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ABSTRACT

The constant discharge of large quantities of toxic substances due to human activities has led to a global envi-
ronmental issue. Numerous industrial sectors’ effluents, which include coal-based power plants, mineral extrac-
tion activities, electroplating processes, as well as battery manufacturing, release metallic ions towards different
ecosystems, such as Cadmium (Cd), Mercury (Hg), and Chromium (Cr). Heavy metals pose a significant danger
to living organisms, humans, and environments because of their properties, mainly severe toxicity, and strong ac-
cumulation ability. Metallic ions are not subject to breakdown towards final components when contrasted with or-
ganic contaminants, which are significantly impacted by biochemical and chemical decomposition. Consequently,
eliminating these elements has been regarded as a significant task within the water treatment sector. The purpose
of this article is to analyze the literature related to heavy metals in terms of different issues. The heavy metals
expression is explained. The natural sources and human activities responsible for releasing metallic ions into the
environment are comprehensively discussed. In addition, heavy metals toxicity and potential risks to humans and
different ecosystems are included. Various approaches for removing heavy metals from industrial wastewater,
along with their associated advantages and drawbacks, are further evaluated.

Keywords: heavy metals, toxicity, water contamination, maximum contamination level, treatment, wastewater,
health risks, environment.

INTRODUCTION

Water is an essential source to human beings
since it is necessary for several areas of life’s ex-
istence, including drinking, healthcare, agricul-
ture, economics, as well as industry. Howev-
er, millions of individuals across the globe strug-
gle with a lack of safe drinkable water [Bhatnagar
& Sillanpad, 2010; Taka et al., 2017]. Human
population increase, global warming, and water
resources contamination in different ways: drain-
age, industrial discharges, chemical products, res-
idential wastes, fertilizers, and herbicides, among
many other factors responsible for such a drink-
ing water deficiency [Mhlanga et al., 2007; Amin
et al., 2014]. It was estimated that the number of

individuals still lacking access to clean potable
water is about one billion globally. Meanwhile,
an additional 2.5 billion individuals still need
water for adequate hygiene [Shahadat & Isamil,
2018]. Therefore, water treatment and proper san-
itation are among the most critical global prob-
lems [Taka et al., 2017]. The primary strategy for
achieving effective water use and addressing the
scarcity of available water resources appears to
be the treatment of wastewater effluents [Ahmed
et al., 2011]. In particular, freshwater makes up
for less than 1% of the entire accessible water on
the planet’s surface [Han et al., 2009].

The primary causes of water contamination are
insufficiently processed sanitation water, hazard-
ous industrial pollutants, industrial wastewater, as
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well as runoff from farming areas [Bhatnagar &
Sillanpdd, 2010]. Among them, industrial waste-
water is considered a main contributor to water
contamination [Nabi et al., 2011]. Industrial ef-
fluents typically have a higher concentration of
pollutants than other wastewater kinds, such as
heavy metals and phenolic compounds. The con-
taminants listed are classified as extremely poi-
sonous and barely degradable substances [Muta-
mim et al., 2012; Zhang et al., 2014]. Even at low
levels, releasing such effluents towards lakes and
rivers presents a serious danger to the water envi-
ronment and its living things, causing major dis-
ruptions and significant harm [Shahadat & Isamil,
2018].

The amounts of metallic ions in industrial ef-
fluents have increased with the development of
the manufacturing sectors and human-related ac-
tivities, including the plating process, electroly-
sis, battery industry, pesticides and fertilizers,
mining operations, metal purification methods, as
well as the paper industry [Manzoor et al., 2013;
Mubarak et al., 2014; Clemens & Ma, 2016]. In
addition to contaminating surface water resourc-
es (e.g., rivers and lakes), metallic ions could
reach underground water in very small quantities
through their leaking with rain and snow, causing
pollution as well [Kilic et al., 2013; Ojedokun &

Bello, 2016]. Several metals, such as lead (Pb),
mercury (Hg), and nickel (Ni), are extremely
harmful to both humans and ecosystems [Mee-
na et al., 2008; Ojedokun & Bello, 2016; Alal-
wan et al., 2020]. Heavy metals are a significant
component of soil and water contaminants and
cause toxicity [Okeimen & Onyenkpa, 2000].
Such metals exist in different ecosystems, includ-
ing soil and water, and could contaminate food
and drinkable water [Ojedokun & Bello, 2016].
Therefore, big concerns have been raised glob-
ally about water contamination brought on by the
discharge of heavy metals into the environment
[Abbas et al., 2016].

TERMINOLOGY OF HEAVY METALS

Heavy metals commonly refer to a group
of comparatively dense and harmful elements,
even in very low concentrations [Duruibe et al.,
2007; Appenroth, 2010]. Such a group comprises
metals and metalloids, which possess densities
higher than 5 g cm™ and atomic masses varying
from roughly 60 to 200 [Srivastava & Majum-
der, 2008; Barakat, 2011; Burakov et al., 2018].
Arsenic (As), chromium (Cr), cadmium (Cd) and
copper (Cu) are a few instances of heavy metals

N Classification A Classification B Category examples

1 Non-essential metals Extremely toxic heavy metals  As, Cd, Hg, Pb, Se, Sn, Tl

2 Precious heavy metals Au, Ag, Pd, Pt, Ru

3 Radionuclides metals Am, Pr,Ra, Th, U

4  Essential metals Micronutrient metals Co, Cr, Cu, Fe, Mn, Mo, Ni, Zn

5 Macronutrient metals Ca, K, Mg

1A 8A
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Cs|Ba| |Hr|Ta W |Re | oOs|ir Pt Au|Hg|Ti|Pb|Bi | Po|At|Rn

Fr |[Ra| | Rf|Db Sg|Bh| Hs| Mt | Ds|Rg|Cn|Uut| FI |Uup| Lv |Uus Uuo
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Micronutrient

D Macronutrient

Figure 1. Classification of heavy metals into different groups, their representative
examples, and their distribution in the periodic table
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present in different ecosystems and wastewater,
with levels varying typically from ng-L"' tomg-L"!
[Kim et al., 2013; Singh et al., 2015; Fu et al.,
2017]. Such metals are non-biodegradable ele-
ments compared to other pollutants and are typi-
cally classified into two categories. Poisonous
metals like As and Pb make up the first category,
which are entirely unfavourable substances, have
no biochemical advantages to human beings, and
are hazardous regardless of their levels. The sec-
ond category consists of important metals such as
manganese (Mn) and zinc (Zn), which are ben-
eficial to humans biologically and favourable in
small amounts. However, these metals are consid-
ered dangerous when existing in large quantities
[Chen, 2012]. Similarly, heavy metals are divided
into non-essential and essential elements of living
things in terms of their functions during biologi-
cal activities. Essential elements are necessary for
living things and usually in very small amounts,
while there is no proven biochemical function for
non-essential elements to living beings. Zn, Mn,
and Fe are essential elements, whereas Pb and
Cd are considered physiologically unnecessary
and are hazardous metals [Tiirkmen et al., 2009;
Jovic et al., 2012; Ali et al., 2019]. In contrast,
others divided heavy metals into four more spe-
cific classes: toxic, nutrient, radionuclides, and
precious group [Alalwan et al., 2020; Singh &
Ambawat, 2020]. Figure 1 displays the categori-
zation of heavy metals into various groups, along
with some of their illustrative instances and loca-
tions within the periodic table.

