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INTRODUCTION

Pollutants in coastal environments around the 
world have now become a global concern because 
of their impact on ecosystems [Yuan et al., 2020]. 
In recent years, the growth of anthropogenic ac-
tivities such as agriculture, mining, aquaculture, 

ship transportation, and urbanization along coast-
al areas has led to the degradation of coastal eco-
systems, which ultimately affect both living and 
non-living organisms (Almaniar et al., 2021; Dan 
et al., 2022; Shimod et al., 2022). Organisms that 
live on the coast, such as mangrove groups, an-
nelids, gastropods, cephalopods, and fish, have an 
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ABSTRACT
Industrial activities in coastal areas can produce pollutant substances that are detrimental to the ecological environ-
ment. This study aimed to assess the ecological risks of heavy metal pollution in water, sediments, and polychaeta 
(Neoleanira tetragona) affected by aquaculture, urban rivers, and ports. Water parameters such as temperature, 
DO, pH, and salinity were measured in situ at fifteen observation stations. Samples were taken at three loca-
tions around the aquaculture area, namely the Barong River, the Musi River Estuary as an urban river area, and 
Tanjung Api-api port in South Sumatra, Indonesia. Analysis of sediment grain size and substrate types using the 
method of Shepard’s triangle Heavy metal concentrations were measured by graphite furnace atomic absorption 
spectrometry. Then, the data were analyzed using one-way analysis of variance (ANOVA) and post-hoc Tukey 
statistical analysis. Ecological risk assessment uses the bioconcentration factor (BCF), index geoaccumulation 
(Igeo), contamination factor (Cf), and pollution load index (PLI). Based on the results, the concentration of heavy 
metal Pb in water was not detected until 0.625 mg/L, and Cu was not detected. Furthermore, Pb in sediments was 
1.261–11.070 mg/kg, Cu was 0.193–19.300 mg/kg, Pb polychaeta was not detected until 0.0044 mg/kg, and Cu 
ranged from 0.0003–0.0014 mg/kg. Ecological risk assessment for BCF showed that the level of accumulation of 
polychaeta (N. tetragona) was categorized as an excluder (BCF < 1). Igeo and Cf indicate uncontaminated pollu-
tion levels (Igeo < 0) and low contamination (Cf < 1). Meanwhile, the Pollution Load Index is included in the non-
polluted category (PLI <0). Based on the results, the quality of the ecological environment affected by aquaculture, 
urban rivers, and ports is still classified as safe for ecological risk assessment; further studies are needed regarding 
the relationship between pollution levels and the physiological response of biota.
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important role in maintaining ecosystem sustain-
ability (Fitria et al., 2023; Rozirwan et al., 2023). 
Heavy metals are considered pollutants that carry 
many ecological risks due to their high toxicity, 
non-degradability, bioaccumulation, and biomag-
nification (Oluwagbemiga et al., 2019; Taslima 
et al., 2022). Heavy metals are divided into es-
sential and non-essential categories (Slobodian 
et al., 2021). Essential metals function as protein 
cofactors in various biological processes but can 
be toxic if the concentration exceeds a certain 
threshold (Smethurst and Shcherbik, 2021; Jo-
mova et al., 2022). Non-essential metals have no 
biological function and are toxic to organisms, 
even in small amounts (Ali et al., 2019; Romero-
Estévez et al., 2023).

Both essential and non-essential metals in high 
amounts can cause adverse health effects [Wang et 
al., 2020]. Exposure to toxic environments is very 
concerning, such as from aquaculture activities, 
urban rivers, and ports where increased levels of 
toxic metals such as lead (Pb) and copper can be 
detected even far from their sources [Purwiyanto 
et al., 2020]. Heavy metal pollutants that end up 
in aquatic ecosystems will continuously settle to 
the bottom of the waters and accumulate in the 
biota (Elfidasari et al., 2020; Melake et al., 2023). 
Different biota may respond differently to metal 
toxicity due to adaptation to their local environ-
ment [Ghosh et al., 2021]. For example, metal 
concentrations influenced by industrial activities 
may exhibit more toxic effects than in relatively 
natural and conservation environments (Liu, Y. et 
al., 2020; Su et al., 2022; Rozirwan et al., 2022). 
Sediments were identified as the main reservoir of 
heavy metal pollutants, which are the main habi-
tat for biota, especially in benthic species groups 
(molluska, crustaceans, and polychaeta), fish, and 
shrimp [Pandiyan et al., 2021]. In the food chain 
system, this occurs due to the biomagnification 
of heavy metal pollutants, causing various types 
of health problems in humans and other animals 
(Singh et al., 2023). Heavy metals can cause dam-
age to various organs, including the nervous sys-
tem, liver, lungs, kidneys, stomach, skin, and re-
productive system [Hama Aziz et al., 2023].

The benthic macroinvertebrate community 
is one of the most effective bioindicators of en-
vironmental health because of its importance as 
a major food source for many fish, birds, and 
mammals, as well as its effect on sediment sta-
bility and geochemical composition (Rozirwan 
et al., 2021; Delgado et al., 2023; Rozirwan et 

al., 2023a). The main habitat of benthic macro-
invertebrate species is sediment, which may have 
a high level of contamination with heavy metals 
[Bendary et al., 2023]. They live in sediments for 
long periods, and their current feeding strategy 
involves consuming sediment particles, result-
ing in maximum contaminant exposure in both 
sediment and pore water. The characteristics can 
enable macrobenthic invertebrates to indicate 
environmental pollution and offer the possibil-
ity of being used as a bioindicator of pollution in 
coastal areas (Mangadze et al., 2019; Eriksen et 
al., 2021). Among all benthic taxa, polychaetes 
are often the most abundant taxonomic group in 
estuarine ecosystems and are key elements in es-
tuarine and coastal diets [Nogueira et al., 2023]. 

