivanpillai, 2010; Malakhov et al., 
2018; Malakhov and Zlatanov, 2020], the vegeta-
tion cover (the normalized difference vegetation 
index, NDVI) is given an important place as these 
factors and parameters, since it is the fodder base 
of phytophages and meteorological parameters of 
the studied environment, which determines favor-
able habitat conditions for certain pest groups. 

If consider studies in the field of ENM of lo-
custs and phytophages in general are considered, 
great attention is paid to their global distribution 
to prevent invasions and mass reproduction on 

a global scale [Adu-Acheampong et al., 2017; 
Kimathi et al., 2020], which is also a strategic 
issue of phytosanitary safety. At the same time, 
some works raise questions about improving the 
preventive pest management measures by ENM 
within countries and individual agricultural re-
gions. Similar studies on locusts in Kazakhstan 
were conducted on gregarious locust species in 
their typical habitats [Malakhov et al., 2018; Mal-
akhov and Zlatanov, 2020; Klein et al., 2022].

However, there are no similar studies on the 
complex of non-gregarious locusts, and due to the 
polyphagous nature of these pests, their study is 
very relevant for the agricultural regions of North 
Kazakhstan. In addition, the proposed approaches 
and methods can be used by other researchers in 
solving similar problems. In terms of the preva-
lence of non-gregarious locust pests, the regions 
of North Kazakhstan belong to a region with a 
high pest population degree. They damage grains, 
legumes, forage crops, and pasture lands [Kam-
bulin, 2018]. According to the conducted obser-
vations [Baibussenov et al., 2015], in recent years 
there has been an increase in the number of these 
phytophages and pest infestation exceeding the 
economic harmfulness threshold (above 10 indi-
viduals per 1 sq. m) has been observed in many 
grain crops of North Kazakhstan. 

According to literary sources [Akmollaeva, 
2004; Zhang et al., 2019], the complex of harmful 
non-gregarious locusts that destabilize the pro-
duction of agricultural plants has 9–10 species. 
Among these, in the agricultural areas of North 
Kazakhstan, there are such species as Dociostau-
rus brevicollis (Ev.), Dociostaurus kraussi kraus-
si (Ingen.), the dark-winged grasshopper (Stauro-
derus scalaris (F.-W.)), the Siberian grasshopper 
(Aeropus sibiricus sibiricus (L.)), Pararcyptera-
microptera microptera(F.-W.), the lesser marsh 
grasshopper (Chorthippus albomarginatus al-
bomarginatus (Deg.)), and Euchorthippus pulvi-
natus (F-W.). From the practical point of view, 
all monitoring work on non-gregarious locusts is 
carried out simultaneously on a complex of harm-
ful species for agriculture [Azhbenov, 2013; Azh-
benov et al., 2015]. This can be explained by the 
fact that these species occur in mixed populations 
and for the prevention of their attack or the simu-
lation of favorable habitats, it is of no practical 
importance to conduct observations for each spe-
cies separately in phytosanitary monitoring. 

The purpose of the study was to simulate 
favorable habitats and the potential spread of 
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non-gregarious locust pests in North Kazakhstan 
based on satellite data for preventive measures 
against the damage from dangerous pests in agri-
cultural areas of North Kazakhstan.

MATERIALS AND METHODS

Area of the study

Since the natural and climatic data of North 
Kazakhstan are considered the most optimal en-
vironment for the spread and harmfulness of all 
locust species [Kambulin, 2018], including non-
gregarious species [Baibussenov et al., 2015], 
four regions of North Kazakhstan were selected 
and covered as the research area, namely, the 
Akmola, Pavlodar, Kostanay, and North Ka-
zakhstan regions. The analyses were carried out 
for the period 1999–2021. 