HEAVY METALS
CONTAMINATION LEVELS

Heavy metals being released into ecosystems
have been significantly impacted by recent fast
industrialization [Fu & Wang, 2011]. Such manu-
facturing activities include but are not limited to
metal processing, the battery industry, paper pro-
duction, the fabric and dyeing sector, electrolysis
processes, and mining operations [Qasem et al.,
2021]. Due to the activities of the sectors men-
tioned above, enormous quantities of effluent
containing metallic ions are released continuous-
ly toward the ecosystems [O’Connell et al., 2008;
Zhao et al., 2016; Jawed et al., 2020]. Because
metallic 1ons are harmful, their existence in envi-
ronments is a significant issue [Khan et al., 2004;
Igwe & Abia, 2006]. Such metals are extremely

dangerous elements even when present in low
quantities due to their significant cancer-causing
potential along with their accumulation capability
[Nguyen et al., 2013; Zou et al., 2016; Agarwal
& Singh, 2017]. The reason behind accumulation
within various organisms is mainly because of
their not degradable feature [El-Sherifet al., 2013;
Abbas et al., 2016; He et al., 2020]. Additionally,
heavy metals are highly soluble within aqueous
environments, making it simple for various spe-
cies to absorb. Therefore, when such metals get
into the food chains, these elements can accumu-
late in large amounts, causing severe consequenc-
es for living things [Akpor et al., 2014; Harvey et
al., 2015; Bhateria & Singh, 2019]. Heavy metals
also pose a risk to ecosystems regarding waste is-
sues due primarily to their features: high stability
with a lack of degradability, even using biologi-
cal decomposition [Ahluwalia & Goyal, 2007,
Yang et al., 2019]. As a result, this would not be
strange that water contamination with metallic
ions is getting serious attention globally owing to
its significant hazards for various species along
with negative ecosystem effects [Kim et al., 2013;
Fuetal., 2017; Ali et al., 2019]. Heavy metal pol-
lution can cause significant harm to various liv-
ing things, even in very low amounts. Therefore,
heavy metal contaminants must be removed from
polluted effluents [Amin et al., 2014]. In order to
accomplish such an objective, different govern-
mental agencies and research centres have placed
guidelines and set targeted levels for heavy met-
als within drinkable water. The mentioned levels,
regularly revised, represent the highest permis-
sible amounts of pollutants, also called maximum
contamination levels (MCL). Table 1 presents the
targeted levels (MCL) of various heavy metals
set by different agencies and compares and/or up-
dates their corresponding values over time.

HEAVY METALS RESOURCES

Heavy metals are primarily released into eco-
systems via two different paths: natural resources
and various activities performed by humans (also
referred to as anthropogenic activities). Volcanic
explosions, soil deterioration (e.g., surface erosion),
and disintegrating rocks are natural sources for re-
leasing heavy metals [Burakov et al., 2018; Singh
et al., 2021]. Sediments of rivers and pollution of
the air have also been identified to be major con-
tributors to the release of toxic heavy metals within
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Table 1. MCL values that established by various governmental agencies and environmental research centers

N Pollutant M. W. ol US EPA® California Standard® | Canadian Guide® | WHO Guide®
ass
metal g mol! MCL? Date MCL? Date MCL=? Date MCL? | Date
_ 1 Fﬁtggg”’ 29 | 2021
1 | Aluminum 1 o6 98 | Metal | 0.05-0.2 | anuary - -
(A1) 1991 0o | September | 2021
: 1994 :
2 A”Eg‘;‘)’”y 121.76 | Metalloid | 0.006 | July 1992 | 0.006 - 0.006 | 1997 | 0.02 | 2003
0.05 |June1977 | 0.05 1977
3 Arsenic (AS) 74.92 Metalloid 0.01 January 0.01 November 0.01 2006 0.01 2011
: 2006 : 2008
1.0 June 1977
4 | Barium (Ba) | 137.33 | Metal January 1.0 1977 20 | 2020 | 07 | 2003
2.0
1991
Beryllium September
5 Be) 9.01 Metal 0.004 | July 1992 | 0.004 904 - - - -
6 | Boron(B) | 10.81 | Metalloid - - - - 50 | 1990 | 24 | 2009
Codmi 0.01 | June1977 | 0.01 1977
aamium
7 11241 | Metal 0.007 | 2020 | 0.003 | 2011
(Cd) 0.005 January 0.005 September
1991 1994
Chromi 0.05 June 1977
8 romium | 5199 | Metal January | 0.05 1977 005 | 2018 | 0.05 | 1993
(Cr) 0.1
1991
1.3 |June1991| 1.0 1977
9 | Copper (Cu) | 63.55 | Metal December | 2.0 | 2019 | 20 | 2003
0.25¢° - 13
1995
10 Iron (Fe) 55.85 Metal - - - - - - - 1f
0.05 | June1977 | 0.05 1977
11 | Lead (Pb) | 207.2 | Metal 0.015 | June 1991 | 0.015 De;’gg;ber 0.005 | 2019 | 0.01 | 2011
0.006° - - -
1 | Manganese | 5,04 | petal - - - - 0.12 | 2019 2
(Mn)
0.002 | June 1977 | 0.002 1977
13| Mereuy | 56059 | Metal 0.001 | 1986 | 0.006 | 2004
(Hg) 0.00003 - - -
14 | Nickel (Ni) | 5869 | Metal 0.2° - 04 | Sepember| - 0.07 | 2004
i 0.0075 1977
15 | Radum | 50603 | Metal | 0.0075 | June 1977 - - - -
(Ra) 0.0075 | June 2006
Selon N 0.01 | June1977 | 0.01 1977
16 e(grél;,lm 78.96 mggl 005 | January | oo | Septemper | 0.05 | 2014 | 004 | 2010
: 1991 ' 1994
17 | Silver (Ag) | 107.87 Metal - - - - - - - 3f
Thallium September
18 ) 204.38 | Metal 0.002 | July 1992 | 0.002 904 - - - -
0.03 December 003 January
19 | Uranium (U) | 238.03 Metal ) 2000 ) 1989 0.02 2019 0.03 | 2003
- - 0.03 | June 2006
20 | Zzinc(zn) | 65.38 | Metal 0.8° - - - - - - -

Note: (a) MCL values are in units of mg-L"'; (b) MCL values of EPA and California guidelines were obtained from
(Maximum contaminant levels, 2018); (¢) MCL values of the Canadian guide were obtained from (Guidelines for
Canadian drinking water quality, 2022); (d) MCL values of the World Health Organization were obtained from
(Guidelines for drinking water quality, 2011); (e¢) The mentioned MCL values were taken from various references
(Barakat, 2011; Nguyen et al., 2013; Burakov et al., 2018); (f) No recommended health-related standard (Guidelines
for drinking water quality, 2011); (1) Fe staining occurs at amounts greater than 0.3 mg-L! in clothing and water
fittings; (2) Mn levels exceeding 0.1 mg-L-' impart an undesirable flavour to drinking water and stain both laundry
and sanitation appliances; (3) Ag amounts up to 0.1 mg-L" are possibly permitted without threatening public safety.
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coastal aquatic ecosystems [Krishnani et al., 2004].
Human-caused activities involve many manufac-
turing processes like mining-related industries,
chip manufacturing, metal coating, battery manu-
facturing, pigments, drainage, garbage dumps, and
agriculture-related activities [Reed et al., 1994;
McLaughlin et al., 1996; Krishnani et al., 2004].
As a result, heavy metals have become among the
most present poisonous substances within aquatic
and terrestrial environments [Salem et al., 2000;
Mohammed et al., 2011; Burakov et al., 2018].

