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INTRODUCTION

Waste rock dumps (WRDs) and tailings stor-
age facilities (TSFs) at a mine site are signifi-
cant sources of acid rock drainage and potential 
groundwater contaminants. The central element 
associated with acid rock drainage in mining 
activities is sulphide, which can severely dete-
riorate the groundwater quality. The oxidation 
of sulphide minerals within the waste rock pile 
materials ensues in the generation of acidic solu-
tions with a high level of toxic metals, which are 
potential groundwater contaminants (Sracek et 
al., 2004; Molson et al., 2005; Akcil and Koldas, 
2006; Bao et al., 2020; Gomez-Arias et al., 2021).

The magnitude of groundwater contamination 
during the operational phase of mining depends on 
factors such as groundwater-surface water interac-
tion, soil and waste rock erosion intensity, levels of 

present toxic minerals and trace metals, sulphide 
mineral levels, available buffering agents, hydro-
geological and climatic conditions (Wahsha et al., 
2016 Agboola et al., 2020; Vriens et al., 2020; Ram 
et al., 2021). Groundwater hydrochemistry com-
prises variable characteristics, and therefore, the 
spatial dependence of water quality parameters is 
required to characterise the relationship between the 
hydrochemical parameters for effective mapping of 
groundwater attributes of a region (Allwright et al., 
2013; Emenike et al., 2018; Jiang et al., 2020).

Statistical applications linked with spatial corre-
lation are a helpful tool and modelling technique for 
creating groundwater quality monitoring maps. The 
application of geostatistical methods considers the 
spatial correlation of the regionalised variabilities 
by computing and modelling the semivariogram. 
Geostatistical methods can predict the concentra-
tion of regionalised variables, such as groundwater 
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parameters in non-sampled locations (Karami et al., 
2018 Adadzi, 2020; Asghar et al., 2020).

The Pearson correlation method helps anal-
yse the relationships between various physico-
chemical water quality parameters (Harlicek and 
Perterson, 1976; Benesty et al., 2009). Pearson’s 
correlation is used to investigate the relationship 
or association between two variables and shows 
that the changes in one variable are related to the 
changes in another. The Pearson correlation coef-
ficient is expressed as:

𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − ∑𝑥𝑥𝑥𝑥∑𝑥𝑥𝑥𝑥

�[𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥2 − (∑𝑥𝑥𝑥𝑥)2] ⋅ [𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥2 − (∑𝑥𝑥𝑥𝑥)2]
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(1)

where: r – Pearson r correlation coefficient;   
N – number of values in each data set;   
∑xy – sum of the products of paired scores;  
∑x – sum of x scores;   
∑y – sum of y scores;   
∑x2 – sum of squared x scores;   
∑y2 – sum of squared y scores.

The correlation coefficient can be described as 
a small correlation for -0.10 ≤ r ≤0.29, a medium 
correlation for -0.30 ≤ r ≤ 0.49, and a significant 
correlation for -0.50 ≤ r ≤ 1.0 (Pallant, 2011). Posi-
tive and negative indicate the direction of the rela-
tionship; positive suggests the increase in the other 
variable associated with the rise in one variable, 
and negative correlation indicates the decrease in 
the other variable related to the increase in one vari-
able. The coefficient of determination (r2), which 
explains the change in one variable as explained by 
the difference in the other variable, was calculated. 

Principal component analysis (PCA) mini-
mises information loss and reduces large data sets 
(King and Jackson, 1999; Jolliffe and Cadima, 
2016). This study used principal component anal-
ysis to obtain the correlation between groundwa-
ter quality parameters. The first principal compo-
nent explains much of the total variance in a data 
set, while the other members then explain the re-
mainder of the variance. In PCA, only the compo-
nents with an eigenvalue >1 were often selected 
and then subjected to the varimax rotation before 
being used for interpretation (Patil et al., 2008).

The PCA method consists of five main steps:
1. Original data matrix:

𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − ∑𝑥𝑥𝑥𝑥∑𝑥𝑥𝑥𝑥
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(2)

where: xij – in the matrix is the original measure-
ment data;     
n – the monitoring station;   
p – each water quality parameter.

2. Standardisation of the original data with the 
Z-score standardisation formula to remove 
the impact of dimensionality (Belkhiri and 
Narany, 2015) as:

𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − ∑𝑥𝑥𝑥𝑥∑𝑥𝑥𝑥𝑥
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(3)

where: xij
∗ – the standard variable;   

xj – the mean value for the jth indicator;   
sj – the standard deviation of the jth 
indicator.

