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INTRODUCTION

The flow coefficient is an important parameter 
in hydrology that describes the flow ratio to the 
total amount of rainfall (Chow et al., 1988). It is 
typically used in hydrological models to estimate 
the amount of surface flow from a catchment or 
watershed. Accurate estimation of the flow coeffi-
cient is essential for various hydrological applica-
tions, including flood forecasting, water resources 
management, environmental impact assessment, 
and designing efficient stormwater management 
systems, flood control structures, and urban 
drainage systems. Therefore, there is ongoing re-
search on developing and evaluating new meth-
ods for modeling this parameter. There are vari-
ous methods for estimating the flow, including 
empirical methods, such as the Soil Conservation 

Service (SCS) method (USDA-NRCS, 1972), 
and physically based methods, such as the Green-
Ampt model (Green & Ampt, 1911). The choice 
of method depends on the availability and quality 
of data and the complexity of the modeled hydro-
logical system.

In recent years, researchers have explored the 
use of Machine Learning (ML) techniques such 
as ANN and fuzzy logic methods for improving 
the accuracy of hydrologic modeling estima-
tion, such as; (Hsu et al., 1995; Hu et al., 2007) 
demonstrated the effectiveness of artificial neural 
networks in modeling the rainfall-flow process. 
This investigation used fuzzy logic-based models 
to calculate the flow coefficient rate for the Aksu 
River basin in Antalya-Turkey. Fuzzy logic-based 
methods are preferred in modeling hydrological 
events due to their ability to handle uncertainty 
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and imprecision inherent in hydrological systems. 
Hydrological systems are complex, and data on 
hydrological variables such as precipitation, 
evapotranspiration, and soil moisture are often 
limited and uncertain. Fuzzy logic-based meth-
ods provide a way to represent and analyze this 
uncertainty using linguistic variables and rules. It 
uses membership functions to describe the degree 
of membership of a variable in a set, such as dry, 
wet, or moderate. Fuzzy rules developed based on 
expert knowledge and data represent the relation-
ships between input and output variables in the 
hydrological system.

Fuzzy logic-based methods have been exten-
sively used in various hydrological applications, 
including flood forecasting, water resources man-
agement, and groundwater modeling. In a review 
article by (Kambalimath and Deka, 2020), the 
authors discuss the potential of fuzzy logic in hy-
drology. (Nurul et al., 2020) applied a fuzzy infer-
ence system to rainfall-runoff modeling. (Dhaoui 
et al., 2023) Modeled groundwater quality us-
ing a fuzzy inference system, and (Nayak et al., 
2004) Used fuzzy-based modeling hydrological 
time series, while (Santos and Silva, 2014) used 
different artificial neural network algorithms and 
wavelet transforms for daily streamflow forecast-
ing. (Pesti et al., 1996) employed such systems 
for drought evaluation, while (Abebe et al., 2000) 
utilised them for rainfall pattern forecasting and 
reconstructing missing precipitation events. (Ver-
nieuwe et al., 2005) utilised it for modeling the 
dynamics of rainfall streamflow. Finally, to inves-
tigate flood forecasting and risk assessment, as 
explored in the studies conducted by (Jiang et al., 
2008; Mao and Wang, 2002; Nayak et al., 2005).

ANFIS and SMRGT models were used in this 
research to estimate the flow coefficient accurate-
ly. ANFIS stands for Adaptive Neuro-Fuzzy In-
ference System, a hybrid intelligent system com-
bining the strengths of fuzzy logic and artificial 
neural networks (ANNs) to create a powerful tool 
for modeling and control applications. ANFIS was 
first introduced by (Jang, 1993) has since become 
popular in various fields, including engineering, 
finance, and medicine. ANFIS has several advan-
tages over traditional ANNs and fuzzy logic sys-
tems. First, it can handle numerical and linguistic 
input variables, making it suitable for modeling 
complex systems. Second, it can automatically 
learn the optimal fuzzy rules and membership 
functions from data, reducing the need for expert 
knowledge. Finally, ANFIS can approximate any 

nonlinear function with arbitrary accuracy, mak-
ing it a versatile tool for modeling and control 
applications. Several studies have demonstrated 
the effectiveness of ANFIS in flow estimation in 
river basins. For example, (Ullah and Choudhury, 
2013) used ANFIS models to forecast common 
downstream flow rates and depths in a river sys-
tem with multiple inflows. In another study, (Kes-
kin and Taylan, 2009) applied the ANFIS method 
to estimate the river flow of the Manavgat water-
shed in southern Turkey. They found that missing 
or unmeasured data can be accurately predicted 
with the ANFIS model. (Firat, 2007) used ANFIS, 
GRNN, and FFNN methods for flow forecasting, 
the author observed that the ANFIS model was 
more successful than other used models. 