Figure 1 shows the classes of the studied ter-
ritory, which are the layers of the Earth’s cover. 
They simultaneously present the territory where 
the study was conducted. The layers of the 
ground cover are a very important criterion in 

determining the preferred habitats of non-gregar-
ious locust pests since these data show vegeta-
tion, which is the food base for the pests under 
study. As it can be seen from the data, the selected 
study areas are mainly represented by herbaceous 
vegetation and arable land, which is a very favor-
able condition for the habitat of locust pests. The 
database of source data of high-quality vegetation 
cover plots and several auxiliary data sets reaches 
80% accuracy (Copernicus Global Land Cover 
Layers: CGLS-LC100 collection). 

Objects of the study 

The objects of the study were non-gregarious 
locust species. During the monitoring surveys of 
the fields, the authors used the methods developed 
by the following scientists: Sagitov and Duisem-
bekov [2016], Azhbenov [2013], Kambulin et al. 
[2015]. The ground data on the number of harmful 
non-gregarious locusts were collected jointly with 
specialists of the Republican State Institution “Re-
publican Methodological Center for Phytosanitary 
Diagnostics and Forecasts” and cover coordinates 

Figure 1. Layers of the Earth cover according to Copernicus data in the regions of North 
Kazakhstan (Akmola, Pavlodar, Kostanay, and North Kazakhstan regions)
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from 62 points from different districts of the re-
gions of North Kazakhstan in 2020–2021.

The input data of the model were created ran-
domly using coordinate points based on ground 
survey reports by study areas. The districts of the 
regions were ranked (from 1 to 6) according to 
the collected ground data on the areas inhabited 
by larvae of non-gregarious locusts. On the basis 
of the classification of areas in question, points 
were randomly created to train the model.

Using climate data and meteorological 
parameters to run the model

The satellite images from TERRA and Aqua 
(MODIS), Sentinel, and Landsat satellites were 
used as remote sensing data. The climate data 
were obtained from Bioclim sources [Booth et al., 
2013]. According to the results of the analysis, the 
criteria of meteorological parameters at which lo-
custs developed were clarified. The data from the 
Landsat and Sentinel satellites were multispectral 
images in the optical, infrared, near-infrared, and 

thermal ranges with a spatial resolution from 10 m 
to 60 m, with a periodicity of 3–16 days. 

Such indicators as the Palmer Drought Sever-
ity Index (PDSI) and Solar Radiation (12% out of 
100% each) for the months of March–July 1999–
2021 were taken as secondary factors. PDSI was 
added in this year of the study since a pattern was 
revealed between the years with the hydrothermal 
index (HTI). PDSI is calculated using monthly 
data on temperature and precipitation, as well as 
the information on the moisture-holding capac-
ity of soils. PDSI takes into account the received 
moisture (precipitation), as well as the moisture 
stored in the soil, taking into account the potential 
loss of moisture due to temperature influences. 
For many years, PDSI has been the only current 
drought index, and it is still very popular around 
the world. Spivak et al. (2011, 2017) used soil 
moisture capacity data to assess the risk of out-
breaks of gregarious locusts and other pests.

Table 1 shows data on key climatic and me-
teorological parameters. Such key factors as 
PDSI (March–July, 1999–2021), NDVI (June 

Table 1. Climatic data defined as input parameters for the simulation of favorable habitats and the 
potential spread of non-gregarious locust pests