3. Calculation of the correlation coefficient ma-
trix R using standardised data to establish the 
correlation between the indicators (Equation 4) 
(Chen et al., 2015):
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4. Calculation of the eigenvalues and eigenvec-
tors of the correlation coefficient matrix R to 
establish the number of principal components.

The eigenvalues of the correlation coefficient 
matrix R are expressed by λi (i = 1, 2 · · · n) and 
the eigenvectors are ui (ui = ui1, ui2, · · · uin), (i = 1, 
2 · · · n). The λ value corresponds to the variance 
of the principal component. Also, the variance 
value is positively correlated with the contribu-
tion of the principal components. The cumulated 
contribution rate of the first m principal compo-
nents should be more than 80%, which means: 
∑m

j=1λj⁄∑n
j=1λj ≥ 0.80 (Uddameri et al., 2014). 

The principal component is expressed by Equa-
tion (5).

𝑟𝑟𝑟𝑟 =
𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − ∑𝑥𝑥𝑥𝑥∑𝑥𝑥𝑥𝑥

�[𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥2 − (∑𝑥𝑥𝑥𝑥)2] ⋅ [𝑛𝑛𝑛𝑛∑𝑥𝑥𝑥𝑥2 − (∑𝑥𝑥𝑥𝑥)2]
 

 

( )
1 1

1

p

ij np

n np

x x
x x

x x

 
 = =  
  



  



 

 

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖* =
�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − �̄�𝑥𝑥𝑥𝑖𝑖𝑖𝑖�

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖′
 

 

𝑅𝑅𝑅𝑅 = �𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1

𝑛𝑛𝑛𝑛 − 1
�𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖* 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡=1

 

(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,2, … ,𝑝𝑝𝑝𝑝)  

 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖1𝑥𝑥𝑥𝑥1* + 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖2𝑥𝑥𝑥𝑥2* + ⋯+ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛*  

(𝑖𝑖𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑛𝑛) 

 

𝐹𝐹𝐹𝐹 =
𝜆𝜆𝜆𝜆1

𝜆𝜆𝜆𝜆1 + 𝜆𝜆𝜆𝜆2 + ⋯+ 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹1 + 

+
𝜆𝜆𝜆𝜆2

𝜆𝜆𝜆𝜆1 + 𝜆𝜆𝜆𝜆2 +⋯+ 𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹2 + 

+⋯+
𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛

𝜆𝜆𝜆𝜆1 + 𝜆𝜆𝜆𝜆2+. . . +𝜆𝜆𝜆𝜆𝑛𝑛𝑛𝑛
𝐹𝐹𝐹𝐹𝑛𝑛𝑛𝑛 

 

(5)

where: xi* is the standardised indicator variable  
xi* = (xi − x̅i)⁄si.

5. Weighing and summing the resulting principal 
components to obtain a comprehensive score 
function, as shown in Equation (6):
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Applying geostatistical methods, the surfaces 
are connected if the sampling points are at differ-
ent locations. Deterministic methods use math-
ematical functions to interpolate based on sur-
rounding measurements directly. Geostatistical 
methods rely on both statistical and mathematical 
functions, including autocorrelation. The geosta-
tistical tool ArcGIS (ESRI, 2019) was used to pre-
dict the distribution of groundwater quality within 
the study catchments. Kriging interpolation tech-
niques and a semivariogram modelling approach 
were used to analyse the spatial distribution of pa-
rameters in groundwater associated with acid rock 
drainage. Semivariogram model types were con-
sidered for the selected groundwater quality pa-
rameters: exponential, linear, circular, spherical, 
stable, Gaussian and quadratic. Each parameter 
was analysed across various semivariograms. The 
most appropriate model of the semivariograms 
was selected by examining the spatial distribution 
of the dataset along with geostatistical features 
such as standard deviation, percentage error and 
skewness. A Kriging interpolation technique was 
used to interpolate readings without actual data. 
A spatial analysis of groundwater quality was 
conducted to identify variations in groundwater 
quality across vulnerable areas and sites. Kriging 
interpolation and semivariograms were the main 
geostatistical methods used in spatial analysis.

Geostatistical applications through either de-
terministic or stochastic methods have been ap-
plied in many studies to model and generate a 
spatial mapping of groundwater quality dynam-
ics and patterns of major elements and trace met-
als. Amongst several methodologies, the kriging 
method has been used successfully to estimate the 
pollution patterns in groundwater, soil and the en-
vironment for designing proper management, re-
mediation and preventive strategies (Amini et al., 
2019; ESRI, 2019; Hosseini et al., 2019; Jha et 
al., 2020; Sideri et al., 2020; Tziritis et al., 2021).