The absence of a conclusive approach for as-
certaining the appropriate quantity of fuzzy rules 
and membership functions (MF) needed for each 
rule is a notable limitation of ANFIS and other 
fuzzy systems (Jang, 1993). Furthermore, there is 
a lack of a learning algorithm to enhance the ac-
curacy of MF by minimising the output error. Ac-
cordingly, (Toprak, 2009) introduced the Simple 
Membership functions and fuzzy Rules Genera-
tion Technique (SMRGT), a physic-based fuzzy 
model. The new approach was proposed to assist 
those who have difficulty deciding the number and 
shape of membership functions and fuzzy rules. It 
is a flexible technique that can be adapted to vari-
ous applications. Using simple membership func-
tions and fuzzy rules generation techniques allows 
for incorporating expert knowledge and domain-
specific information, making it suitable for many 
problems. The SMRGT approach has demonstrat-
ed its capacity to generate precise and dependable 
approximations across various fields, particularly 
in scenarios where conventional techniques may 
be constrained by the accessibility of data or the 
intricacy of the hydrologic system such as; (Toprak 
et al. 2013) employed the aforementioned method 
to quantify the volume of water wastage in distri-
bution networks. The research was conducted in 
Diyarbakir, Turkey. (Yalaz et al., 2015) utilised it 
for the generation of fuzzy time series data. The 
study conducted by (Toprak et al., 2017) analysed 
the benefits and drawbacks of the aforementioned 
approach, as well as its practical uses. The study 
by (Altas et al., 2018) examined the open chan-
nel water surface profiles utilising the SMRGT 
method under varying hydraulic conditions. The 
application of seismic floor classification was doc-
umented in a study conducted by (Bayri, 2018). 
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In their study, (Unes et al., 2020) employed vari-
ous computational techniques, including multiple 
linear regression (MLR), artificial neural network 
(ANN), M5 decision tree (M5T), adaptive neuro-
fuzzy inference system (ANFIS), soft computing-
based regression and genetic programming tech-
nique (SMRGT), and Mamdani-fuzzy logic (M-
FL), to estimate river flow. The flow coefficient 
of the Kalecik basin was determined by (Sevgin, 
2021). The study’s authors arrived at the conclu-
sion that the fuzzy SMRGT approach is uncom-
plicated, lucid, and yields superior outcomes. The 
existing literature reveals a dearth of research that 
has integrated the SMRGT and ANFIS models to 
predict flow coefficient, which is imperative in de-
veloping flood protection strategies for both urban 
and agricultural areas. Also, this parameter plays a 
vital role in the calculation of the maximum allow-
able water extraction from a river for irrigation or 
water supply purposes in the study area, the Aksu 
River Basin, which is a prominent region in Anta-
lya, Turkey, where the primary concerns are agri-
culture, tourism, and industry. The Turkish State 
Meteorological Service (TSMS) has also released 
data indicating that the Mediterranean region is 
among the most susceptible areas to precipitation 
and flooding between 2020 and 2021. Therefore, 
this study can be regarded as the initial endeavor 
in this respect.

Temperature and wind data are used for flow 
coefficient estimation, as they can provide infor-
mation about the meteorological conditions that 
affect the hydrological cycle, specifically evapo-
transpiration, and an important component of the 
water balance equation.

The primary aim of this study is to 1) achieve 
precise flow coefficient rate predictions in the 
Aksu River basin and 2) investigate the predic-
tion potential of the two fuzzy models (ANFIS 
and SMRGT).

MATERIALS AND METHODS

Study area and data used

Aksu River Basin locates 36–38 degrees north 
latitude and 30–31 degrees east longitude. The 
geographical boundaries of the Mediterranean 
Region encompass the basin. The length of the 
Aksu River is approximately 370 km (230 miles), 
with a total width at its mouth of 100 meters (330 
feet). Based on ArcGIS measurements, the basin 

drains an area of approximately 7505 km2. The 
Aksu River originates in the Taurus Mountains, 
a mountain range in southern Turkey. It flows 
through the Aksu Canyon and into the Mediter-
ranean Sea. The monthly average temperatures 
and wind speeds from 1990 to 2019 were used to 
compile the dataset. The information was collect-
ed from the Turkish state meteorological service.

