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INTRODUCTION

Currently, due to anthropogenic impacts or 
natural phenomena, agricultural lands are increas-
ingly subject to changes, including soil degrada-
tion. The studies on the problem of salinity and 
the struggle against salinity in Central Asia are 
important tasks. In different states and areas, vari-
ous methods and technologies are used to identify 
and measure soil salinity. Along with groundwa-
ter, the drying up of the Aral Sea, the salinization 
of nearby areas occurs. As a result of salinization, 
agricultural lands are degraded. Salinization of 
agricultural land directly affects the productiv-
ity and quality of crops grown, and these factors 
affect the economy of the selected region. Espe-
cially in the example of Kazakhstan, the problem 
of salinity is mostly presented in the South of Ka-
zakhstan regions. New effective methods need to 
be developed to estimate the degree of salinity of 
agricultural land and restore the degraded arable 

land. There are various methods and algorithms 
for determining saline lands and technologies for 
restoring arable land to increase productivity.

For assessing soil salinity, remote sensing 
methods have been actively used in the last de-
cade (Pankova et al., 1978). The scientific papers 
provided the methods for estimating the salinity 
of irrigated arable land based on satellite data and 
GIS technologies (Fernandez-Buces et al., 2006; 
Gabdullin et al., 2015; Laiskhanov et al., 2016). 
The authors used satellite data and described the 
salinization of some tracts of irrigated arable 
land in Kazakhstan. Recently, mapping saline 
agricultural lands using satellite data and GIS 
technologies is the most common way to moni-
tor the salinization of arable land. On the basis of 
the research of existing solutions, remote sensing 
and GIS technologies can successfully compete 
with technically complex and expensive meth-
ods of ground-based monitoring of arable land 
salinity. At the same time, data is collected from 

Soil Salinity Classification Using Machine Learning Algorithms 
and Radar Data in the Case from the South of Kazakhstan

Timur Merembayev1*, Yedilkhan Amirgaliyev1, Sultan Saurov2, Waldemar Wójcik3

1	 Institute of Information and Computational Technologies CS MES RK, 050010, 28 Shevchenko Str., 
Almaty, Kazakhstan

2	 S. Seifullin Kazakh Agro Technical University, 010011, 62 Zhenis Ave., Nur-Sultan, Kazakhstan
3	 Lublin University of Technology, 20-618, 38D Nadbystrzycka Str., Lublin, Poland
*	 Corresponding author’s e-mail: timur.merembayev@gmail.com

ABSTRACT 
Soil salinity is one of the major impact factors on agriculture in the South of Kazakhstan. Prediction and estima-
tion of soil salinity before planting a season usually helps to plan for the leaching of the salt. In the paper, satellite 
data such as radar data and machine learning algorithms, were used to classify soil salinity. Numerical results were 
presented for the Turkestan region, which contains more than 102 points. The machine learning algorithms, includ-
ing Gaussian Process, Decision Tree, and Random Forest, were compared. The evaluation of the model score was 
realized by using metrics, such as accuracy, Recall, and f1. In addition, the influence of the dataset features on the 
classification was investigated using machine learning algorithms. The research results showed that the Gaussian 
Process model has the best score among considered algorithms. In addition, the results are consistent with the 
outcome of the Shapley Additive exPlanations (SHAP) framework.

Keywords: environmental correlation, soil salinity, machine learning, remote sensing.

Journal of Ecological Engineering
Received: 2022.07.12
Accepted: 2022.08.12
Published: 2022.09.01

Journal of Ecological Engineering 2022, 23(10), 61–67
https://doi.org/10.12911/22998993/152281
ISSN 2299–8993, License CC-BY 4.0



62

Journal of Ecological Engineering 2022, 23(10), 61–67

the spectral channels of the spectrum’s visible 
and near infrared range. On the basis of channel 
combinations, various salinity indices are built, 
combined with vegetation indices, making it pos-
sible to build a logical system of communication 
between the actual salinity level (ground data) of 
arable land with the spectral characteristics of the 
underlying surface.

There are several examples of solving prob-
lems by restoring salinity parameters (salinity 
maps) of irrigated arable land based on relatively 
small ground data and current satellite imagery 
(Fernandez-Buces et al., 2006; Masoud et al., 
2006; Asfaw et al., 2018). However, this approach 
is not always suitable for other arable lands, since 
they are characterized by varying conditions, es-
pecially in different seasons and weather condi-
tions. Automatically using this approach does not 
always give good results. Accounting for season-
al characteristics, the composition of cultivated 
crops, the pace of the onset of spring, and cloud-
less satellite imagery calendar dates require ad-
ditional satellite surveys each time.