Climate data Periodicity, years Cronbach’s Alpha Normality Min Max

NDVI, June 2015–2021 0.766 Good 0.048831 0.854984

NDWI, June 2015–2021 0.769 Skewed 0.2182621 0.349211

PDSI, March 1999–2021 0.674 Skewed -3.384583 1.64375

PDSI, April 1999–2021 0.693 Skewed -3.7125 1.414583

PDSI, May 1999–2021 0.713 Skewed -3.480833 0.730833

PDSI, June 1999–2021 0.682 Skewed -3.65125 0.96375

PDSI, July 1999–2021 0.651 Skewed -3.499583 1.597917

Sun radiation, March 1999–2021 0.908 Good 123.75 154.35

Sun radiation, April 1999–2021 0.75 Good 184.6167 218.45

Sun radiation, May 1999–2021 0.81 Good 234.3167 279.8958

Sun radiation, June 1999–2021 0.774 Good 62.066669 108.375

Sun radiation, July 1999–2021 0.774 Good 190.1125 247.5583

Precipitation, January 1999–2021 0.7113 Good 11.91667 51.08333

Precipitation, February 1999–2021 0.701 Good 9.166667 18.16667

Precipitation, March 1999–2021 0.7 Good 12.125 21.54167

Precipitation, April 1999–2021 0.73 Good 13.75 25.875

Precipitation, May 1999–2021 0.708 Good 13.33333 38

Precipitation, June 1999–2021 0.7113 Good 11.91667 51.08333

Precipitation, July 1999–2021 0.7004 Good 11.25 70.5

Precipitation, August 1999–2021 0.701 Good 13 50.375

Precipitation, September 1999–2021 0.789 Good 7.75 32.20834

Precipitation, October 1999–2021 0.78 Good 13.83333 35.16667

Precipitation, November 1999–2021 0.777 Good 15.16667 31.41667

Precipitation, December 1999–2021 0.758 Good 15.08333 26.125
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Minimal temperature, January 1999–2021 0.894 Good -11.1 -7.775

Minimal temperature, February 1999–2021 0.894 Good -11.1 -7.775

Minimal temperature, March 1999–2021 0.825 Good -1.808333 4.141667

Minimal temperature, April 1999–2021 0.848 Good 9.4708338 15.80417

Minimal temperature, May 1999–2021 0.933 Good 18.70417 24.9875

Minimal temperature, June 1999–2021 0.894 Good 23.495831 30.05417

Minimal temperature, July 1999–2021 0.97 Good 24.58333 31.97083

Minimal temperature, August 1999–2021 0.975 Good 22.97917 30.27917

Minimal temperature, September 1999–2021 0.848 Good 9.4708338 15.80417

Minimal temperature, October 1999–2021 0.825 Good -1.808333 4.141667

Minimal temperature, November 1999–2021 0.908 Good -3.0375 1.916667

Minimal temperature, December 1999–2021 0.941 Good -10.74167 -7.02083

Maximal temperature, January 1999–2021 0.877 Good -20.6625 -16.1

Maximal temperature, February 1999–2021 0.876 Good -20.60417 -16.1083

Maximal temperature, March 1999–2021 0.789 Good -11.125 -4.25833

Maximal temperature, April 1999–2021 0.749 Good -1.125 4.441667

Maximal temperature, May 1999–2021 0.813 Good 5.5250001 11.92917

Maximal temperature, June 1999–2021 0.769 Good 10.54167 16.83333

Maximal temperature, July 1999–2021 0.825 Good 11.775 19.11667

Maximal temperature, August 1999–2021 0.782 Good 9.8625002 16.7125

Maximal temperature, September 1999–2021 0.936 Good 16.691669 22.8

Maximal temperature, October 1999–2021 0.864 Good 7.7624998 12.05

Maximal temperature, November 1999–2021 0.852 Good -10.64583 -5.34583

Maximal temperature, December 1999–2021 0.904 Good -19.2 -14.5417

Note: The PDSI scale ranges from -10 (very dry) to +10 (very wet), with 0 being normal.  
Cronbach’s Alpha: > 0.9 very good; > 0.8 good; > 0.7 sufficient; > 0.6 dubious; > 0.5 bad; < 0.5 insufficient.

Table 1. Cont. Climatic data defined as input parameters for the simulation of favorable habitats and the 
potential spread of non-gregarious locust pests

Figure 2. Contribution of the key input parameters for the simulation of favorable 
habitats and potential spread of non-gregarious locust pests
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2015–2021), normalized difference water in-
dex (NDWI) (June 2015–2021), solar radiation 
(March–July, 1999–2021), precipitation (Janu-
ary–December, 1999–2021), minimal tempera-
ture (January–December, 1999–2021) and maxi-
mal temperature (January–December, 1999–
2021) were taken into account. 