Methods

Adaptive neuro-fuzzy inference system (ANFIS)

ANFIS is a hybrid intelligent system that 
combines the learning capabilities of neural net-
works and the linguistic representation of fuzzy 
logic to create a model for data classification, 
prediction, and decision-making. ANFIS was first 
proposed by (Jang, 1993) and has since been used 
in various applications, including image process-
ing, robotics, and finance. ANFIS uses a hybrid 
learning algorithm that combines gradient de-
scent and least-squares estimation to adjust the 
system’s parameters. The gradient descent algo-
rithm is used to update the membership function 
parameters, while the least-squares estimation is 
used to adjust the output layer parameters. Typi-
cally, ANFIS has five different layers:
 • Layer 1 – according to the first layer, the 

membership function can be any suitable pa-
rameterized membership function, such as B. 
Generalized bell-shaped function.
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where: {ai, bi, ci} – the parameter set. The param-
eters in this layer are called prerequisite 
parameters. Each node (i) in this layer is 
an adaptive node with a node function:
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𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(3)

 • Layer 2 – in this layer, each node is a fixed 
node with an output equal to the sum of all 
input signals:

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(4)

The output of each node represents the trigger 
strength of each rule. In this layer, other t-norm 
operators that perform fuzzy AND (for example, 
min) can be used as node functions.
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 • Layer 3 – as indicated by the symbol N, the 
nodes in this layer are all fixed nodes. The 
ith node defines the ratio of its rule’s trigger 
strength to the sum of all rule trigger strengths:

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(5)

 • Layer 4 – this layer’s node I is an adaptive 
node with a node function.

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(6)

where: wi – the normalized layer three firepowers, 
pi, qi, ri is the node’s parameter set.

 • Layer 5 – a single fixed node in this layer, de-
noted, computes the total output as the sum of 
all input signals:

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(7)

In the ANFIS model, ten-year data were uti-
lized, and different ranges were attempted (80:20, 
70:30, 60:40) for the training and testing phase. 
The range (70%:30%) was selected as it produces 
the best prediction. The input variables consisted 
of temperature and wind speed data from (2010–
2019), and the training data was chosen from Janu-
ary 2010 to December 2016 (7 years). In contrast, 
the testing data was from January 2017 to Decem-
ber 2019 (3 years). A membership function, such 
as the generalized bell-shaped membership func-
tion (gbellmf) (see Fig. 2), is used for training and 

Figure 1. A framework of the ANFIS model

Figure 2. MFs of the input variables of the ANFIS model
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testing data. This step generates and evaluates a 
fuzzy inference system (FIS) that can produce 
MSE and MARE. During the phase of preprocess-
ing that involves computations that are too exten-
sive, the data are normalized into the range (0-1) 
using the equation that is presented below:

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(8)

where: x̅ – the normalized data;   
x – the original data;  
l, h – the highest and lowest possible val-
ues in the original data.

Simple membership functions and fuzzy 
rules generation technique (SMRGT)

Simple Membership functions and fuzzy 
Rules Generation Technique (SMRGT) is used 
in fuzzy logic systems for generating member-
ship functions and fuzzy rules. Membership 
functions in fuzzy logic determine the degree to 
which a particular input belongs to a fuzzy set. In 
SMRGT, the membership functions are created 
by defining simple functions that map the input 
values to a degree of membership in the fuzzy 
set. These simple functions can be linear or non-
linear and take various forms, such as triangular, 
trapezoidal, or Gaussian. Once the membership 

functions are defined, fuzzy rules can be gen-
erated using a set of if-and-then statements. In 
SMRGT, fuzzy rules are generated by analyzing 
the relationship between input and output vari-
ables. The rules are generated based on expert 
knowledge or by analyzing data and can take the 
form of linguistic statements such as “if the tem-
perature is high, and wind speed is high, then the 
flow coefficient is low”. 

This approach simplifies the process of add-
ing the physics of the event to a fuzzy model. The 
following are the steps involved in the SMRGT 
procedure:
1. Defining input and output variables: The first 

step in designing a fuzzy logic system is de-
termining the inputs and outputs. This study 
used two inputs (temperature and wind speed) 
to generate a single output (flow coefficient). 
The maximum and minimum values for each 
input were then established, with a temperature 
range of 0–50 and a wind speed range of 0–10.

2. Determining the membership functions (MFs): 
MFs map input values to fuzzy sets. Seven 
MFs were employed and were labelled as Very 
very low, Very low, Low, Medium, High, Very 
high, and Very very high. Also, in this step, a 
triangular membership function shape was se-
lected (see Fig. 3).

Figure 3. Triangular MFs of the SMRGT model
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3. Calculating the key values: A special code was 
generated to find the model’s key values (see 
Fig. 4.) These key values are the model’s inputs.