The geostatistical simulation approach by 
kriging has been used to assess the uncertainty 
in the distribution of significant groundwater 
contaminants. The application of the ordinary 
kriging method in spatial modelling and map-
ping of groundwater quality distribution pro-
duces smoothing effects that emanate to accuracy 
in the interpretation of produced contaminant 

distribution maps (Naudet et al., 2004; ; Rabah et 
al., 2011; Safarbeiranvnd et al., 2018; Rata et al., 
2020; Varmaghani et al., 2021). 

The application of various geostatistical meth-
ods in groundwater, soil and environmental studies 
to locate the potential contamination and uncon-
taminated regions has, in recent decades, gained 
extensive comprehension for evaluating uncer-
tainties (Theocharopoulos et al., 2004; Scholz and 
Schnabel, 2006; Bodrud-Doza et al., 2016). 

This study applied an integrated multivariate 
statistical and geostatistical analysis to investi-
gate and determine the spatial models for major 
groundwater parameters associated with acid 
rock drainage at the waste rock dump and tailings 
storage site at a mine. Despite the availability of 
monitoring data at mine sites (WRD and TSF), the 
data alone is insufficient for assessment and the 
distribution, extent and magnitude of ARD impact 
at specific locations within the mine. The multi-
variate spatial distribution assessment ensures 
that attention is focused on specific locations of 
concern, resulting in time and cost components 
of environmental impact assessment and mitiga-
tion measures. The spatial distribution maps are a 
useful management tool for groundwater protec-
tion, remediation strategies and optimisation of 
groundwater-monitoring design at the mining site.

STUDY AREA

The study area is at a mean altitude of 1500 
metres above mean sea level (mamsl) and has 
a temperate Highveld climate with warm to hot 
summers as well as mild to cold winters. The 
mean annual precipitation for the area at a 50% 
percentile is 286.9 mm, with mean yearly evapo-
ration of 2600–2800 mm (Midgley et al., 1997). 
The mine is situated on a topographic high, main-
ly sloping east and northeast of the mining area 
(Figure 1).

The WRD and a fine residue dam (FRD) 
are located to the west, and the TSFs are situ-
ated to the east of the open mine pit and cover a 
surface area of approximately 7.2 km2. Ground-
water monitoring boreholes are located near the 
WRD, FRD and TSF to facilitate the monitoring 
of water chemistry and groundwater levels. The 
WRD is composed of rock materials that overlay 
the ore body and were displaced during mining. 
These rock materials mainly consist of dolomite 
from the excavated upper, middle, and lower 
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dolomite members, as well as secondary dolo-
mitisation. The WRD also contains remnants 
of the volcanoclastic kimberlite (Ekkerd and 
Stiefenhofer, 2003) discarded after removing 
economic minerals and fragments of Karoo and 
Transvaal Supergroup sedimentary rocks, xe-
noliths of basalt, mudstone, dolerite, and sand-
stone. The FRD, located adjacent to the WRD, 

is delivered in a slurry form to the deposit with 
about 49% moisture content. The return water 
from the slurry flows to the deposit pool and is 
then decanted in a controlled manner. 

The regional geology of the study mine con-
sists of 17.9 ha, 118 ± 2.8 Ma (Smith et al., 1985), 
and a Group-2 kimberlite (Smith, 1983a; Fraser 
and Hawkesworth, 1992), as presented in Figure 2.

Figure 1. Topographical map of the study area showing the location of the WRD, 
FRD, TSF and monitoring boreholes relative to the open mine pit location

Figure 2. Geological map of the study area
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The geology of the mine at the open pit and 
sampling level 348 m below ground was de-
scribed by Clement (1982) as a pipe through the 
Griqualand West suite, which consists of thick 
Proterozoic sedimentary rock suites, dolomites, 
banded iron formations, and shale. Large frag-
ments of Karoo, lava, and dolerite deposits were 
observed in the tube and subsequently eroded. 
The study mine is directly underlain by dolo-
mitic limestone with interbedded chert of the 
Ghaap Plateau Formation and Campbell Group, 
forming part of the Griqualand West Sequence 
of rocks.

