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INTRODUCTION

Aluminum alloys are used in industry owing to 
their high hardness, relatively low density and ca-
pability to form an oxide layer, protecting the met-
al surface from the environment. Because of their 
wide use, they are often in contact with natural or 
technological media, causing their destruction. 

Corrosion is a natural process, leading to de-
terioration of the properties of metal materials as 
a result of their chemical or electro-chemical in-
teraction with the environment. The costs, related 
to corrosion, can be both direct, such as replace-
ment of corroded constructions and facilities, and 
indirect, such as interruptions of manufacturing 
processes, loss of effectiveness etc. (Revie et al., 
2008; Roberge, 2012). When studying the costs of 
corrosion, it becomes clear that they reach up to 
3–5% from the gross national income in the most 
developed countries in the world (McCafferty, 
2010). The economic aspect, combined with the 
care for environment protection, are among the 
basic reasons for studying the ecological methods 
of corrosion protection. 

There are a number of ways to protect metals 
from corrosion and one of them is related to using 

corrosion inhibitors. These are the substances, 
which, when added in small amounts to a medi-
um, considerably reduce or prevent the reaction 
of the metal to aggressive components in the me-
dium (Popov, 2015). All corrosion inhibitors, as a 
whole, are divided into two groups – organic and 
inorganic. Compounds such as chromates, vana-
dates, molybdates, nitrates, nitrites and sulfates 
are used as inorganic inhibitors. However, despite 
of their proven inhibitory effect on corrosion in a 
number of metals and alloys (Gharbi et al., 2018), 
they are subject to a lot of criticism due to their 
toxicity and their replacement with safe substanc-
es is recommended.

The greater part of the used organic inhibi-
tors, such as mono azo dyes (Al-Juaid, 2007); 
1-pyrrolidine dithio-carbamate (Qafsaoui et al., 
2015); sulfonic acid, sodium cumene sulfonate, 
and sodium alkyl sulfate (Maayta, 2006); 
polymethacrylate (Kalaivani et al., 2013) also pose 
a risk to human health and the environment, and 
therefore, in recent years, researchers’ attention 
has been focused on studying the possibility of us-
ing ecological corrosion inhibitors. These are bio-
degradable, renewable and non-toxic substances, 
acting as inhibitors for various metal materials in 
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corrosive media such as HCl, H2SO4, H3PO4 and 
HNO3. The ecological inhibitors, in their turn, are 
also divided into the same two groups according to 
their chemical composition: organic and inorganic. 
Salts of lanthanides are used as inorganic ecologi-
cal inhibitors, (Arenas et al. 2001; Bethencourt et 
al. 1998; de Damborenea et al. 2014), while organ-
ic inhibitors include amino acids (Li et al. 2011; 
Salghi et al. 1997), biopolymers (Jmiai et al. 2017; 
Malik et al. 2011; Oukhrib et al. 2017; Verma et 
al. 2017), plant extracts (Deyab, 2015; Wisdom, 
2018; Onukwuli et al., 2022; Sharma et al., 2019; 
El-Azaly, 2019) and some organic acids (Wysocka 
et al., 2018; Ibrahimi et al., 2017). 

Among the used organic acids, citric acid is 
indicated as one of the most effective inhibitors 
of corrosion in aluminum and its alloys in alka-
line (Müller, 2004; Brito et al., 2013; Wysocka et 
al., 2017), neutral (pH 8) (Yurt et al., 2005), and 
acidic media (pH 2) (Solmaz et al., 2008). Due to 
the fact that sulfuric acid is one of the most fre-
quently used reagents in technological operations, 
related to pickling and electrochemical etching of 
aluminum and its alloys, of particular interest to 
the industry is the study of the possibility of pre-
venting the destruction and loss of valuable metal 
by using ecological inhibitors such as citric acid. 
The aim of the present study was to investigate 
the possibility of using citric acid as an ecological 
corrosion inhibitor for the EN AW-2024 alumi-
num alloy in the H2SO4 solution. 

MATERIALS AND METHODS

The EN AW-2024 (AlCuMg2) Aluminum 
alloy, composed of (mass%) Cu 3.80–4.90; Fe 
0.50; Mg 1.20–1.80; Mn 0.30–0.90; Si 0.50; Ti 
0.15; Zn 0.25; Cr 0.10 and a residual of Al was 
used for conducting the corrosion measurements. 
The sulfuric and citric acid (Fluka) solutions were 
prepared with double-distilled water.

The electrochemical measurements were con-
ducted by means of a computer-controlled Palm 
Sens work station (Palm Instruments, BV, The 
Netherlands) in the three-electrode cell. The alloy 
under investigation was used as a working elec-
trode, a platinum conductor served as an auxiliary 
electrode, and in the role of a reference electrode, 
a saturated Ag/AgCl electrode was used. All tests 
were performed at room temperature. The work-
ing electrode had an area of 1 cm2, the rest of the 
electrode surface was varnished.

The open circuit potential was measured 
after immersing the working electrode in a 0.5 
М solution of H2SO4 until reaching a stable state 
(600 seconds). Similarly, measurements were car-
ried out in the presence of 0.0025, 0.0050, 0.0075 
and 0.01 mМ citric acid. A chronoamperometric 
measurement was made for 60 seconds. The 
inhibition efficiency (ƞ %) was also calculated 
from the following equation: 

𝜂𝜂𝜂𝜂% =
𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  − 𝐼𝐼𝐼𝐼′𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∙ 100 (1)

where: Icorr and I’corr are the corrosion current 
values in the absence and presence of the 
inhibitor, respectively.