Figure 2 shows the percentage and contribu-
tion between the key input parameters (data in-
put) for the ENM of non-gregarious locust pests. 
As it can be seen from the data, such factors as 
precipitation, minimal temperature, and maximal 
temperature for the period from 1999 to 2021 
were used most of all (24% out of 100% each) for 
monthly ENM. This is because these factors are 
the main ones in the study of pest bioecological 
features [Zhang et al., 2019]. 

In addition, the data on soil moisture with a 
resolution of 1 km were downloaded from the 
Soil Moisture and Ocean Salinity (SMOS) and 
Soil Moisture Active Passive (SMAP) resources 
http://nsidc.org/data/smap and the temperature of 
the Earth’s surface was calculated from Landsat 
images. Terrain data will be obtained from the 
open Shuttle Radar Topography Mission (SRTM) 
sources. According to the results of the analysis, 
ecological niches and migrations of locusts were 
determined [Jakob, 2001].

Simulation methods and tools

The basis for simulation was the concept of a 
multidimensional Hutchinson niche [Hutchinson, 
1957; Colwell and Rangel, 2009; Orlov and Shelud-
kov, 2019]. As the simulation algorithm for the spa-
tial distribution of grasshoppers, the maximum en-
tropy method implemented in the MaxEnt software 
[Phillips et al., 2006] was used. MaxEnt is a machine 
learning algorithm that predicts the presence of the 
species in geographic space based on the registra-
tion types (presence-only), excluding the areas with 
a documented absence [Merow et al., 2013]. 

The ENM of the studied non-gregarious locust 
pests in the performed study covered two areas: 
1) Conducting SDM or realized niche simulation 

based on certain climatic variables, more close-
ly tied to the agricultural landscapes where the 
objects were discovered; 

2) Conducting ENM or fundamental niche simu-
lation based on expanded data of climatic vari-
ables where objects can theoretically be found;

3) Verifying between two predictive models, 
SDM and ENM. This work was carried out by 

comparing the ENM with the actual ground 
monitoring data for the studied objects. Com-
parisons were focused between ground-based 
monitoring data, the realized niche simulation 
launched in the first year of study, and the fun-
damental niche simulation launched in the cur-
rent year of the study.

RESULTS

SDM or realized niche simulation for non-
gregarious locust pests in North Kazakhstan

Figure 3 shows the realized niche simulation 
obtained as a result of the correlation model. The 
selected climatic indicators of air temperature, 
soil temperature, the humidity of the upper soil 
layer (5–10 cm), and precipitation of the cold 
season falling in the form of snow are most likely 
related to the thermoregulation of the surface soil 
layer in which the egg-pods overwinter. These 
indicators directly affect the appearance of lar-
vae in the spring, after the deposition of egg pods 
in the autumn of the previous year. In addition, 
an indicator of “pure radiation” on the Earth’s 
surface was added as “the difference between the 
total radiation flux from above and the total ra-
diation flux from below.” In other words, pure 
radiation is the energy available to the earth on 
the surface of the soil.

If the area of attack given in the realized niche 
simulation shown in Figure 3 is considered, it can 
be seen that according to the gradation of the 
probability of attack by these pests, high indica-
tors are assigned to the Pavlodar and Kostanay 
regions (the majority of the studied zone falling 
within 69.9–100%).

This is followed by the Akmola region, where 
the model predicts the probability of occurrence 
in most cases in the range of 42.2–78.6%. The 
North Kazakhstan region can be called a region 
with minimal exposure to the attack by non-gre-
garious locusts, where the probability of occur-
rence in most cases ranges from 22.7 to 36.6%.