MATERIALS AND METHODS

In this study, correlation matrix, princi-
pal component analysis and geospatial analy-
sis were applied on the obtained groundwater 
quality data from 10 boreholes (70 water sam-
ples in total), taken quarterly from December 
2018 to December 2020. The multivariate sta-
tistical analyses were performed using Origin-
Pro statistical tools. The multivariate statisti-
cal analysis covers 14 groundwater parameters 
(EC, pH, Ca, Mg, Na, K, Cl, SO4, HCO3, NO3, 
Si, T. Hardness, TDS, and Turbidity), while the 
geospatial analysis focused on the most criti-
cal parameters, likely influencing ARD in the 
groundwater (SO4, pH, EC, Ca, Mg, Na, Cl, 

and HCO3). Geostatistical modelling used a nu-
merical model optimal for further analysis of 
each groundwater quality parameter. Semivar-
iogram selection was made by visually review-
ing the map and examining the distribution of 
groundwater throughout the study area, consid-
ering statistical characteristics such as standard 
deviation, percentage error, and skewness. The 
Kriging interpolation method analysed the se-
lected groundwater quality parameters for all 
semivariograms. This procedure was repeated 
for all groundwater quality parameters to de-
termine the optimal semivariogram for all data. 
The multivariate and spatial distribution assess-
ment of the groundwater parameters associated 
with ARD ensures that attention is focused on 
specific locations of concern, resulting in time 
and cost components of environmental impact 
assessment and the application of mitigation 
and management measures.

The methodology was applied to the case 
study location, as illustrated in the schematic dia-
gram of Figure 3.

The method was applied to the case study be-
cause of the distribution of sampling points and 
the number of samples, which require classifica-
tion into several homogenous groups to reference 
the underlying significant hydrogeochemical 
anomalies related to ARD. The method involves 
subjecting the groundwater quality data to the fol-
lowing analyses:

Figure 3. Illustration of methodology for multivariate and geostatistical analysis
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1. Multivariate statistical analysis techniques 
made up of:

 • Correlation matrix; and 
 • Principal component analysis.

2. Geostatistical/geospatial application using:
 • Ordinary Kriging;
 • Semivariogram models;
 • Model validation; and
 • Generation of surface maps.

The methodology is based on a combination 
of the correlation matrix, principal component 
analysis, variogram modelling and kriging. In ap-
plying this method, the aim is the interpretation 
of specific anomalous values in the data, which 
could indicate the presence of acid rock drainage 
in groundwater. In my opinion, this can be done 
best if the interpretation of the anomalies is based 
upon an explanation of the chemical phenom-
ena described by the data. In ideal situations, the 
groundwater parameters can be related directly 
to acid rock drainage influence. In practical ap-
plications, looking for the chemical interpretation 
of the parameters is generally helpful. However, 
it may not be possible to explain precisely at a 
particular stage of acid rock drainage develop-
ment. The multivariate statistical analyses were 
performed using OriginPro software.

Correlation matrices are usually created using 
the Pearson method. On the basis of standardised 
data, R-mode factor analysis (FA) and principal 
component analysis (PCA) show the interaction 
of variables. In general, it seeks to simplify the 
complex and diverse relationships between a set 
of observed variables by revealing the common 
and unobserved factors associated with clearly 
unrelated variables. 

The eigenvalues of the correlation/ covariance 
matrix represent the division of total variation that 
causes each principal component in groundwater 
relating to ARD property. The magnitude of the 
relationships between variables is used as indica-
tors and as a covariance matrix standardised by 
setting all the variances equal to one. The correla-
tion matrix calculation is a primary tool to identi-
fy the dominant correlating parameters/variables 
before the data is further subjected to principal 
component analysis.

PCA was mainly used for strongly correlat-
ed variables. PCA does not work well to reduce 
data when the relationships between variables are 
weak. PCA recommends a correlation coefficient 

greater than 0.3. Principal component variables 
were linear combinations of the original vari-
ables that produced the extracted eigenvectors. 
Scree plots and biplots were created to interpret 
the relationships between observations, while the 
biplots represented both loadings and scores. The 
correlation matrix and principal component anal-
ysis were used to identify the groundwater quality 
components associated with acid rock drainage 
linked to specific sampling locations. The cluster-
ing of groundwater parameters was then inferred 
to relate the potential for acid rock drainage influ-
ence on the groundwater quality.

RESULTS AND DISCUSSION

Groundwater composition

The groundwater composition for the study 
area is based on the existing quarterly monitor-
ing data obtained from the case study mine from 
December 2018 to June 2020. The results of the 
statistical representation of groundwater compo-
sition from the boreholes at the study location 
grouped according to the areas of the boreholes 
relative to the WRD, FRD and TSF are presented 
in Table 1.

Correlation matrix

This study used a Pearson correlation matrix 
to identify the relationships among the individual 
groundwater quality parameters/variables. The 
analysed correlation matrix for the groundwater 
samples is presented in Table 2.