In terms of As, many human and natural ac-
tivities cause contamination of Arsenic water
bodies [Sarkar & Paul, 2016]. As is discharged
to available groundwater due to natural forma-
tions within rocks sediments, underground water,
and worn volcano rocks [Abbas et al., 2016]. As
is also released into aquatic environments by hu-
man-caused processes such as mining operations,
mineral processing, smelting, thermal generation
units, chemical pesticides, and preservation of
wooden materials [Harvey et al., 2002; Srivastava
et al., 2021]. As is found primarily in two forms:
As (IIT) and As (V) [Igwe & Abia, 2006]. In eco-
systems, however, it can be found in four differ-
ent forms: arsine (AsH,), metalloid form (As"),
organic, and inorganic form (As** and As*") [Shah
et al., 2010; Sattar et al., 2016]. According to the
National Arsenic Occurrence Survey (NAOS),
As-related substances are found in about 10%
of surface water resources such as rivers and
lakes and approximately 21% of underground
water available resources [Abbas et al., 2016].

Regarding Cd, despite it being uncommon
metal, it is found naturally within sediments, wa-
ter, and minerals such as carbonate compounds
[Balali-Mood et al., 2021]. The heavy metal Cd
and its ions are highly soluble in water. Thus, such
metal and its ions can move quickly via soil and
water resources and have a bioaccumulation ten-
dency [Qi et al., 2018]. Rising Cd levels could be
caused naturally as a result of volcanic activities
as well as different human activities like fertilizer
industries, power generation, wastewater drain-
age, waste products, mining, and battery indus-
tries, electroplating, and dyes industry [Suksabye
et al., 2016; Dou et al., 2017; Khan et al., 2017].
However, the steel and plastics sectors are the two
major uses of Cd metal. Industries involving met-
al plating, as well as coating processes, are two
additional contributors to Cd pollution. Addition-
ally, Cd is utilized in solar cells as the Cd-Te type
and batteries as the Ni-Cd type [Li et al., 2004].

In terms of Cobalt (Co) metal, it represents
one of the most uncommon metals on the planet’s
surface. Co is a tough, shiny silvery substance
with an appealing look and rust resilience that
shares many chemical characteristics with other
elements like Ni and Fe [Barceloux?, 1999; Hal-
dar, 2017]. Co substances are found in two oxi-
dation forms: (Co*") and (Co*"); the first oxida-
tion state is more readily accessible economically
and ecologically [Barceloux?, 1999; Paustenbach
et al., 2013]. The hard metal sector uses nearly
15% of the Co produced globally to manufacture
hard metals [Klasson et al., 2016]. Hard metals
are widely produced using three main compo-
nents: Co, tungsten, and tungsten carbide. The
main component of the metal combination is
tungsten carbide, which makes up about 90%
of it. Co makes up the remaining 10% and is a
binding material [Lison et al., 1996]. Co is also
present in and released from several electrical and
electronic equipment while recycling, frequently
in amounts well above the local regulatory level
[Nnorom & Osibanjo, 2009; Lim & Schoenung,
2010]. In addition, Co is frequently used as a dry-
ing agent in some paints and inks, as well as in
Co blue-coloured pigments for decorating ceram-
ic pots [Jensen & Tuchsen, 1990; Christensen &
Poulsen, 1994].

In terms of Cr metal, it represents the sixth
most common transition metal and one of the
most naturally existing elements on the planet’s
surface. It can exist in natural formations associ-
ated with other different elements like ferric chro-
mite (FeCr,0,) [Mohan & Pittman Jr, 2006]. Cr
is a hazardous heavy metal occurring naturally
in various valence states varying from -2 to 6+
[Tchounwou et al., 2012; Shekhawat et al., 2015].
However, Cr (VI) and Cr (III) are the two most
stable forms that pose significant risks to ecosys-
tems [Yu et al., 2000; Saifuddin M, & Kumaran,
2005; Shekhawat et al., 2015]. Cr is typically re-
leased into water resources via many industries
such as dyes production for painting and wood
protection materials, the textile industry, electrol-
ysis, tannery, metal coating, and chromate synthe-
sis process [Faisal & Hasnain, 2004; Thsanullah et
al., 2016; Kazakis et al., 2018].

Regarding Cu metal, it is an abundant min-
eral that may exist within a wide range of rock
types at trace levels [Flemming & Trevors, 1989].
It also presents inside the human body in sev-
eral cells and organs at trace levels, where the
liver has its most considerable amount [ Turnlund,
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1998]. Natural water typically contains Cu con-
centrations ranging between 4 and 10 pg-L';
its majority is linked with organic molecules,
while its average level is about 50 ppm in soils
[Gaetke & Chow, 2003]. Numerous manufactur-
ing and agricultural processes require Cu sub-
stances, which could then discharge to ecosys-
tems and finish in different water systems [Poole,
2017]. Such activities increase concentration
above normal levels, resulting in ecosystems’ Cu-
contamination. Mining activities, tanning, metal
plating and electronics manufacturing are the
major sources of Cu release to the environment
[Ahluwalia & Goyal, 2007; Igwe & Abia, 2006;
Toth et al., 2016].

In terms of heavy metal Hg, it exists natural-
ly, mostly in two forms: element and sulfide; its
concentration is about 0.5 ppm on the earth [Ber-
nhoft, 2012]. Additionally, Hg can be found in
the environment due to the natural degassing
of the earth’s rocks, volcanic emissions, and
oceans evaporating [Langford & Ferner, 1999].
Mercury can be found in various forms; however,
such forms are categorized into two main groups:
organic and inorganic mercury. While the inor-
ganic group involves Hg’s metallic state, its va-
pour state, and mercuric and mercurous salts, the
organic class contains different formations that
consist of Hg linked to an organic structure and/
or group (e.g., a methyl group) [Langford, & Fern-
er, 1999; Bernhoft, 2012; Li et al., 2017]. Hg can
accumulate within sediments, aquatic resources,
and the topsoil surfaces when released from nat-
ural formations, fossil fuels, and ores, as well as
emitted from industrial sources [Bonzongo et al.,
1996; Liu et al., 2016]. Anthropogenic causes of
Hg levels in the environment include coal-based
generation plants, mining activities, the metal-
lurgical industry, chemical production, and metal
coating [Boylan et al., 2003; Igwe & Abia, 2006;
Streets et al., 2017]. Hg substances possess nu-
merous uses in mineral extraction processes, in-
cluding gold mining. In addition, fluorescent light
lamps are made with Hg in lighting manufacturing
plants. Moreover, plants can be protected against
diseases using fungicides such as methyl-Hg and
ethyl-Hg [Balali-Mood et al., 2021].

Regarding Ni metal, it counts as the twenty-
fourth-most common mineral on the earth; it is
considered one of the trace metals that poses a
major danger to public health and ecology [Duda-
Chodak & Blaszczyk, 2008; Sule et al., 2020]. Its
concentration is estimated at 50 ppm within the
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earth’s crust layers [Barceloux®, 1999]. It is silver-
white in appearance, with various valence states
ranging between -1 and +4 [Barceloux®, 1999;
Denkhaus & Salnikow, 2002]. However, it was
demonstrated that Ni*? is the most widely spread
state in biosystems among its different valent
states [Denkhaus & Salnikow, 2002; Valko et al.,
2005]. The Ni majority exists as hydroxides in a
solid phase for pH values higher than 6.7, while all
Ni complexes have moderate solubility when pH
values are lower than 6.5 [Valko et al., 2005]. The
Ni concentrations within soils are typically below
100 mg-kg!, while its concentrations are usually
less than 0.005 mg-kg' in surface water [Mcll-
veen & Negusanti, 1994]. In freshwater, Ni lev-
els, which may be varied between 1 and 10 pg-L",
could be much higher and range between a few
hundred and 1000 pg-L! in some seriously pol-
luted waters [Pane et al., 2003]. The principal
manufacturing processes that contribute to Ni
contamination in the environment are those used
to make batteries, certain alloy manufactur-
ing, the printing industry, metal coating, smelt-
ing applications, waste incinerators, fossil fuel
combustion, including power generation and car
emissions [Barcan & Kovnatsky, 1998; Yang et
al., 2009; Hassan et al., 2019]. Such industries
employ different Ni-related substances, includ-
ing nickel acetate (Ni(CH,CO,),"4H,0), nickel
oxide (NiO), nickel hydroxide (Ni(OH),), and
nickel carbonate (Ni,CO,(OH)(H,0),) [Cempel
& Nikel, 2006]. The mentioned substances even-
tually accumulate in different ecosystems (water
resources and soils), and therefore they could be
readily absorbed by the plants. As a result, these
compounds may become part of the food chain
and harm living things [Cempel & Nikel, 2006;
Sreekanth et al., 2013].