Figure 4 shows the error curve. The higher 
the area under the curve (AUC) index, the better 
the model, while the value of 0.5 demonstrates 
the unsuitability of the chosen method. The pre-
dicted frequency of assumptions is a straight 
line. In some situations, the test assumption 
line lies well below the predicted passing line: a 
common reason is that the test and training data 
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are not independent, for example, if they were 
obtained from the same spatially auto-correlated 
data. The red (training) line shows the “fitting” 
of the model to the training data. The blue line 
(testing) indicates the compliance of the model 
with the testing data and is a real test of the pre-
dictive ability of the models. In the considered 
case, the indicators are quite high. 

ENM or fundamental niche simulation of non-
gregarious locust pests in North Kazakhstan

The model was launched according to the ba-
sic settings. The optimal model is selected step 
by step, and the number of steps (maximum it-
erations) is set to 500 by default. This value is 
most often suitable only for simple models or for 

Figure 3. Realized niche simulation (SDM) of the habitat of non-gregarious 
locust pests in North Kazakhstan according to the correlation model

Figure 4. Receiver operating characteristic (ROC) error curve during the validation of the correlation model
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evaluation analysis. For complex models with 
many factors, the parameter value needs to be 
increased. In the conducted study, the number of 
steps was set to 5,000. Besides, a cumulative re-
sult was established, which is most suitable when 
searching for the boundaries of species distri-
bution. This type of result is proportional to the 
probability of the presence of the species if some 
additional conditions are met (Figure 5).

To predict a larger probability of the spread 
of non-gregarious locust pests, the number of 
climatic factors was increased, which made it 
possible to carry out the mechanistic simulation 
of the fundamental niche. Thus, a mechanistic 
model has been realized (the ENM model, i. e. 
the fundamental niche simulation). The input 
data were taken into account for all districts, and 
the input parameters were taken for 1999–2021. 
In the case of the ENM of non-gregarious lo-
cust pests, the following class boundaries were 
determined for the transition from quantitative 
to qualitative indicators: I (85–100%): a zone 
of a very high probability of occurrence, II (70–
85%): a zone of a high probability of occurrence, 
III (50–70%): a zone of an average probability 
of occurrence, IV (0–50%): a zone of low prob-
ability of occurrence. From the point of view of 

phytosanitary safety, the first two zones (I and 
II) are of interest, since the remaining zones do 
not pose a risk to agricultural areas.

According to the launched ENM model (Fig-
ure 5), high indicators of the attack area are at-
tributed to the central and northern parts of the 
Pavlodar region. Here, ENM in the majority of the 
territory shows the probability of an occurrence of 
non-gregarious locust in zones I and II with a ratio 
of 1:1 (the zones are equal) in a slightly arid, mod-
erately warm agro-climatic zone. In the southern 
part of the Kostanay region, the ENM model pre-
dicts the probability of an occurrence on zones I 
and II with a ratio of 1:2 in the majority of the 
territory (zone II being the dominant one) in the 
moderately arid warm agro-climatic zone of this 
region. In the southern and southeastern parts of 
the Akmola region, the model predicts the prob-
ability of an occurrence of zones I and II with a ra-
tio of 1:3 (zone II is over-dominant) in the slightly 
humid, moderately warm agro-climatic zone of 
the region. Zones I and II are not observed in the 
North Kazakhstan region. In this regard, this re-
gion can be attributed to the areas with minimal 
exposure to non-gregarious locust pests.

The basic measure for evaluating the quality 
of the model in MaxEnt is the AUC under ROC. 

Figure 5. Simulation result: The fundamental niche simulation (ENM) of the 
habitat of non-gregarious locust pests in North Kazakhstan



307

Journal of Ecological Engineering 2022, 23(7), 299–311

Verification between two predictive 
models, SDM and ENM

In general, the obtained simulation data do 
not contradict the data of ground-based phyto-
sanitary monitoring. In this case, the realized 
niche simulation or SDM predicts the probabil-
ity of attack depending on the coordinates within 
the agro landscape where the harmful object was 
found. In contrast, the fundamental niche does 
not tie the probability of attack to the agricultural 
landscape but predicts the possible attack of the 

This predictive ability indicator is interpreted as 
the probability that randomly selected coordi-
nates are predicted better than randomly selected 
background coordinates.