Using satellite data can positively affect the 
assessment of the salinity of agricultural lands. 
In this approach, there is a need to use various 
MODIS products, which have been developing 
significantly in recent years. The technologies for 
processing time series of primary satellite imag-
ery currently make it possible to obtain compa-
rable long-term data series with an update period 
of 7–10 days. These products are usually based 
on MODIS data and have a medium spatial reso-
lution, for example 250 m for vegetation indices.

There are various remote sensing data to 
identify and monitor saline areas, including aerial 
images, video images, infrared thermography, 
and multispectral images (Ondrasek et al., 2021). 
Multispectral scanning technology for the study 
of natural resources is a promising direction for 
solving the problem of monitoring and predicting 
soil salinity, an example of multispectral remote 
sensing satellites: Landsat MSS / TM (Multispec-
tral scanning / Thematic Mapper), Sentinel, Astel, 
and Spot. The type and variety of images depend 
on electronic scanners that register reflected ra-
diation in separate ranges. Landsat offers a much 
wider range of ranges than Spot and allows the 
detection of various elements on the surface.

When analyzing the data from Landsat MSS 
channels 3, 4, and 5 presented in the research 
(Abuelgasim et al., 2019), the authors recom-
mended using them to identify soil salinity. 

Landsat TM data in the ranges 1 to 5 and 7 are 
good indicators for determining salt minerals, at 
least when they are the dominant component of 
the soil. Examples of more complex techniques 
include various clustering and classification algo-
rithms for raw satellite data or machine learning 
(Hoa et al., 2019; Akramkhanov et al., 2012).

In the paper (Hoa et al., 2019) authors consid-
ered the Mekong Delta and proposed an approach 
for solving the problem of salinity mapping using 
radar images and machine learning algorithms. 
Using radar images, field data, and soil electrical 
conductivity measurements, the authors solved 
the regression problem. They provided a compar-
ative analysis of several machine learning models 
of salinity results.

The authors of the paper (Akramkhanov et al., 
2012) studied soil salinity in the Aral Sea basin. 
In the research, they tried to estimate the spatial 
distribution of soil salinity based on easily avail-
able environmental parameters (relief indices, 
remote sensing data, distance to ditches and long-
term groundwater observations) using a neural 
network model. The environmental attributes and 
soil salinity ratios have been used to reach a score 
of soil salinity almost similar to mean soil salinity 
values (0.94 vs. 1.04 dS m-1 estimate). The au-
thor reached a score 70–90% for the test dataset.

The aim of the study was to evaluate the in-
fluence of generated features on a classification 
model of soil salinity. The features were obtained 
using radar data, a digital elevation model, tem-
perature, and texture analysis of the area of in-
terest. The potential features that should help to 
improve the score of a classification model were 
identified.

METHODS

The authors have followed the general work-
flow of a machine learning classifier which is 
showed in Figure 1. The process of the classifier 
model contains of the following steps:
	• Obtaining salinity classification based 

on Landsat-5 spectral indices and expert 
assessment;

	• Texture analysis of Sentinel 1 (radar data) 
by the Grey Level Co-occurrence Matrix 
(GLCM) method (Haralick et al., 1973);

	• Augmentation of the dataset by digital el-
evation model (SRTM) and temperature 
(MODIS);
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• Application of machine learning algorithms 
and evaluation of the quality of the trained 
model;

• Calculation of importance values for classifi -
cation model by SHAP;

• Explanation of obtained results.

In the conducted research, the approach from 
the research that processed radar data was consid-
ered (Hoa et al., 2019). The machine learning al-
gorithms such as Gaussian process (GP), decision 
tree, and random forest were adopted for compar-
ison analysis of model scores. In the performed 

research, the task was a binary classifi cation of 
soil salinity.