In terms of Pb metal, it is a non-degradable
chemical element considered the most danger-
ous substance within the heavy metals group
in ecosystems [Ara & Usmani, 2015; Abbas et
al., 2016; Charkiewicz & Backstrand, 2020].
It is a bluish-grayish-coloured element that oc-
curs naturally in trace quantities on the planet’s
ground [Tchounwou et al., 2012]. Pb usage
could be traced to the early centuries because of
its significant physicochemical characteristics
[Mahaffey, 1990]. Such remarkable features, in-
cluding softness, flexibility, plasticity, weak con-
ductivity, and corrosion resilience, pose a chal-
lenge to abandoning this substance [Ara & Us-
mani, 2015; Saeed et al., 2017]. Because of its
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non-degradable nature and continuing usage, Pb
accumulates in the ecosystems; its concentrations
increase and thus, the incidence of linked health
problems increases dramatically [Ara & Usmani,
2015; Saeed et al., 2017; Irawati et al., 2022]. Pb
exists in various forms on the earth, including me-
tallic, Pb salts, and Pb-organic compounds [Assi
et al., 2016]. Pb is employed for a wide variety
of applications nowadays and has a long history
of industrial usage. It could be estimated that Pb
applications are found in about 900 various in-
dustries, some of which include metal process-
ing, mining, and battery industries [Karrari et al.,
2012]. In the environment, the major sources of
Pb release include electroplating, smelting and its
related combustion, painting and dyes manufac-
turing, the plastics industry, fabrics, yachts manu-
facturing, printing industry, Pb-contained tubes,
and preservative materials [Ara & Usmani, 2015;
Ince et al., 2017]. In the US alone, it was reported
that 1.52 million tons of Pb were utilized for dif-
ferent commercial uses in 2004. The manufacture
of Pb-based batteries represented 83% of the total
consumption. The remainder was used in vari-
ous goods, including Pb sheets, Pb oxides applied
in painting, glass industry, dyes, and chemicals

manufacturing, and Pb for munitions production,
with values of 1.7%, 2.6%, and 3.5%, respectively
[Tchounwou et al., 2012]. The ceramics industry,
cables and steel recovery, cathode radiation tubes
(high-vacuum tubes), finishing equipment, low-
melting alloy manufacturing (solders), and flash-
ing parts are also considered primary sources for
Pb releasing into ecosystems [Adiana et al., 2017;
Rosca et al., 2019]. In addition, Pb is currently
employed in bearing manufacture, aviation fuel,
cable covering, nuclear reactor shielding, and ra-
dioactive substances vessel manufacturing [Char-
kiewicz & Backstrand, 2020]. More importantly,
the main sources of environmentally harmful Pb
included the substance Pb(C,H,), widely used as
an additive material for vehicle fuel and Pb-based
home painting till recently [Spivey, 2007; Ara &
Usmani, 2015; Charkiewicz & Backstrand, 2020].
Pb-water contamination and its release through
water or drinking water pipeline corrosion have
lately caused significant concerns across the globe
[Deshommes et al., 2016; Masters et al., 2016;
Abokifa & Biswas, 2017]. Therefore, drinking
water which contains significant Pb quantities is
considered the main contributor to the presence of
Pb inside human bodies [Abbas et al., 2016].

Table 2. Characteristics of heavy metals, their oxidation states, and human activities responsible for their

environmental discharge

N Metal type | Oxidation states | Stable form Metal release resources to the environment

1 | Arsenic (As) AS® to As*S As (lll), As (V) Mlnlng operatlor)s, mlner'all processing, smelting, thermal generation
units, and chemical pesticides.

Cadmium Fertilizer industries, power generation, wastewater drainage, waste
2 Cd" to Cd*? Cd (1) products, mining, battery industries, electroplating, dyes industry,
(Cd) . :
metal plating, and the steel and plastics sectors.
Chromium cr (I Electrolysis, tannery, metal coating, dyes production for painting,
3 Cr2to Cr® ’ wood protection materials, the textile industry, and chromate synthesis
(Cr) Cr (VI)
process.
: Co (I, Hard metal sector, electrical and electronic equipment, drying agent in
1 +4

4| Cobalt (Co) Co'to Co Co (Il) some paints and inks, and Co blue-coloured pigments.

5 | Copper (Cu) Cu?to Cu* Cu (I), Cu (Il) | Mining activities, tanning, metal plating and electronics manufacturing.
Metal processing, mining, battery industry, electroplating, smelting,
painting and dyes manufacturing, the plastics industry, fabrics, yachts

§ Pb (I1), manufacturing, printing industry, Pb-contained tubes, preservative
4 +4

6 Lead (Pb) Pb*to Pb Pb (1V) materials, the ceramics industry, cables and steel recovery, cathode
radiation tubes, bearing manufacture, aviation fuel, nuclear reactor
shielding, and radioactive substances vessel manufacturing.

Mercur Coal-based generation plants, mining activities, the metallurgical

7 (Hg) y Hg? to Hg*? Hg (1), Hg (Il) | industry, chemical production, metal coating, mineral extraction

9 processes, fluorescent light lamps, and fungicides.
Batteries, certain alloy manufacturing, the printing industry, metal

8 Nickel (Ni) Ni2 to Ni** Ni (11) coating, smelting applications, waste incinerators, and fossil fuel
combustion, including power generation and car emissions.
Brass coating, brass and Zn metals-related working activities,

9 Zinc (Zn) Zn? to Zn*? Zn () maqufacturlpg of wood-related pu!p, stee_l vyork_ activities related
to pipe coating, paper manufacturing, painting industry, dyes
manufacturing, and pharmaceutical and cosmetic products.
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Regarding Zn metal, it represents one of
the commonly found transition elements on the
planet’s surface and a necessary minor element
to nearly every living thing [Vallee & Falchuk,
1993; Roohani et al., 2013; Lee, 2018]. It is a blu-
ish-white, fragile, shiny metal with a solid state
at ambient temperature. It is typically known as
a mildly reactive metal regarding its reaction
with metals and O, and easily becomes mould-
able and flexible once heated to higher than 110
°C [Wuana & Okieimen, 2011]. Zn is a naturally
existing metal in the form of a sphalerite (ZnS)
material with five isotopes, *Zn being the most
commonly abundant isotope among them [Broad-
ley et al., 2007; Audi et al., 2017]. Zn and mag-
nesium (Mg) share many features, including va-
lence state (+2) and size, making them chemically
comparable elements [Kaur & Garg, 2021]. It is
an essential molecular element found in a large
number of protein molecules (zinc-finger), which
perform a variety of roles [Berg & Shi, 1996]. It is
a critical element of numerous protein molecules
and functions in over 300 enzymes as a catalyst
and/or co-enzyme [Rahman & Karim, 2018].
Zn*" ions possess strong bond affinities with other
elements, including N, O, and S of amino acids
within different enzymes and/or proteins such
as histidine, cysteine, and peptide [Leuci et al.,
2020]. Zn is essential for the regulation of nu-
merous metabolisms and physiological activities
within biological tissues. On the other hand, ex-
cessive Zn levels have adverse effects on health
[Abbas et al., 2016]. The commercial uses for Zn
include brass coating, brass and Zn metals-related
working activities, manufacturing of wood-relat-
ed pulp, steel work activities related to pipe coat-
ing, paper manufacturing, painting industry, dyes
manufacturing, and pharmaceutical and cosmetic
products [Volesky & Schiewer, 2002; Deliyanni
et al., 2007; Toéth et al., 2016]. Zinc enters eco-
systems due to silt remobilization, farming-relat-
ed practices, subsurface water infiltration, and a
mix of the above causes [Deliyanni et al., 2007].
Heavy metals’ properties, valence states and pri-
mary sources of release into the environment are
summarized in Table 2.