According to the AUC value, the simulation 
quality can be divided into five categories (Cory 
et al. 2013): 0.9–1: “excellent”, 0.8–0.9: “good”, 
0.7–0.8: “satisfactory”, 0.6–0.7: “bad”, <0.6: 
“very bad” (failed simulation). Figure 6 shows 
the error curve based on the simulation results. 
AUC= 0.856. Thus, the obtained mechanistic 
model for ENM is satisfactory (adequate).

Figure 6. ROC error curve during the validation of the mechanistic model (ENM)

Table 2. Verification of phytosanitary monitoring methods for harmful non-gregarious locusts based on GIS 
technology (on average for 2020–2021)

Ground data collection
place

Ground monitoring 
attacked area in 

thousand hectares
Classification

Probability of attack
in %, by realized niche 

simulation (SDM)

Probability of attack
in %, by fundamental 

niche simulation (ENM)

Aiyrtau district 3.48 1 0.74821493 30.3212102

Akzhar district 0.2 1 11.68600738 28.05158714

Akkayin district 3.5 1 0.999537767 31.97899644

Akkol district 2.800 1 7.12924321 45.16554615

Aksu city akimat 5.4 2 7.830275774 81.6968134

Aktogay district 8.1 3 29.98438008 53.14510925

Altynsarin district 0.65 1 0.098243648 38.77134104

Amangeldi district 1.53 1 22.54911333 5.256157573

Arkalyk city akimat 1.1 1 25.49249056 10.44074937

Arshalyn district 6.770 3 28.70914421 61.42361929

Astrakhan district 6.890 3 7.955928968 73.30110617

Atbasar district 5.540 2 10.37818216 45.35891546

Auliekol district 1.6 1 1.537402356 24.4211417

Bayanauyl district 7.2 3 0.335635935 18.63380491
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Bulandy district 5.300 2 2.05396787 43.38188116