The results indicate that the strongest corre-
lated variables are SAR and Na (0.981), Mg and 
HCO3 (0.961), and SO4 and Na (0.906). Other 
groundwater quality variables also showing rela-
tively strong correlations are SO4 and Cl (0.816), 
Ca and Cl (0.805), EC and Cl (0.838), TH and 
HCO3 (0.884), TH and EC (0.817), SO4 and Cl 
(0.78), SO4 and NO3 (0.705), SO4 and EC (0.772), 
SO4 and SAR (0.86), EC and Ca (0.722), and 
pH and Mg (0.714). A moderate correlation was 
observed between TH and Cl (0.576), SAR and 
Cl (0.683), Na and NO3 (0.636), SAR and NO3 
(0.635), EC and HCO3 (0.568), pH and HCO3 
(0.678), Ca and SO4 (0.597), K and Mg (0.504), 
EC and Mg (0.612), K and EC (0.573), K and 
TH (0.509), EC and SAR (0.581), and pH and 
TH (0.623). However, weaker correlations were 
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Table 1. Results of groundwater composition

Location Bore-
hole ID

Param-
eter

Parameters

pH Na+

(mg/L)
Ca2+

(mg/L)
Mg2+

(mg/L)
K+

(mg/L)
Cl-

(mg/L)
SO4

2-

(mg/L)
HCO3

-

(mg/L)
NO3

-

(mg/L)
Si

(mg/L)
TDS

(mg/L)
#TH

(mg/L)
EC

(mg/L)

North
of

WRD/ 
FRD

Brits A
Ave 7.3 14.1 26.9 13.9 3.1 31.4 7.0 109.6 22.0 6.2 190.3 124.7 284.9

Stdev 0.4 1.2 1.5 1.2 0.3 1.6 2.7 22.0 7.4 0.7 13.4 7.4 40.3

Brits B
Ave 7.1 10.7 13.0 7.0 1.4 15.3 13.0 46.2 15.9 11.7 131.6 61.4 156.0

Stdev 0.5 1.2 1.8 0.6 0.3 3.5 3.8 7.3 2.8 0.9 14.7 6.4 63.6

G2
Ave 7.7 8.6 24.5 15.5 2.2 17.7 7.7 139.2 4.2 4.6 162.4 125.0 246.4

Stdev 0.6 1.3 7.7 4.5 0.2 2.0 2.3 49.7 2.2 0.9 37.2 37.3 37.9

G4
Ave 7.1 9.7 16.0 12.1 2.5 17.4 1.8 108.9 2.0 5.3 129.7 89.9 246.3

Stdev 0.6 0.7 2.4 1.1 0.1 1.0 1.3 15.1 0.0 0.9 9.0 10.1 140.8

South
of

WRD/ 
FRD

G3
Ave 8.0 14.5 26.4 23.0 3.8 34.3 26.1 127.7 18.2 7.7 231.1 160.4 326.3

Stdev 0.3 3.7 4.4 4.0 0.4 5.0 12.8 21.9 3.6 1.5 35.5 25.9 76.5

G8
Ave 8.4 17.3 21.7 63.6 6.6 27.0 11.1 370.0 3.3 10.0 362.7 315.9 520.6

Stdev 0.2 0.8 2.9 1.7 0.1 1.4 3.6 25.4 0.5 0.5 13.3 6.3 177.2

G12
Ave 8.4 17.3 25.8 57.5 1.8 26.6 17.7 328.5 2.0 8.3 335.6 301.1 506.0

Stdev 0.2 0.7 4.2 1.7 0.2 1.6 4.3 22.3 0.0 0.5 13.5 7.6 117.2

East
of

WRD/ 
FRD

E17
Ave 7.8 9.3 70.0 41.2 2.8 49.2 37.2 302.1 2.0 7.2 381.7 344.4 597.7

Stdev 0.4 0.6 4.8 1.6 0.2 2.9 13.1 11.2 0.0 0.7 21.6 18.5 76.3

E29*
Ave 7.9 49.3 87.7 37.3 4.7 87.8 133.8 239.4 35.5 6.8 575.8 373.6 879.4

Stdev 0.2 3.9 3.9 1.6 0.4 1.8 8.3 22.0 5.1 0.4 22.3 13.9 56.7

In WRD E31
Ave 7.6 97.6 42.8 26.9 4.7 73.4 179.0 147.3 32.2 6.3 547.4 217.6 822.9

Stdev 0.3 6.2 1.4 1.0 0.3 2.8 30.1 18.8 7.1 0.5 26.7 6.8 50.2

Note: *averages and standard deviations calculated from the last five sets of analytical data; #TH – total hardness.