METALLIC IONS TOXICITY

Massive amounts of dangerous metallic
ions are discharged toward ecosystems by in-
dustrial wastewater in various sectors, including
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electrolysis and electroplating processes, metals-
related industries, and dyes manufacturing. The
release of these dangerous elements poses a big
threat to human health, living things, and ecosys-
tems [Ahluwalia & Goyal, 2007]. Heavy metals
tend to cause genotoxic implications, immediate
as well as long-lasting toxic consequences, devel-
opment and generation toxicity impacts, and can-
cer-causing capability on living beings [Villaes-
cusa & Bollinger, 2008; Zhitkovich, 2011; Fu et
al., 2017]. Once metallic ions are present in suffi-
cient quantities, they become hazardous for living
beings in their environment. Nonetheless, several
heavy metals, such as Cd and Ag, are highly poi-
sonous, even in small quantities [Igwe & Abia,
2006]. Of various heavy metals, Pb and Hg are
regarded to be the most hazardous elements due
to their major ecological consequences [ Volesky,
1994]. Meanwhile, Cd and Pb are considered ex-
tremely harmful to the Neural system, while Cr,
Cu, and As are regarded as harmful metallic ele-
ments as well [Puranik & Paknikar, 1997]. Metal-
lic ions could cause harm to physiological bodily
functions forever, cause physical discomfort, and
even result in possibly life-threatening illness
[Malik, 2004; Barakat, 2011]. The adverse health
effects of various heavy metals on human beings
are explained comprehensively as follows.

In terms of As, the intestinal tract is the main
route of As uptake. Additional pathways include
As contact with the skin along with As inhaling.
After being distributed to numerous bodily sys-
tems and tissues, such as the musculature, brain,
kidneys, and lungs, As is converted into two dif-
ferent acids: Methylarsinic acid as well as Caco-
dylic acid (dimethyl arsinic), with the second type
constituting the majority of As’s elimination in
the urine [Del Razo et al., 1997; Ratnaike, 2003].
As also attacks the skin, resulting in its damage
and leading to develop skin cancer during its se-
vere stages [Igwe & Abia, 2006]. Both acute and
persistent As Poisoning has been associated with
the malfunction of many essential enzymes. As
works to prevent the function of enzymes by in-
hibiting their sulthydryl groups, causing malfunc-
tion in enzymes’ roles [Balali-Mood et al., 2021].
In addition, As metal causes capillary endothelial
deterioration, causing an increase in arterial per-
meation, resulting in dilatation and circulation
failure [Jolliffe et al., 1991]. Most people who
have been subjected to As exposure in potable
water experienced cancer-related issues. The ill-
nesses that were observed in individuals who
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consume water-containing As include diabetes,
arterial illnesses, skin-related and renal cancers,
along with different interior malignancies [Ng,
2005; Sharma & Sohn, 2009].

Regarding Cd, it is a toxic element regarded as
one of the leading hazardous contaminants in water
[Abbas et al., 2016]. Cd metal accumulates mainly
in the human kidneys, with a comparatively lengthy
half-life of 10 to 35 years [Arias et al., 2002; Al-
Khaldi et al., 2015]. Kidneys are the primary organ
affected by cadmium poisoning as a water con-
taminant. Cd accumulation also impacts the bones
and promotes cancer at its high levels. However,
the most serious kind of Cd exposure seems to be
intense bone pain which is known as “itai-itai” ill-
ness. In addition, Cd has been linked to liver dis-
ease and high blood pressure [Kasuya et al., 1992;
Yasuda et al., 1995; Ahluwalia, & Goyal, 2007].
Moreover, Cd in polluted water may interfere with
vital bodily functions and cause short-term and/or
long-lasting issues [Jiang et al., 2015; Richter et
al., 2017].

In terms of Co metal, it primarily targets the
pulmonary system and skin among different or-
gans [Leyssens et al., 2017]. There are three as-
pects related to inhaling the dust of Co element:
work activities-related asthma, hypersensitivity
lung disease, and inflammatory lungs associated
with and without massive cells [Bezerra et al.,
2009; Moreira et al., 2010]. During the initial ex-
posure period, hypersensitivity lung disease typi-
cally develops as the initial inflammatory stage
of fibrosis; however, after prolonged contact, it
could progress to permanent fibrosis [Gotway
et al., 2002; Dunlop et al., 2005; Enriquez et al.,
2007]. Inflammatory lungs associated with mas-
sive cells involve various symptoms such as a
decrease in weight, exhaustion, breathlessness
with exercise, and coughing [Choi et al., 2005;
Enriquez et al., 2007]. Of various skin disorders,
contact allergic dermatitis is the most frequent
form of workplace skin illness. As Co metal is
one of the common substance allergens, Co, Cr,
and Ni, in workplaces, interaction with such met-
al is the primary cause of the mentioned illness
[Barceloux®, 1999]. The danger of lung cancer
associated with Co dust exposure has been taken
into account. Nevertheless, it is clear that Co is
not the primary cause of such cancer type; rather,
the mixture of Co and tungsten carbide is regard-
ed as a carcinogenic substance [Wild et al., 2009].

Regarding Cr metal, Cr (III) is a vital compo-
nent of the human body, and it is far less harmful

than the form of Cr (VI) [Atieh et al., 2010]. Cr
(IT) is a stationary ion form, but Cr (VI) is eas-
ily transported via water and soils and acts as
a powerful oxidant that could also be absorbed
by the body’s skin [Park & Jung, 2001]. On the
other hand, Cr (VI) is highly poisonous and can
result in significant diarrhea, vomiting, lung con-
gestion, as well as damage to the liver and renal
system [Mohan et al., 2006; Fang et al., 2007; Hu
et al., 2009]. In the environment, Cr-contained
substances are considered nephrotoxic with a
high carcinogenicity rate [Chen & Hao, 1998].
By bioaccumulating within the human parts, Cr
is capable of causing several illnesses. Such con-
ditions include cutaneous, neurological, and gas-
trointestinal tract diseases, as well as the emer-
gence of various malignancies; cancers in the
lungs, pharynx, bladder, and thyroid [Fang et al.,
2014]. In addition, chromate (CrO,?) exposure is
highly concerning for many reasons, including its
poisonous material with various effects such as
mutagenicity, carcinogenicity, and teratogenicity
[Ilgwe & Abia, 2006; Qureshi & Shakoori, 1998;
Cheng et al., 1998].