In the paper (Nickisch et al., 2008), the au-
thors described the theoretical and practical 
implications of GP to a binary classifi cation 
problem. The authors have studied various ap-
proaches to improve the scores of the GP algo-
rithm for binary classifi cation. GP is a stochastic 
process that is given by a function of the mean 
𝑚𝑚(𝑥𝑥) = 𝐸𝐸[𝑓𝑓(𝑥𝑥)]  and a covariance function of 
𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝑉𝑉[𝑓𝑓(𝑥𝑥), 𝑓𝑓′(𝑥𝑥)] , where xi is one soil fi eld 
point from a set of soil data X, and each point is 

Figure 1. Flowchart of workfl ow for salinity classifi cation

Table 1. Abbreviation and description of features

Name Description
point_class Binary class
gamma_vv Plarization VV
dissimilarity_vv Dissimility of gray level co-occurrence matrix for polarization VV
contrast_vv Contrast of gray level co-occurrence matrix for polarization VV
homogeneity_vv Homogenety of gray level co-occurrence matrix for polarization VV
ASM_vv ASM (homogeneity of an image) of gray level co-occurrence matrix for polarization VV
energy_vv Energy of gray level co-occurrence matrix for polarization VV
correlation_vv Correlation of gray level co-occurrence matrix for polarization VV
entropy_vv Entropy of gray level co-occurrence matrix for polarization VV
gamma_vh Plarization VH
dissimilarity_vh Dissimility of gray level co-occurrence matrix for polarization VH
contrast_vh Contrast of gray level co-occurrence matrix for polarization VH
homogeneity_vh Homogenety of gray level co-occurrence matrix for polarization VH
ASM_vh ASM (homogeneity of an image) of gray level co-occurrence matrix for polarization VH
energy_vh Energy of gray level co-occurrence matrix for polarization VH
correlation_vh Correlation of gray level co-occurrence matrix for polarization VH
entropy_vh Entropy of gray level co-occurrence matrix for polarization VH
elv SRTM of ground elevation model
slope Calculated slope from DEM
temp MODIS land surface temperature
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assigned salinity or lack of salinity. 𝑦𝑦𝑖𝑖 ∈ {0,1} 
The prediction is achieved using the function f
to be found, to achieve a binary classifi cation per 
function f, the sigmoid function 𝑠𝑠𝑠𝑠𝑠𝑠: 𝑅𝑅 → [0,1]   is 
used. Thus, the probability that the function f will 
predict the event yi will be represented as: 

𝑃𝑃(𝑦𝑦 ∨ 𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 ⋅ 𝑓𝑓(𝑥𝑥)) (1)

The decision tree method is the data mining 
method, and it is successfully used to solve dif-
ferent classifi cation problems. Morgan and Son-
quist created and used an algorithm for the de-
terminants of social conditions (Rokach et al., 
2005). The advantages of decision trees are that 
they are computationally fast and work with mul-
tidimensional data. In addition, one decision tree 
can process the data, and the algorithm will be 
greedy; therefore, it continues to grow deeper into 
the tree.

The random forest was presented by Breiman 
as a training tree ensemble classifi er (Breiman et 
al., 2001). The main idea of the algorithm is to get 
random vector values from the aggregated boot-
strap sample (training dataset) and then train a 
lot of decision trees. However, a trained tree con-
tains many trees, so it needs more computational 
resources.

Recall and F1 metrics were used to assess 
the quality of the model. These metrics were 
considered in order to avoid the problems with a 

possible imbalance in the sample, so there will be 
fewer points with salinity than points where there 
is no salinity.

DATA

Generated from radar data

The Turkestan region, Shardara district, was 
chosen for providing tests with machine learning 
algorithms. Figure 2 shows the area of interest, 
and the area is 858.84 km2.

The Landsat 5 multispectral images of this 
territory were used for classifi cation and obtained 
in June 2021, the classifi cation was performed 
using spectral indices and with expert validation. 
Figure 2 shows the territory with the classifi ca-
tion performed according to Landsat 5 data. 9 
classes were identifi ed, and 5 of them relate to 
soil salinity: strong, extreme, medium, initial, and 
no salinity.

On the basis of the classifi cation data, the ter-
ritory was labeled, 102 points randomly located 
and defi ned whether this location has salinity 
or not. Figure 2 showed the randomly selected 
points in the area of interest.

The dataset consists of binary soil values (sa-
linity or no salinity) and 16 features that were 
generated using a radar image and the GLCM 
method. Table 1 contains abbreviations and de-
scriptions of the dataset.

Figure 2. Randomly labeled 102 points in the area of interest.
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Additional data 

For radar data augmentation, using a digital 
elevation model and temperature data that may 
affect the salinity classification model were pro-
posed. USGS MODIS Earth Surface Temperature 
or land surface temperature (LST) and ground 
elevation model (ELV) data were used to extend 
the data set. The obtained images have a resolu-
tion of 1 km for LST and 30 meters resolution 
for ELV. From the ELV data, two features were 
obtained, i.e. height above sea level and angle of 
land (slope of relief). Combining additional data 
with radar data, a dataset of 102 points and 19 
features was obtained.