Table 2. Pearson’s correlation matrix (parameters with correlation coefficients ≥ 0.70 are highlighted in bold)

Location Borehole ID Parameter
Parameters

F
(mg/L)

Al
(mg/L)

Fe
(mg/L)

Mn
(mg/L)

North
of

WRD/ FRD

Brits A
Ave -0.5 -0.002 -0.009 0.01

Stdev 5.9E-17 0.007 0 0.02

Brits B
Ave -0.5 -0.005 -0.009 0.02

Stdev 5.9E-17 0 0 0.04

G2
Ave -0.5 -0.002 -0.009 0.05

Stdev 5.9E-17 0.007 0 0.06

G4
Ave -0.5 -0.005 0.007 0.1

Stdev 5.9E-17 0 0.04 0.05

South
of

WRD/ FRD

G3
Ave -0.5 -0.005 -0.009 0.08

Stdev 5.9E-17 0 0 0.1

G8
Ave -0.5 -0.005 -0.009 0.001

Stdev 5.9E-17 0 0 0.002

G12
Ave 0.8 -0.01 -0.01 0.002

Stdev 0.04 0 0 0.01

East
of

WRD/ FRD

E17
Ave -0.5 -0.005 -0.01 0.05

Stdev 5.9E-17 0 0 0.05

E29*
Ave -0.5 -0.005 -0.01 0.1

Stdev 0 0 0 0.1

In WRD E31
Ave -0.5 -0.002 -0.01 0.01

Stdev 5.9E-17 0.01 0 0.02
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observed amongst relatively few groundwater 
quality variables at the study site. 

The presence of Na+ controls the salinity 
load in groundwater, and then by Cl- and HCO3

-. 
The strong positive correlation of Mg and HCO3 
(0.961) indicates carbonate buffering resulting 
in the weak correlation of SO4 with pH (0.016). 
However, the strong positive correlation of SO4 
with Na (0.906) suggests acid rock drainage in-
fluence under saline conditions (neutral mine 
drainage). The strong positive correlation of Na+ 
and Cl- (0.78) and the weak positive correlation 
between Ca2+ and Mg2+ (0.278) indicate these pa-
rameters have mixed sources of origin. Therefore, 
the acid rock drainage influence in the groundwa-
ter is likely due to the leachates from the WRDs 
and TSFs at the study location. 

Principal component analysis

Principal component analysis was performed 
to identify the dominant groundwater component, 
which is inferred to acid rock drainage charac-
teristics. Kaiser-Meyer-Olkin (KMO) suggests a 
value of 0.86, showing a perfect sample fit, and p 
<0.001, indicating a high sphericity significance 

Table 3. Loadings of experimental variables on 
principal components, Eigenvalues, and variances for 
groundwater quality data of study site

Parameters
Principal components

PC1 PC2 PC3 PC4

Cl 0.338 -0.149 0.158 0.090

NO3 0.186 -0.351 -0.194 0.243

HCO3 0.193 0.431 0.062 -0.055

SO4 0.308 -0.256 -0.054 0.052

Ca 0.278 -0.005 0.308 0.522

Mg 0.210 0.413 -0.079 -0.099

Na 0.294 -0.268 -0.092 -0.282

K 0.244 0.088 -0.051 -0.404

EC 0.365 0.037 -0.009 0.082

pH 0.145 0.352 0.031 -0.232

T. Hardness 0.295 0.300 0.098 0.191

Si -0.029 0.140 -0.632 0.435

SAR 0.247 -0.324 -0.143 -0.329

Turbidity -0.088 -0.110 0.623 0.067

TDS 0.374 0.011 -0.003 0.061

Eigen value 7.054 3.664 1.421 0.962

Proportion % 47.02 24.43 9.47 6.41

Cumulative % 47.02 71.45 80.92 87.34

Note: values > 0.7 represent strong positive factor 
loading.

Figure 4. PCA scree plot of the Eigenvalues
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by the Bartletts test. This means a dominant re-
lationship between variables for the application 
of PCA. Four principal components (PCs) of the 
groundwater quality dataset were extracted based 
on eigenvalues greater than 0.86, representing 
87.34% of the total variance for the study area 
(Table 3). The scree plot of the PCs presented in 
Figure 4 was used to identify the number of PCs 
retained to understand the structure of groundwa-
ter quality parameters. The calculated component 
loadings, cumulative percentage, and percent-
ages of variance explained by each component 
are presented in Figure 4. The results indicate 
that 47.02% of the total variance represents the 
first principal component (PC). The PC1, PC2, 
PC3, and PC4 for groundwater quality data were 
47.02%, 24.43%, 9.47% and 6.41%, respectively.

The Biplot of PCA loadings scores for the 
dataset of groundwater quality parameters and 
sampling boreholes is presented in Figure 5. The 
primary principal component (PC1), explaining 
47.02% of the data variance, is positively loaded 
with TDS, Cl, SO4, EC and Na, which is mainly 
distributed in boreholes E29 and E31 (Figure 5).