RESULTS AND DISCUSSION

Open circuit potential (EOCP)

Figure 1 presents the potential-time curves, 
which illustrate the change in the surface of the 
oxide layer on the alloy during the test. When 
comparing the curves of the studied aluminum al-
loy, it was found that the behavior of the alloy in 
the presence of 0.5 M H2SO4 differs significantly 
from that after adding citric acid.

When the aluminum alloy is immersed in 
0.5 M H2SO4, the potential value quickly devi-
ates in the negative direction and this continues 
throughout the entire duration of the test, i.e., the 
alloy actively dissolves in the test solution. This 
is probably due to the aggressive sulfate ions in 
the solution, dissolving the surface of the alloy. 
The observed fluctuations in the potential indicate 
instability of the processes, occurring on the sur-
face of the alloy, which is characteristic of pitting 
corrosion. The shape of the potential-time curves 
for the aluminum alloy EN AW 2024 in 0.5 M 
H2SO4 in the presence of 0.0025, 0.0050, 0.0075 
and 0.01 mМ of citric acid show an initial shift of 
the potential in the negative direction (for about 
70–120s). This is possibly related to the rapid dis-
solution of the oxide layer, formed before the im-
mersion into the studied solution, as well as to the 
passive layer, formed during ЕОСР, and/or to the 
dissolution of the metal in sections with structural 
defects in the oxide layer. The value of the ЕОСР 
then shifts in the positive direction and remains 
relatively constant throughout the test. It is ob-
served that at 0.01 mМ citric acid, the value of 
the ЕOCP is by 0.005 V more positive compared to 
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that of the ЕOCP in 0.5 M H2SO4, i.e., as the con-
centration of the citric acid in the H2SO4 solution 
increases, the risk of corrosion decreases due to 
the adsorption of the citric acid on the surface of 
the alloy. 

Chronoamperometric measurement 

The chronoamperometric curves of the EN 
AW 2024 aluminum alloy in 0.5 M H2SO4 in the 
absence of citric acid (Fig. 2a) show fluctuations 
of the current, directly related to the formation 
and destruction of the passive layer. 

These fluctuations of the current are due to 
constantly occurring processes of formation and 

dissolution of defects on the surface of the alloy, 
which indicates its electrochemical instability in 
the studied corrosion medium. Due to the insta-
bility of the passive layer, it is partially destroyed 
over time and anodic oxidation and current in-
crease occur in the corresponding sections. 

After the addition of 0.0025 mM citric acid to 
the studied corrosion medium, a slight decrease of 
the current at the end of the measurement was ob-
served. As the citric acid concentration increases 
form 0.0050 до 0.01 mM, the value of the current 
decreases significantly and the citric acid exhibits 
its inhibition efficiency. The corrosion parameters, 
including the open circuit potential (ЕOCP), corro-
sion current (Icorr), inhibition efficiency (ƞ) and 

Figure 1. Open circuit potential of EN AW 2024 alloy in 0.5 M H2SO4 
in the absence and in the presence of citric acid

Figure 2. Chronoamperometric curves of the EN AW 2024 aluminum alloy 
in 0.5 M H2SO4 in the absence and presence of citric acid
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surface coverage (θ) of the aluminum alloy EN AW 
2024 in 0.5 M H2SO4 in the absence and presence of 
citric acid, are given in Table 1. The obtained data 
illustrate that the magnitude of the corrosion cur-
rent decreases significantly with increasing the cit-
ric acid concentration (1,12 mA cm2 in the absence 
of an inhibitor and 0.04 mA cm2 in the presence of 
0.01 mM citric acid), probably due to the formation 
of a barrier film on the surface of the alloy. At the 
same time, the inhibition efficiency increases along 
with the citric acid concentration and reaches the 
maximum of 96.42% at 0.01 mM citric acid.

Since the magnitude of the current is propor-
tional to the corrosion rate, it follows from the 
values of the corrosion parameters in Table 1 that 
the corrosion rate decreases with increasing the 
citric acid concentration. 

The decrease in the corrosion rate is due to the 
strong complex-forming properties of the Al3+ ions 
and the formation of chelate complexes (Hidber et 
al 1996, Katoh et al., 1968, Powell et al., 1996]).

The inhibitory mechanism of the citric acid is 
probably due to its adsorption on the metal sur-
face (Solmaz., 2008) and the chemical reaction 
between the citric acid and the Al3+ ions, resulting 
in formation of a tetrahedral complex compound. 
The chelate complex is thermodynamically sta-
ble, and the aluminum cation in it is much less 
reactive than the free Al3+ cation, which prevents 
the destruction of the metal. 

CONCLUSIONS

The inhibition efficiency of citric acid on the 
corrosion of the aluminum alloy EN AW-2024 in a 
sulfuric acid solution was studied. The inhibition 
efficiency increases along with the citric acid con-
centration,  while the magnitude of the corrosion 
current decreases. The obtained data give the op-
portunity for successful use of citric acid as an 
eco-friendly corrosion inhibitor for the EN AW-
2011 aluminum alloy in 0.5 M H2SO4. 
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