The data was split into training and test da-
tasets, split at 85% and 15%, respectively. The 
distributions of training and test datasets had an 
equal proportion of classes in the two samples. 
The total dataset is 102 points, the training dataset 
contains 81 points, and the test dataset contains 
15 points.

RESULTS

The comparison of the chosen algorithms 
was carried out on 16 features (radar data) and 
3 additional features obtained from temperature 
and elevation points, a total dataset is 19 features. 
Table 2 shows the comparison of model scores on 
the test dataset for the Recall and f1 metrics. The 
GP has the highest score in the test set for class 1 
(soil salinity) Recall = 0.60 and f1 = 0.67.

The augmentation with new features im-
proved the accuracy for the three models and 
for all metrics. The improvement especially im-
pacted for class 0 (no salinity): Recall = 0.89 and 
f1 = 0.84.

To understand how the model was classified 
and what features influenced the model score, 
the SHAP package was used (Lundberg & Lee, 
2017). The result of SHAP is presented for the 

Random Forest model since SHAP does not have 
the ability to use the Gaussian Process model. 
The use of the library has a wide range of applied 
tasks (Merembayev et al., 2021; Amirgaliyev et 
al., 2019; Muhamedyev et al., 2020) and is an 
effective tool for understanding a model. SHAP 
is a kind tool for explaining the various patterns, 
and it gives a significant value to each feature. 
SHAP creates an explanatory model for a one-
row-forecast pair to explain the prediction result. 
The SHAP values are computed by means of the 
values across all possible features. Explanation 
models (tree and kernel) do not infer probabili-
ties due to a limitation associated with non-linear 
transformations, but they do provide raw objec-
tive function limit values that fit the model.

The first interpretation that can be created 
with the explanation values is the summary plot 
shown in Figure 3, which presents the model’s 
most important features and a visual representa-
tion of how they impacted it. Due to the nature 
of these patterns, each sample needs to be stud-
ied separately, so most of these plots are simply a 
composite of all of these samples.

Figure 3 presents the most important features 
of the model. The values of contrast_vv, correla-
tion_vh can be good indicators that can be used 
for soil separation. 

Figure 4 shows the dependencies of individ-
ual features (contrast_vv, correlation_vh). These 
graphs plot the value of the features in relation 
to their SHAP value, enabling to understand how 
they are related easily. SHAP also displays the 
value of the second variable, which is automati-
cally selected depending on its interaction with the 
function in question. Thus, the library helps to find 
multidimensional dependencies in data. Moreover, 
in Figure 4, there was the dependency that higher 
variable values are associated with higher SHAP 
values. It can also be seen that this relationship is 
not linear but closer to a threshold of about 0.01 
for the feature contrast_vv. For the correlation_vh 

Table 2. The comparison of three models for test dataset

Models Class
16 features (radar data) 19 features (temp+DEM)

Precision Recall F1 Precision Recall F1

Gaussian 
process

0 0.75 0.67 0.71 0.80 0.89 0.84
1 0.50 0.60 0.55 0.75 0.60 0.67

Decision tree
0 0.67 0.44 0.53 0.55 0.67 0.60
1 0.38 0.60 0.46 0.30 0.60 0.40

Random 
forest

0 0.67 0.67 0.67 0.75 0.67 0.71
1 0.40 0.40 0.40 0.50 0.60 0.55
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a) b)

Figure 3. SHAP summary plot of the RF model; a ) for contrast_vv feature; b) for correlation_vh feature

a)

b)

Figure 4. SHAP values for the dependency of features; a) for contrast_vv feature; b) for correlation_vh feature
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feature, it can be seen how the color indicates that 
when correlation_vh is low, contrast_vh has a 
SHAP value lower than when it is higher.

CONCLUSIONS

This research analyzed the machine learning 
algorithms for salinity classification using satel-
lite data (radar, temperature, and elevation). The 
obtained data indicate that the Gaussian Process 
model reached the best results with a comparison 
of the considered algorithms. The Gaussian Pro-
cess model has an accuracy of 0.60 and 0.67 for the 
recall and f1 metrics, respectively, for class 1. The 
use of additional features such as elevation points 
and temperature improved the model’s score.

The SHAP framework was used to examine 
the effect of features on the target classification and 
identify complex relationships between features. 
The SHAP result on the considered dataset re-
vealed that the important features for class forecast 
were contrast_vv, correlation_vh, and gamma_vv.

In future research, the authors will focus on 
building a machine learning model to quantify sa-
linity (soil conductivity), use hyperspectral data, 
and apply deep learning algorithms such as con-
volution neural networks.
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