In terms of Cu metal, it is regarded as an ex-
tremely hazardous element to drinkable water,
and the only element more harmful when com-
pared with Cu is Hg [Peri¢ et al., 2004; Liu et al.,
2008; Awual et al., 2013]. Even though Cu is es-
sential to mammals’ metabolic processes, excess
Cu intake causes severe side effects such as el-
evated blood pressure, rapid breathing, renal and
liver damage, seizures, cramping, sickness, and
potential mortality [Bertinato & L’Abb¢, 2004;
Chan et al., 2010; Fu & Wang, 2011]. Cu (II) ions
are typically accumulated in various body parts
like the brain, skin, and pancreas, causing major
toxicological issues, reaching to damaging them,
especially the liver and kidneys, and respirato-
ry system [Davis et al., 2000; Gaetke & Chow,
2003]. In addition, Wilson’s illness and Menkes
syndrome appear to be significantly impacted by
unusual Cu amounts linked to proteins [Schein-
berg & Sternlieb, 1996; Harris & Gitlin, 1996;
Strausak et al., 2001].

Regarding Hg, it has no degradability with
high mobility. Meanwhile, methylmercury
(CH,Hg) usually characterizes by its high ten-
dency to accumulate [Abbas et al., 2016; Alalwan
et al., 2020]. While mercury may go through vari-
ous forms and stages during its life cycle, its most
basic form, pure Hg, is toxic for both human be-
ings as well as the ecosystem [Abbas et al., 2016].

257



Journal of Ecological Engineering 2023, 24(6), 249-271

At ambient temperature, the element of Hg has
a liquid phase and can easily evaporate to form
gas. The vaporized Hg is more dangerous than its
liquid phase. In addition, organic Hg substances
like CH,Hg have a higher toxicity than inorganic
substances [Balali-Mood et al., 2021]. Organic Hg
is typically generated from various resources, pri-
marily freshwater and seawater fishes. The USA
banned fishing across over 3,000 water bodies
because of Hg toxicity [Berlin & Zalups, 2007].
In addition, several seawater fish types are simi-
larly contaminated with high Hg levels [Burger et
al., 2011]. Although Methyl Hg passes the blood-
brain interface less effectively compared to Hg el-
ement, it can be readily absorbed by the stomach
and then accumulates into numerous organs; nev-
ertheless, it is gradually converted to Hg element
via demethylation once it reaches the brain [Berlin
& Zalups, 2007]. On the other hand, Hg salts often
have an insoluble nature, are moderately persis-
tent, as well as weakly absorbed [Bernhoft, 2012].
Exposure to Hg compounds mainly affects the
neurological system in the short term [Bonzongo
et al., 1996; Alalwan et al., 2020]. If the body is
exposed to Hg, it could cause severe harm to the
central nervous system as well as nephrotoxic im-
pacts [Boattietal.,2017; Bridges & Zalups, 2017].
In terms of the long term, Hg’s possible serious
negative consequences involve damage to various
organs, including the kidney and brain, as well as
different body systems, such as hematologic, im-
mune system, and pulmonary tract [Bonzongo et
al., 1996; Alalwan et al., 2020]. Moreover, organ-
ic Hg exposure has been associated with a higher
risk of neurodevelopmental problems, including
disorders like a tic and autistic spectrum and slow
speech and language development [Hviid et al.,
2003; Young et al., 2008].

In terms of Ni toxicity, Ni-metal exposure
has been linked to several adverse consequenc-
es. Some Ni substances like NiO are considered
carcinogenic for humans, while its pure metallic
particles are categorized as a possible carcinogens
[Latvala et al., 2016; Das et al., 2019]. The more
prevalent hazard path in humans is workplace
exposure involving Ni dust and fumes due to
its welding composites. For human beings, Sun-
derman’s study was the first to evaluate the se-
vere harm of nickel carbonyl exposure caused
either due to its uptake via the digestive sys-
tem or inhalation. Inhaling such a compound has
either immediate or delayed severe harmful con-
sequences. The immediate chronic effects could
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be nausea, itching skin, vomiting, and dizziness,
which might persist between a few hours and sev-
eral days. Due to its exposure, the subsequent
delayed effects could include chest tightness or
pain, persistent cough, shortness of breath, sinus
arrhythmia, and body weakness [Das et al., 2019].
In addition to lung cancer, most of the mentioned
symptoms have been confirmed by other studies
[Yang et al., 2009; Mobasherpour et al., 2012]. Ni
metallic particles could potentially harm human
lungs [Scansetti et al., 1998; Barceloux®, 1999].
In addition, inhaling Ni tetracarbonyl Ni(CO)a,
which is a hazardous volatile chemical produced
during Ni metallic purification process, known
as the Mond process, is usually linked to serious
lung damage. The reason behind this impact is its
high degree of lipid solubility, resulting in easy
accessibility of Ni*? ions to cells [Barceloux®,
1999; Denkhaus & Salnikow, 2002]. Moreover,
persistent inhalation of Ni compounds dust and
fumes results in various respiratory illnesses such
as asthma and acute bronchitis [Das et al., 2019].
Related to this, Ni has hazardous consequences
that involve dry coughing, bone nostrils, the pres-
ence of cyan, chest constriction and pain, fast
breathing, loss of breath, and vertigo [Yang et al.,
2009; Mobasherpour et al., 2012]. Furthermore,
Ni metal exposure has been connected to a wide
range of adverse health implications, such as skin
sensitivity, lung diseases including their fibrosis,
neurological harms, kidneys related illnesses,
skin allergy reactions, as well as respiratory sys-
tem cancer [Andersen et al., 1996; Grimsrud et
al., 2002; Green et al., 2013].

Regarding Pb metal, there are several scenar-
ios for humans to be exposed to harmful Pb sub-
stance, which usually involves contaminating the
related environment [Charkiewicz & Backstrand,
2020]. It was estimated that Pb is responsible
for about 1.5% of the total fatalities worldwide
each year, with a total number of 900,000 deaths,
which is approximately equal to the (954,000) to-
tal victims caused by HIV/AIDS [Rees & Fuller,
2020]. Pb reaches the human body by ingesting
and inhaling via different sources like foodstuff,
soils, Pb’s particles dust, as well as contacting
Pb-contained items [Charkiewicz & Backstrand,
2020]. Once Pb reaches the body via the gastroin-
testinal or respiratory system, it is distributed by
the blood to other organs [Abbas et al., 2016]. In
addition, Pb has other ways to reach the human
body, including skin penetration and mucosa, but
they are considered less common routes than the
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former ways [Saeed et al., 2017]. However, Pb
entering path mainly depends on its related en-
vironment type. For instance, Pb substances are
mainly received via respiration in Pb-related
workplaces, although the human body could also
receive these substances through the gastrointes-
tinal tract [Spivey, 2007; Drop et al., 2018]. Pb
toxic accumulates over time and impacts different
organs, including kidneys, liver, brain [Charkie-
wicz & Backstrand, 2020; Irawati et al., 2022],

the related systems, and their bodily functions,
such as the digestive tract, immunological, endo-
crine, renal, hematopoietic, nervous, and circula-
tory systems [Krzywy et al., 2010; Irawati et al.,
2022]. Among the mentioned systems, the brain
and its related neurological system are the most
often highly impacted by Pb’s exposure in adults
and children [Cleveland et al., 2008; Ara & Us-
mani, 2015; Saeed et al., 2017]. Nevertheless, the
effect of the toxin on children is higher than it is

Table 3. Health dangers correlated with heavy metal exposure

N

Metal type

Health risks of heavy metals exposure

1

Antimony (Sb)

Reduction of blood sugar levels and highly elevated cholesterol amounts.

Arsenic (As)

It targets the skin’s surface, causing harm and triggering the development of skin cancer in its
advanced phases; different circulatory system and arterial problems along with diabetes; skin-related,
lung and renal cancers, along with different interior malignancies; increased infant death potential

as well as reduced weight in the newborn infants; nervous system problems; developmental-related
problems as well as neurobehavioral ilinesses; blood diseases; and genotoxicity.