Burabay district 4.380 2 2.894659962 42.37494002

Gabit Musirepov district 2.3 1 0.2133487 51.1633208

Denisov district 0.8 1 0.56411337 18.39559718

Egindykol district 7.350 3 26.175404 60.1565062

Ekibastuz city akimat 5.4 2 6.398296438 37.16942846

Enbekshilder district 4.850 2 5.707107069 40.50969454

Yerementau district 5.050 2 18.62890163 31.58400843

Ertis district 3.6 1 21.05287456 29.42938326

Esil district 3.41 1 2.403391061 47.07504924

Esil district 5.450 2 1.216385232 22.48831091

Zhaksy district 4.320 2 4.359856838 36.6727904

Zhambyl district 3.5 1 0.056170837 12.35617535

Zhangeldi district 0.48 1 2.086746096 2.413945193

Zharkain district 3.325 1 15.92610167 25.31405826

Zhelezin district 16.2 6 9.421343562 50.52213538

Zhetikara district 1.75 1 0.505085071 9.750559064

Zerendi district 1.735 1 2.126369101 39.3424526

Kamysty district 2.65 1 2.380935808 7.618228446

Karabalyk district 1 1 0.720773465 13.21116675

Karasu district 4.95 2 2.105939992 39.30873886

Kashyr district 18 6 48.97126984 86.91171069

Korgalzhyn district 16.000 6 26.35543267 64.51844772

Kostanay district 3 1 0.101330106 36.36090603

Kyzylzhar district 3.5 1 0.206679693 5.934110763

Akkuli (Lebyazhye) district 3.6 1 4.045110213 40.86422654

Magzhan Zhumabaev district 1.98 1 0.595472217 14.90497726

May district 3.6 1 1.037549634 19.22468036

Mamlyut district 1.6 1 0.076714141 6.057422414

Mendykara district 0.283 1 0.15906752 15.55408183

Nauyrzym district 1.425 1 2.958122615 9.002084641

Pavlodar city akimat 9.05 3 12.96684125 96.51864874

Pavlodar district 15.2 6 25.09158794 87.67441176

Sandyktau district 5.105 2 0.522515667 14.55522007

Sarykol district 2 1 0.143120528 47.13130836

Taiynsha district 3.3 1 3.062252666 50.6138403

Taran district 0.56 1 0.457879373 40.24629391

Timiryazev district 3.5 1 0.109809816 34.28567207

Ualikhanov district 2.24 1 17.3636008 20.51774993

Uzynkol district 0.874 1 0.072614903 19.26122317

Uspen district 5.4 2 29.0138176 72.5790798

Fyodorov district 2 1 0.150840038 11.98570101

Tselinograd district 14.000 6 31.18343693 77.48993311

Shal akyn district 2.75 1 0.685350746 24.10020958

Sharbaktyn district 7.2 3 13.31953721 47.04355888

Shortandy district 0.000 0 5.687470873 59.46227447

Correlation coefficient - - 0.63 0.666

Table 2. Cont. Verification of phytosanitary monitoring methods for harmful non-gregarious locusts based on GIS 
technology (on average for 2020–2021)



309

Journal of Ecological Engineering 2022, 23(7), 299–311

object under study according to its general envi-
ronmental requirements. Here lies the main rea-
son why the fundamental niche simulation shows 
a greater probability of attack, than the realized 
niche simulation (Table 2).

During the study period of 2020–2021, the 
forecast values of the models were quite satisfac-
tory, and the correlation coefficient of climatic 
parameters was 0.63:0.66. It is worth noting that 
the data set on environmental factors should be 
adequate for the objects under study. In the future, 
to study the influence of environmental factors on 
the formation of the area, as well as to improve 
the model, it is necessary to minimize the correla-
tion of climatic parameters.

DISCUSSION

Natural agricultural lands are a reservoir for 
non-gregarious locusts [Childebaev, 2002]. In 
this connection, the immediate proximity of crops 
to pasture areas makes it favorable for the attack 
of these phytophages [Baibusenov et al., 2020]. 
This approach to the simulation of favorable lo-
cust pest habitats is an innovative method for fur-
ther forecasting their potential distribution sites 
[Klein et al., 2022] since scientists claim [Van 
Huis et al., 2007] that a ground survey requires a 
large number of specialists to study the vast areas 
of distribution of the studied pests.

Sometimes, millions of hectares should be 
surveyed within a short period [Latchininsky et 
al., 2016]. Thus, modern digital maps of harmful 
locust pests obtained by ENM, based on which it 
is possible to identify the most preferred places 
for their distribution, make it possible to focus 
primarily on the problem areas where the model 
shows a high probability of attack by the studied 
objects [Cressman, 2013; Klein et al., 2022]. On 
the other hand, this method can act as a preven-
tive approach [Azhbenov et al., 2015] to detect 
the rise in the number of non-gregarious locust 
pests. Non-gregarious locust pests occur and 
cause harm to agricultural plants in a complex 
ratio [Akmollaeva, 2004]. In addition, all moni-
toring and protective measures are also carried 
out by plant protection services against the en-
tire encountered complex, which includes about 
10–12 harmful species [Childebaev, 2002]. In this 
regard, in the conducted studies, simulation was 
carried out on a set of these species for digital 
mapping of potential places of their distribution.

According to scientists [Le Gall et al., 2019], 
ENM reflects the distribution of species with 
rough spatial resolution, in most cases based on 
abiotic and edaphic conditions. In this case, al-
though there may be differences between the spe-
cies of the non-gregarious locust complex in their 
requirements for environmental factors, in the au-
thors’ opinion, they are not significant and it is not 
advisable to conduct a separate analysis for each 
species. The authors adhere to this opinion by con-
sidering this issue more from the practical side as 
specialists in plant protection, that is, as applied 
science. On the other hand, for fundamental re-
searchers, the question of conducting such studies 
for each species separately remains open.