PC1 shows a weak positive loading of SO4 
(0.308) and Na (0.295), indicating a moderate 
influence of secondary salts and leachate sul-
phide-bearing minerals at these locations. The 
PC2 shows that 24.43% of the total variance is 

positively loaded with HCO3, Mg, pH and TH, 
significantly distributed in boreholes E17, G8, and 
G12. The medium positive loading of Mg (0.413) 
and HCO3 (0.431) indicates lithological influence 
and carbonate buffering in the groundwater at 
these locations. PC3 (9.47%) is positively loaded 
with Ca (E29) and Tbd (G2, G3, G4, Brits A and 
Brits B (E15), while PC4 (4.41%) is positively 
loaded with Ca (E29), Si (G2 and G3) and NO3 
(E29 and E31). PC3 and PC4 suggest significant 
carbonate weathering and silicate weathering, re-
spectively, at these locations.

The PCA method uses an overall score to rep-
resent the critical groundwater quality parameters 
associated with each site within the study area. 
The study identified the groundwater quality com-
ponents associated with acid rock drainage linked 
to specific sampling locations. The clustering of 
groundwater parameters indicates that the poten-
tial for acid rock drainage influence on ground-
water quality is significant at boreholes E29 (lo-
cated near TSF) and E31 (located in WRD). This 
is conspicuous in the biplot (Figure 5), showing 
a strong positive correlation and close clustering 
of SO4 and Na within PC1 (47.02%). Sulphate 
and halite are strong indicators of anthropogenic 
influences of ARD in the groundwater at these 
locations. The biplot also indicated the evidence 
of carbonate buffering reactions at boreholes G8, 

Figure 5. Biplot of PCA loadings scores for the dataset of groundwater 
quality parameters and sampling boreholes
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G12 and E17 because of the close correlation and 
clustering of HCO3 and Mg with a medium posi-
tive correlation.

Geostatistical analysis

Geostatistical analysis was carried out with Ar-
cGIS 10.8 to perform ordinary kriging for predic-
tive surface output with no transformation. Predic-
tive performance was assessed by cross-validation, 
examining the accuracy of the selected fitting mod-
els and parameters, as shown in Table 4.

All the groundwater quality parameters were 
evaluated by cross-validation as follows:

 • The Standardised Mean Error range closest to 
zero, 

 • The Root Mean Square Standardised Error 
(RMSSE) range closest to 1, and 

 • Standard errors are close to the root-mean-
square prediction errors. 

The results in Table 4 indicate the best fit 
semivariogram models based on the defined error 
analysis schemes selected for kriging interpola-
tion to generate surface maps for each groundwa-
ter parameter associated with ARD at the study 
location. Semivariogram models (circular, spheri-
cal, tetraspherical, pentaspherical, exponential, 

Table 4. Cross-validation calculated statistics for the groundwater quality parameters

Parameters Best fit models
Prediction Errors

Mean Root mean 
square

Average 
standard

Mean 
standardised

Root mean square 
standardised

SO4 Exponential -2.300 60.48 55.58 -0.016 1.100

pH Rational quadratic -0.002 0.253 0.308 0.039 0.919

EC Stable 0.596 22.43 24.38 0.023 0.911

Na Exponential -0.439 33.41 27.64 -0.001 1.202

Cl Exponential -0.958 23.48 22.56 -0.017 0.963

HCO3 Circular 9.064 84.54 89.15 0.068 1.085

Ca Rational quadratic -1.426 16.98 18.49 -0.037 0.881

Mg Circular 1.546 12.57 15.01 0.068 0.974

Figure 6. Spatial distribution map of (A) SO4, (B) pH, (C) EC, and (D) Na in the study area
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Table 5. Summary of spatial analysis of groundwater quality parameters associated with acid rock drainage at the 
study location

Parameter Spatial distribution Highest Locations Lowest Locations Analysis of results

SO4 Figure 6a E29 and E31
G2, G4, G8, G12, 
Brits A and Brits 

B(E15)

E29 and E31 are potential acid rock drainage 
zone with the mixing of groundwater with leach-
ates of sulphide-bearing minerals from WRD and 
TFS at low pH compared to the other locations 
with low SO4 concentrations

pH Figure 6b G2 and G8 Brits A and Brits 
B(E15)

pH generally between 7 to 8.4 at the study loca-
tion, with near neutral pH values observed at G2 
and G8. Saline pH condition observed near WRD 
and towards TSF

EC Figure 6c E29 and E31 Brits B(E15), G2 
and G4

Sulphate and EC are usually closely correlated, 
with the degree of correlation enhanced with 
increasing ARD contamination of groundwater 
(Heikkinen et al., 2002). E29 and E31 elevated 
EC likely related to acid rock drainage influences