Barium (Ba)

Elevated blood pressure.

Beryllium (Be)

Abdominal ilinesses

Cadmium (Cd)

Different renal issues that reach kidney damage; intense bone pain; liver disease and elevated blood
pressure; and posing a significant risk of developing cancer.

Chromium (Cr)

Vomiting and severe diarrhea, pulmonary obstruction, and liver and kidney system issues; a
nephrotoxic substance with a high carcinogenicity incidence; and it is connected with cutaneous,
neurological, and gastrointestinal tract diseases and various malignancies and cancers in the lungs,
pharynx, bladder, and thyroid.

Cobalt (Co)

The pulmonary system and skin are the primary targets; hypersensitivity lung disease, which could
progress to permanent fibrosis; and dermatitis due to an inflammatory reaction.

Copper (Cu)

Elevated blood pressure, insomnia, rapid breathing, seizures, and cramping in the short term; it
tends to accumulate in various parts like the brain, skin, and pancreas, causing major toxicological
issues, reaching to damaging them, especially the liver and kidneys, in the long term; and linked with
Wilson’s iliness and Menkes syndrome.

Lead (Pb)

Central neurological system (brain) damage to infants and fetal; behaviour issues and learning
difficulties for children, such as deficits in concentration and learning skills; it is linked to anemia and
arise in blood pressure; and associated with a high incidence of blood problems, neurological system
damage, kidney diseases and/or damage and mental impairment.

10

Mercury (Hg)

It mainly affects the neurological system in the short term; severe harm to the central nervous system
as well as nephrotoxic impacts; serious consequences involve damage to various organs, including
the kidney and brain, and different body systems, such as the hematologic, immune system, and
pulmonary tract, in the long term; and associated with neurodevelopmental problems, including
disorders like a tic and autistic spectrum and slow speech and language development.

1

Nickel (Ni)

Various respiratory illnesses such as asthma and acute bronchitis; it is linked to different
consequences that involve dry coughing, bone nostrils, the presence of cyan, chest constriction

and pain, fast breathing, loss of breath, and vertigo; and it is connected to many adverse health
implications, such as skin sensitivity, lung diseases including their fibrosis, neurological harm, kidneys
related illnesses, skin allergy reactions, and respiratory system cancer.

12

Radium (Ra)

Elevated cancer danger

13

Selenium (Se)

Itis linked to several health problems, such as arterial issues, hair and nail loss, and fingers and toes
numbness.

14

Zinc (Zn)

Associated with various health risks, including exhaustion, greater thirst, gloominess, and nervousness.

Note: References: (1) Ojedokun & Bello, 2016; (2) Barakat, 2011; Abbas et al., 2016; Ojedokun & Bello, 2016;
(3) National primary drinking water regulations, 2009; (4) National primary drinking water regulations, 2009; (5)
Yasuda et al., 1995; Ahluwalia, & Goyal, 2007; Barakat, 2011; (6) Mohan et al., 2006; Hu et al., 2009; Fang et al.,
2014; (7) Barceloux®, 1999; Dunlop et al., 2005; Leyssens et al., 2017; (8) Strausak et al., 2001; Davis et al., 2000;
Chan et al., 2010; (9) Flora et al., 2012; Qu et al., 2013; Ara & Usmani, 2015; (10) Bonzongo et al., 1996; Young
et al., 2008; Bridges & Zalups, 2017; (11) Grimsrud et al., 2002; Yang et al., 2009; Das et al., 2019; (12) National
primary drinking water regulations, 2009; (13) National primary drinking water regulations, 2009; Ojedokun &
Bello, 2016; (14) Barakat, 2011.
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Table 4. Schematic representation of heavy metals toxicity levels

N Metal type Toxicity level Pictogram
1 Barium (Ba)®

2 Boron (B) Irritant

3 Iron (Fe)?

4 Copper (Cu)

5 Silver (Ag) Environmental hazard

6 Zinc (Zn)?

" Irritant &

7 Manganese (Mn) Environmental hazard @ ’
. . Irritant &

8 Nickel (N|) Health hazard @ ’

Health hazard &
° Lead (Pb) Environmental hazard ‘ ‘
. Acute toxic &

10 Arsenic (As) Environmental hazard @ ’

11 Beryllium (Be)

12 Selenium (Se) .

13 Thallium (T1) Acute toxic & health hazard

14 Uranium (U)
) Irritant, health

15 Antlmqny (Sb) Hazard & environmental

16 Chromium (Cr) Hazard A

17 Mercury (Hg) Acute toxic, health hazard &

18 Cadmium (Cd)? Environmental hazard

Note: (1) The representation of elements pictograms was taken from the National Center for Biotechnology
Information (NCBI)/National Library of Medicine (NLM) - USA; (a) flammable element; (b) corrosive element.
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on adults because their interior and exterior tis-
sues are softer compared to those of adults [Ara
& Usmani, 2015]. In adults, the peripheral neu-
rological system seems more typically involved
and impacted by Pb exposure, whereas the cen-
tral neurological system is significantly affected
in exposed children [Flora et al., 2012]. In detail,
adults may score worse on various cognitive test
methods that assess neurological system activities
in the long term, while both young kids as well as
infants could have behaviour issues and learning
difficulties [Ara & Usmani, 2015]. In addition,
Pb contamination is associated with a higher risk
of various illnesses that could potentially impact
neurological system functions, such as high blood
pressure, kidney dysfunction, and thyroid func-
tion [Mason et al., 2014]. Moreover, prolonged Pb
exposure was linked to anemia and a rise in blood
pressure, primarily in the elderly and middle-
aged individuals. It was discovered that exposure
to elevated Pb concentrations, which resulted in
individual mortality, was connected with severe
damage to different organs, such as the brain and
kidneys. Excess Pb exposure during pregnancy
could result in miscarriages. Male fertility was
shown to be decreased by acute Pb poisoning. Pb
intoxication was also associated with a high in-
cidence of blood problems, neurological system
damage, and mental impairment [Sokol & Ber-
man, 1991; Marques et al., 2000; Qu et al., 2013].
In terms of Zn metal, it is essential for the
regulation of numerous metabolic processes and
bodily activities in tissues throughout the body.
On the other hand, excess zinc can lead to adverse
health effects like gastrointestinal sickness, vom-
iting, skin itching and rashes, and cramps pain [Fu
& Wang, 2011]. Metal dust fever, caused by in-
haling Zn oxide along with other metals, has been
found to affect metallurgy industry employees.
The related symptoms include nausea or vomit-
ing, coughing, troubles related to headaches and
fever, muscle soreness, and gastrointestinal tract
pain. Still, they typically discontinue after a short
time, about 2-3 days [Wallig & Keenan, 2013].
Health risks linked with heavy metal exposure are
illustrated in Table 3, while the toxicity levels of
different metallic ions are shown in Table 4.