If the considered study is compared with 
other works conducted before, it can be said 
that similar studies in this area were carried out 
by scientists [Malakhov et al., 2018; Malakhov 
and Zlatanov, 2020; Klein et al., 2022] only on 
gregarious locust species (Asian locust, Moroc-
can locust, Italian prus) both on a national and 
international scale. Besides, studies have been 
conducted on ENM and desert locusts in foreign 
countries [Cressman, 2013; Kimathi et al., 2020]. 
The authors of this paper also conducted studies 
on ENM of non-gregarious locust pests, the bio-
ecological features of which are radically differ-
ent from the above-mentioned species. However, 
in general, all the principles and approaches, as 
well as the analysis of input data for simulation, 
were carried out according to a similar scheme as 
that of other researchers.

In phytosanitary monitoring and forecasting 
of the development and spread of harmful organ-
isms, a gradual transition from the accepted clas-
sical methods to more modern approaches is nec-
essary, since it will allow the creation of digital 
visualization of the spread of the studied phyto-
phages for operational decision-making on crop 
protection. These results of studies on the simula-
tion of favorable habitats and the potential spread 
of non-gregarious locust pests may allow priori-
tizing the areas for risk assessment, monitoring, 
and early warning measures for the development 
and spread of pests.

CONCLUSIONS

Summing up the results of this study, the fol-
lowing conclusions were drawn. If the area of the 
attack obtained with the realized niche simulation 
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(SDM) is considered, it can be seen that according 
to the gradation of the probability of occurrence 
with these pests, high indicators are assigned to 
the Pavlodar and Kostanay regions (the majority 
of the studied zone falls within 69.9–100%). This 
is followed by the Akmola region, where the mod-
el predicts the probability of occurrence in most 
cases in the range of 42.2–78.6%. The North Ka-
zakhstan region can be considered a region with 
minimal exposure to attack by non-gregarious 
locusts, where the probability of occurrence in 
most cases ranges from 22.7 to 36.6%. The pro-
posed model can be used as a modern alternative 
to logical models of long-term forecasting since it 
can predict the probability of the spread of phyto-
phages within the landscape of agricultural areas. 
According to the launched ENM model, high indi-
cators of the attack area are allocated to the central 
and northern parts of the Pavlodar region. Here, 
ENM in the majority of the territory shows the 
probability of an attack of non-gregarious locusts 
in zones I and II with a ratio of 1:1 (the zones are 
equal) in a slightly arid, moderately warm agro-
climatic zone. In the southern part of the Kostanay 
region, the ENM model predicts the probability 
of an occurrence in zones I and II with a ratio of 
1:2 in the majority of the territory (zone II being 
the dominant one) in the moderately arid warm 
agro-climatic zone of this region. In the southern 
and southeastern parts of the Akmola region, the 
model predicts the probability of an occurrence in 
zones I and II with a ratio of 1:3 (zone II is over-
dominant) in the slightly humid, moderately warm 
agro-climatic zone of the region. Zones I and II 
are not observed in the North Kazakhstan region. 
The presented ENM can be used as a long-term 
forecast of the probability of the spread of non-gre-
garious locust pests in advance for several years, 
since this simulation does not take into account the 
attachment of the studied objects to the limits of 
the landscape where they were found, but consid-
ers the more extensive parameters of the territories 
that they can theoretically inhabit. According to the 
results of the verification of the conducted studies, 
the forecast values of the models were quite satis-
factory, and the correlation coefficient of climatic 
parameters was 0.63:0.66. It is worth noting that 
the data set on environmental factors was adequate 
for the studied objects. In the future, similar studies 
can be conducted throughout Kazakhstan to obtain 
a complete digital map of preferred locations for 
the spread of non-gregarious locust pests to ade-
quately plan plant protection products.
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