4. Creating the fuzzy rules: To map input values 
to output values, fuzzy rules were created, each 
comprising an antecedent (input) and a con-
sequent (output). In this stage, 49 rules were 
established using physical conditions such as 
“IF,” “AND,” and “THEN.”

5. The developed model was executed using MAT-
LAB software, and the Mamdani algorithm was 
used as an operator, with the centroid method 
chosen for defuzzification. The input and output 
files were arranged and added to the program in 
the.dat format. The prepared program was load-
ed with the.fis extension. A. m extension file 
was also created to run the program and obtain 
results. This approach helped save time during 
the experimentation process. A fuzzy set table 
was also created as part of the procedure.

Performance measurements

To assess the effectiveness of a machine 
learning model, it is crucial to evaluate its perfor-
mance using appropriate statistical metrics. The 
selection of evaluation metrics largely depends 
on the problem’s characteristics and the data used 
in the model. Choosing the correct evaluation 
metrics is essential to ensure the model performs 
optimally. The present study employed four 

evaluation parameters, including Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), 
coefficient of determination (R2), and Mean Abso-
lute Relative Error (MARE), to assess the mod-
el’s performance. They were given in Eq. (9–11).

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −

−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, predicted)2

𝑛𝑛𝑛𝑛

1

 

 

(9)

𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) =  
1

1 + � 𝑥𝑥𝑥𝑥 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶  �

2𝑏𝑏𝑏𝑏
 
 

 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 1, 2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑂𝑂𝑂𝑂1,𝑖𝑖𝑖𝑖 = 𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖−2 (𝑥𝑥𝑥𝑥) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 = 3, 4 

𝑂𝑂𝑂𝑂2,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝐶𝐶𝐶𝐶 = 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖  𝜇𝜇𝜇𝜇𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦), 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂3,𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑊𝑊 =  
𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶

𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊2
, 𝐶𝐶𝐶𝐶 = 1, 2 

𝑂𝑂𝑂𝑂4,𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤�𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤��� (𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦 + 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖) 

𝑂𝑂𝑂𝑂5,𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓 = �𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

 𝑥𝑥𝑥𝑥� =  
𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑙𝑙
ℎ − 𝑙𝑙𝑙𝑙

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 �� Ci, actual−
−Ci, predicted�

𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝜇𝜇𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛𝑛𝑛

 ��
� Ci, actual−
−Ci, predicted�

Ci, actual �
𝑛𝑛𝑛𝑛

1

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 =  �
1
𝑛𝑛𝑛𝑛

 �
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 −
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RESULTS AND DISCUSSION

This study aimed to estimate the flow coef-
ficient in the Aksu river basin using two fuzzy 
models: Adaptive Neural Fuzzy Inference System 
(ANFIS) and Simple membership functions and 
fuzzy Rules Generation Technique (SMRGT). 
The ANFIS analysis involved using generalized 
bell 20×15 Membership Functions (MFs) (see 
Fig. 6), and Grid partition section with 100 itera-
tions, assuming the output as linear. The dataset 
was divided into the training and testing phases, 

Figure 4. Generated MATLAB code for key values calculation
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and the 70% -30% range was used. For training, 
the monthly average temperature and wind speed 
data from 2010–2016 was selected, and for test-
ing from 2017–2019. Variation and scatter graphs 
were used to visualize the ANFIS method’s re-
sults, as shown in Fig. (6–9). The coefficient of 

determination for each training, testing, and all 
data was calculated to be (R2:0.893, R2:0.656, 
and R2:0.803), respectively. They indicated a fair 
correlation. The results of the ANFIS model were 
observed to be not too close to the actual values, 
as depicted in the figures below.

Figure 5. Structure of the created ANFIS model

Figure 6. The linear regression for the training data

Figure 7. The linear regression for the testing data
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The SMRGT model used the Mamdani meth-
od as the fuzzy inference system and the centroid 
method as the defuzzification procedure. Accord-
ing to (Toprak, 2009), the centroid method is 
more suitable for fuzzy SMRGT. To construct the 
membership functions for each independent vari-
able, seven different membership functions were 
created, and key values were assigned for each 
MF. Table 1 shows the calculated key values for 
inputs. These values are the input of the model.