REMOVAL APPROACHES

Addressing metallic ions-polluted discharges
efficiently and affordably remains problematic for

scholars or water treatment experts [Ahluwalia
& Goyal, 2007; Tripathi & Ranjan, 2015]. Treat-
ment of metallic ions-contaminated wastewater has
been carried out in various ways to protect and/or
avoid harming human health and sustain different
ecosystems [Wang et al., 2019]. Such techniques,
for instance, involve coagulation-flocculation [Kur-
niawan et al., 2006; Barakat, 2011; Abbas et al.,
2016], chemical precipitation [Ojedokun & Bello,
2016; Taka et al., 2017; Burakov et al., 2018], elec-
trodialysis [Pedersen, 2003; Barakat, 2011; Alal-
wan et al., 2020], filtration using a membrane [Ah-
luwalia & Goyal, 2007; Fu & Wang, 2011; Abbas
et al., 2016], ion exchange method [Barakat, 2011;
Huang et al., 2016; Taka et al., 2017]. The methods
mentioned above do, however, come with a number
of disadvantages, which includes the high costs as-
sociated with facility construction and implementa-
tion, operation management, and chemical usage.
Additional disadvantages involve substantial pow-
er requirements, critical working circumstances,
along with a lower degree of efficacy elimination,
particularly for metallic ion concentrations of less
than one hundred mg-L-'. Furthermore, those prac-
tices have been associated with the generation of
toxic biosolid waste and disposing of this kind of
waste results in more expensive and harmful ways
to ecosystems [Sud et al., 2008; Vukovi¢ et al.,
2010; Marin-Rangel et al., 2012].

Regarding a particular method, high costs from
considerable chemical usage are among the major
disadvantages of the flocculation and coagulation
technique for heavy metal elimination. At the same
time, substantial power use, high construction and
implementation costs, and operational costs are
the main disadvantages of applying the electrodi-
alysis approach. In comparison, the elimination of
the vast amounts of sediment released by the pre-
cipitation technique, in contrast, is regarded to be
a significant problem. The regeneration process of
polymeric-made material resin highly increases
environmental pollution even though the ion ex-
change technique is very efficient [Abbas et al.,
2016; Taka et al., 2017; Acharya et al., 2018]. The
techniques used to remove heavy metals are listed
in Table 5, along with their features as reported
throughout the related scientific literature.

CONCLUSIONS

A significant environmental problem has re-
sulted from the ongoing release of substantial
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Table 5. A summary of the heavy metal removal approaches as described in the related literature

N Removal approach Approach advantages Approach disadvantages

Minimal |r_1|t|a| costs. Simple operation Method outcomes are governed by the

and working under a broad range of .

) . . s adsorbent material. Increased costs because
Adsorption using pH. Great metallic bonds capabilities. A ) )
. ) : absorbents are so expensive. No potential
1 conventional successful technique effectively removes s
- . chance of adsorbent recovery. Limited
adsorbents the majority of metallic elements. Excellent | . . .
. . . o ion selectivity according to the absorbent
effectiveness with a maximum of 99% :
) substance kind.
efficacy.
. . . ) Bio-adsorbents might become saturated
. . e Inexpensive bio-adsorbents. Superior efficacy . . e
Biosorption utilizing . . : ) ) earlier. Little possibility of progress for
: ) with regenerative potential. Production of little | . ; . -
2 different bio- . I - biological techniques uses. No possibility

residue quantities. Metallic ions recovered : . . S

adsorbents . " . of biologically altering the oxidation state of

without extra nutritional requirements. - s
eliminated metallic ions.

Production of large residue amounts.
Sludge removal results in increased running
. An easy process with simple operational costs. The method has inadequate settling.
Chemical . - . . S
3 S parameters. Cost-effective method. Efficient | Ineffective method for removing metallic ions
precipitation S s

removal of a broad range of metallic ions. at minimum levels. Reduced pH levels and
high ion concentration impact the procedure’s
efficacy.

Significant initial and operating expenses.
Substantial power amounts are required.
Highly selective process in metals separation. | The problem of membrane clogging.
4 Electrodialysis The process doesn’t consume chemicals. Regular maintenance is required.

Pure metals are very likely to be attained. Operational parameters, including current,
intensity of current, and pH, influence
process efficacy.

Sludge generated with an excellent Residue production. High-priced approach.

. settlement rate. The sludge produced had .
Flocculation and . . Large chemical amounts are consumed.
5 ) good dewatering properties. The process : o )
coagulation L Sludge removal requires additional running
can remove metallic ions and water
L costs.

turbidity.

Increased generation of intensified sludge.

Good selectivity of targeted metal removal. Substantial setting-up exoenses. Bid runnin

6 Flotation treatment | High effectiveness of elimination. The method Jual setling-up exp - B9 9
o . and maintaining expenses.

has short retention times with large overflow

quantities.

High gﬁeptlveness of ellmlnatloq. F.’OSS'b'“ty Substantial initial cost, including resin cost.

of achieving ppb levels to metallic ions. L .

) : L L Fewer number of metallic ions are eliminated.

Highly selective metallic ions elimination. A . "

7 lon-exchange - - - The resin recovery process causes additional

quite efficient recovery rate. The capability L .

) ) contamination. The capacity to remove metal
for treating large volumes. The process is ) . ;
. S varies based on various resin types.
described by fast removal kinetics.
It is a highly selective process. Minimal It is a complicated process. Considerable
e pressure is needed. Little room is required setup, running, and maintenance expenses.
Membrane filtration ] ; )
e for this approach. Lower dependency on Clogging of membrane. Little treated rate.
8 and ultrafiltration : .
method chemicals. Excellent efficacy that could pass | Excessive amounts of energy use. Process
95%. Minimal quantities of solid residue efficiency is lowered as additional metallic
produced. ions are present.
. M.et?”'C 1ons, along with organic matter, are Lengthy reaction periods are needed. The
9 Photocatalysis eliminated simultaneously. Fewer number _—
. process has a finite number of uses.
dangerous side products.
Producing solid residue. Elevated
It is primarily utilized in seawater pressure is needed for this approach. The
. desalination. process requires big operating expenses.
10 Reverse osmosis . . .

It could be applied to remove different Consumption of large power amounts.

organic, mineral, and bacterial pollutants. Ineffective method to eliminate the micro-
organic contaminants.

Note: References: (1) Peri¢ et al., 2004; Barakat, 2011; Fu & Wang, 2011; (2) Mishra et al., 2010; Manzoor et
al., 2013; Jiménez-Cedillo et al., 2013; (3) Khosravi & Alamdari, 2009; Abbas et al., 2016; Alalwan et al., 2020;
(4) Barakat, 2011; Ojedokun & Bello, 2016; Taka et al., 2017; (5) Fu & Wang, 2011; Abbas et al., 2016; Taka et al.,
2017; (6) Kurniawan et al., 2006; Fu & Wang, 2011; Taka et al., 2017; (7) Kang et al., 2004; Ojedokun & Bello,
2016; Alalwan et al., 2020; (8) Al-Rashdi et al., 2013; Abbas et al., 2016; Taka et al., 2017; (9) Kajitvichyanukul
et al., 2005; Barakat, 2011; Taka et al., 2017; (10) Kurniawan et al., 2006; Taka et al., 2017.
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amounts of harmful chemicals as a result of hu-
man activities. Cadmium (Cd), Mercury (Hg),
and Chromium (Cr) are among the metallic ions
that are released into the environment by a va-
riety of industrial sectors, which include battery
production, mining activities, electroplating, and
coal-fired power plants. Because of their charac-
teristics, particularly their extreme toxicity and
potent ability to accumulate, heavy metals sig-
nificantly threaten humans, other living things,
and ecosystems. When compared to organic mat-
ter, which is greatly affected by biological and
chemical degradation, metallic ions tend not to be
capable of a breakdown toward end components.
Therefore, removing these elements has been
seen as a major task in water purification applica-
tions. This article aimed to examine the literature
on heavy metals in various aspects. The meaning
of this expression, heavy metals, was described.
A comprehensive discussion was given on the
natural and human-made causes of releasing me-
tallic ions into the environment. Additionally,
the toxicological consequences of heavy metals
and possible dangers to individuals and various
environments were reviewed. The benefits and
disadvantages of various methods for eliminating
heavy metals from wastewater effluents were fur-
ther assessed.
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