Na Figure 6d E29 and E31
G2, G3, G4, G8, 
G12, Brits A and 

Brits B(E15)

Na likely anthropogenic salt load component as-
sociated with acid rock drainage and other pollu-
tion sources

Cl Figure 7a E29 and E31 G2, G4 and Brits 
B(E15)

Cl likely anthropogenic salt component associ-
ated with acid rock drainage and other pollution 
sources

HCO3 Figure 7b G2 and G8 Brits B(E15)

Carbonated neutralises pyrites and the dissolu-
tion of calcite/dolomite in the carbonate bedrock 
releases calcium and magnesium (Webb and 
Sasowsky, 1994), contributing to alkalinity.  The 
alkalinity buffers the groundwater against rapid 
pH changes

Ca Figure 7c E17 and E29 G4 and Brits 
B(E15)

Relatively higher Ca release by carbonate weath-
ering at E17 and E29 compared to other locations

Mg Figure 7d G8 and G12 G4 and Brits 
B(E15)

Relatively higher Mg release by carbonate 
weathering and contributes to hardness at G8 
and G12 compared to other locations

Figure 7. Spatial distribution map of (A) Cl, (B) HCO3, (C) Ca, and (D) Mg in the study area
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Gaussian rational quadratic, hole effect, K Bessel, 
J Bessel and stable) were tested for each parameter. 
The best fit semivariogram model for each param-
eter-based cross-validation is presented in Table. 

By utilising the best model determined 
from the cross-validation process, the predicted 
groundwater quality parameters were used to pro-
duce the spatial distribution maps for SO4, pH, 
EC, Na, HCO3, Ca and Mg for the study, as pre-
sented in Figures 6 and 7.

The discussion on the spatial distribution of 
the groundwater quality parameters of the study 
area associated with acid rock drainage impact is 
discussed in Table 5. The generated map for each 
parameter indicates that the influence of ARD has 
a high magnitude at boreholes E31 and E29, lo-
cated in the WRD and close to the TSF. This is 
because of the generally elevated concentrations 
of SO4, Na, Cl and EC, which are characteristics 
of potential ARD influence in the groundwater. 
Sulphate and EC are usually closely correlated, 
with the degree of correlation enhanced with 
increasing ARD contamination of groundwater 
(Heikkinen et al., 2002). Carbonated neutralisa-
tion of pyrites and the dissolution of calcite/dolo-
mite were also observed in boreholes G2 and G8, 
contributing to alkalinity.

CONCLUSIONS

The application of multivariate and geostatis-
tical analysis for identifying ARD in groundwater 
at mine sites provides a practical, cost-effective 
framework capable of pinpointing the areas of 
critical ARD impacts for implementing mitiga-
tion and remediation strategies. The multivariate 
statistical methods of the correlation matrix (CM) 
and principal component analysis (PCA) were in-
tegrated with geostatistical spatial analysis (GPA) 
to determine the potential localities of acid rock 
drainage influence at the study site. On the ba-
sis of the correlation matrix analysis, the stron-
gest correlated groundwater quality parameters at 
the study location were Na, Cl, SO4, and HCO3, 
indicating the influence of secondary salts with 
leachate sulphide-bearing minerals accompanied 
by carbonate weathering. PCA shows that the pri-
mary principal component in the groundwater ac-
counting for 47.02% of the groundwater param-
eter variance is SO4, Cl, Na, EC and TDS, which 
are mainly distributed at boreholes E29 and E31. 
The application of geostatistical analysis resulted 

in the generation of spatial distribution maps of 
the groundwater quality parameters for the study 
area. The spatial distribution maps indicate that 
the maximum SO4, Na, Cl and EC concentrations 
occurred at boreholes E29 and E31. The integrated 
CM-PCA-GPA showed elevated sulphate concen-
trations at circumneutral pH (Neutral Mine Drain-
age) at E29 near a tailings storage facility and E31 
in a waste rock dump. The integrated CM-PCA-
GSA benefits the ability to identify the patterns 
within multivariate groundwater hydrochemical 
data that are often difficult to characterise for acid 
mine drainage. The integrated CM-PCA-GSA 
application validates the proposed integrated hy-
drogeochemical analysis method by identifying 
the correlations and spatial distribution of ground-
water parameters according to ARD influence on 
groundwater hydrogeochemistry. Multi-disciplin-
ary research on acid rock drainage and mineral 
leaching from tailings and waste rock facilities at 
mining sites facilitates diverse prevention, mitiga-
tion, and management options.
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