The flow coefficient’s smallest and biggest 
value ranges are regarded as 0 and 1, respectively. 
The minimum and maximum values of the flow 
coefficient are shown in Figures 10 and 11, re-
spectively. The graphs demonstrate that the flow 
coefficient equals 0 when the temperature is very 
high (50 °C) and the wind speed is very high (10 
m/s), while it equals 0.98 when the temperature 

is low (0.9 °C), and the wind speed is low (0.899 
m/s). These results indicate that the model is math-
ematically and physically accurate. This finding 
is backed by research reported in (Bayri, 2018; 
Karakaya, 2018; Sevgin, 2021). In fact, when the 
temperature is low and the wind speed is low, 
the flow coefficient tends to increase because the 
lower temperature results in less evaporation, and 
the lower wind speed reduces the amount of water 
carried away by the wind, and leads to a higher 
proportion of the rainfall running off the surface, 
resulting in a higher flow coefficient. Conversely, 
when the temperature is high and the wind speed 
is high, the flow coefficient tends to decrease 
because the higher temperature results in more 
evaporation, and the higher wind increases the 
amount of water carried away by the wind, and 
leads to a lower proportion of the rainfall running 

Figure 8. The LR for the all data get by ANFIS

Figure 9. Variation graph of the ANFIS model

Table 1. Key values of the SMRGT model
Parameter K1 K2 K3 K4 K5 K6 K7

Temperature 0 8.33 16.67 25 33.3 41.67 50

Wind speed 0 1.67 3.33 5 6.67 8.33 10
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off the surface, resulting in a lower flow coeffi-
cient (Sevgin and Toprak, 2019).

Figures 12 and 13 present a scatter diagram 
and a series plot. They were used to visually 

compare the actual data and the model results. The 
regression line in the scatter diagram intersects 
the horizontal axis at a 45-degree angle, indicat-
ing that the model is not biased toward producing 

Figure 10. Temperature and wind are low, flow coefficient is high

Figure 11. Temperature and wind are high, and the flow coefficient is low
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consistently higher or lower estimates than the ac-
tual data. In other words, the model does not tend 
to overestimate or underestimate the data, which 
suggests that it is reliable and accurate (Unes et 
al., 2020; Toprak, 2009; Sevgin et al., 2019).

The models were compared by evaluating 
their statistical criteria and calculated using the 
methodology described in the previous section. 
The evaluation indicated that the SMRGT model 
produced the best results according to RMSE, 
MAE, MARE, and R2. A summary of the statisti-
cal findings is presented in Table 2.

CONCLUSIONS

The application of fuzzy logic theory can 
be advantageous in assessing conventional sys-
tems that are relatively less complex and do not 
involve significant uncertainties or problems. 
ANFIS and SMRGT fuzzy methods have been 
widely used in various hydrological applications. 
The ANFIS method is based on adaptive neural 
networks and fuzzy inference systems, which can 
handle complex and nonlinear relationships in the 
data. On the other hand, the SMRGT method uses 

Figure 12. Scatter graph of the data and SMRGT model

Figure 13. Series plot of the data and SMRGT model

Table 2. Statistical comparison of the models
Models Period RMSE MARE MAE R2

ANFIS

Training 0.711 17.5 1.95 0.893

Testing 1.38 25.7 4.47 0.561

All data 0.96 19.97 2.703 0.8038

SMRGT All data 0.056 6.88 1.92 0.996
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simple membership functions and fuzzy rules to 
capture the uncertain and imprecise nature of the 
data. Both methods have their strengths and limi-
tations, and the choice of method depends on the 
specific characteristics of the river basin and the 
available data.

Both methods have shown promising results 
in accurately predicting the flow coefficient, but 
SMRGT performance was better than ANFIS. 
The neutrality and linearity of the SMRGT mod-
el results in the scatter plot, high coefficient of 
determination between the model and the data, 
and low values of MARE, MAE, and RMSE 
all demonstrate that the SMRGT model is reli-
able, accurate, and can be used with confidence 
for flow coefficient calculations which is an im-
portant parameter in hydrological modeling and 
water resources management. Further research is 
needed to explore the potential of these models 
in different hydrological settings and to develop 
improved calibration and validation techniques.

However, it is important to note that using 
fuzzy logic-based methods in hydrology is still 
an active research area, and further studies are 
needed to evaluate their performance in various 
hydrological systems and under different cli-
matic conditions. Applying ANFIS and SMRGT 
methods in flow coefficient prediction can pro-
vide valuable insights for water resources plan-
ning and management, especially in data-scarce 
regions where accurate hydrological modeling is 
critical for sustainable water management. 

Moreover, it is important to note that other 
factors, such as the slope of the surface, the type 
of surface, and the intensity and duration of the 
rainfall, also influence the flow coefficient. There-
fore, a comprehensive analysis of the flow coef-
ficient should consider all relevant factors to pre-
dict the amount of flow from a surface accurately.

From the comprehensive study, we can con-
clude that the choice of method depends on the 
availability and quality of data and the complex-
ity of the modeled hydrological system.
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