This study aims to assess the ecological risk 
of Cu and Pb heavy metal concentrations in water, 
sediment, and polychaeta in coastal areas affected 
by aquaculture, urban rivers, and ports. The choice 
of Cu and Pb for water analysis is influenced by 
their potential environmental impact and their rel-
evance to human health. These metals are com-
monly monitored in water quality assessments 
due to their toxicity and potential to contaminate 
water sources. Lead, in particular, is known for its 
harmful effects on the nervous system and other 
organs, especially in high concentrations. This as-
sessment uses a geochemical approach such as the 
bioconcentration factor (BCF), geoaccumulation 
index (Igeo), contamination factor (CF), and pol-
lution load index (PLI), which function for qual-
ity interpretation and evaluation of anthropogenic 
influences on sediments and biota [Mugoša et al., 
2016]. The author wants to emphasize the fact that 
this type of research on water quality, sediment, 
and biota at three different locations based on pol-
lution sources was conducted for the first time in 
South Sumatra. A combination of ANOVA statisti-
cal methods and various geochemical approaches 
is used to assess the distribution of heavy metals, 
which can later be applied to other similarly con-
taminated coastal areas.

MATERIALS AND METHOD

Study area and sampling

This research was carried out from July to 
December 2021. Water, sediment, and poly-
chaeta were taken at three locations with five dif-
ferent stations from around the industrial area: 
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the Banyuasin coast of South Sumatra, which 
includes the Barong River, Musi River Estuary, 
and Tanjung Api-api port (Figure 1). Stations 1 
to 5 were affected by aquaculture activities in the 
Barong River area and were also included in the 
Sembilang National Park conservation area (Ro-
zirwan et al., 2022). Stations 6 to 10 were affect-
ed by urban rivers with various activities such as 
air transportation, fishing areas, agricultural ac-
tivities, and community organizations around the 
Musi River Estuary (Saputra et al., 2022; Rozir-
wan et al., 2021a). Stations 11 to 15 were affected 
by port activities such as ship services, handling 
of loading and unloading of crates, embarkation 
and disembarkation of passengers, and stacking 
services (Rozirwan et al., 2022a; Rebai et al., 
2022; Rozirwan et al., 2023b).

Water samples were taken at each station and 
preserved by adding nitric acid (HNO3) until the 
pH was <2. Sediment and polychaeta were taken 
using a grab pipe (30×10 cm) weighing as much 
as 250 g (Rozirwan et al., 2021b). The samples 
that had been taken were then stored in the cool-
box. Sample identification has been carried out 
at the Marine Bioecology Laboratory. Sample 
preparation and destruction have been carried out 
at the Oceanography and Marine Instrumentation 
Laboratory, Department of Marine Science, FMI-
PA, Sriwijaya University, and analysis for con-
centrations of Pb and Cu has been carried out at 

the UPTD of the South Sumatra Provincial Land 
and Environment Service.

Environmental parameters

Water quality measurements were carried out 
in situ with three repetitions consisting of temper-
ature, salinity, dissolved oxygen (DO), and pH. 
Grain size analysis was carried out using the sieve 
shaker method [Romano et al., 2017]. In deter-
mining the type of sedimentary substrate, includ-
ing sand, gravel, silt, and clay, using Shepard’s 
triangle analysis with Microsoft Excel V.2019 
(EpiGear Intl, Queensland, Australia)[Kusuman-
ingtyas, 2023].

Sample preparation and destruction

The water sample preparation stage was car-
ried out by filtering using 0.45 µm Whatman paper 
[Agasti, 2021]. Meanwhile, sediment preparation 
was done by cleaning it from foreign objects, dry-
ing it in an electric oven at 60°C for 30 minutes, 
grinding it into powder until it had fine particles, 
and storing it in a polyethylene bottle [Smeds et 
al., 2022]. Next, the polychaeta samples were 
cleaned and crushed using a pestle and mortar 
[Rapi et al., 2020]. Destruction that has been car-
ried out using wet destruction refers to (Gao et al., 
2021; Rizk et al., 2022). Put 50 mL of the water 

Figure 1. Map of sampling locations
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sample into the Erlenmeyer and add 5 mL of 
HNO3, then heat it with a C-MAG HS 7 hotplate 
stirrer until the water sample reaches 15–20 mL. 
Furthermore, the sediment is destroyed by acid by 
putting ± 3 g of sample into the Erlenmeyer and 
adding 25 ml of distilled water to be heated on a 
hotplate at a temperature of 105–120°C. Mix 5 
mL of HNO3 and wait until the volume reaches 10 
mL. After removing and cooling, add 5 ml of con-
centrated HNO3 and 1 ml of HClO4. The sample 
was heated again until white smoke appeared and 
was clear, followed by heating for 30 minutes. 
After cooling, it was filtered using quantitative 
filter paper with a pore size of 8.0 µm.

The destruction of polychaeta samples was 
carried out by wet destruction to determine heavy 
metal elements [Moltedo et al., 2019]. The sam-
ple that was weighed is put into an Erlenmeyer, 
and HNO3 (5–10 ml) and H2O2 (2 ml) are added. 
Digestion is carried out by setting up a micro-
wave program. The digests were transferred to 50 
mL vials with ultra-distilled water and stored in 
polyethylene containers at room temperature un-
til further measurement.

Atomic absorption spectroscopic 
measurement 

Measurement of the concentration of heavy 
metals Pb and Cu using an atomic absorption 
spectrophotometer (Shimadzu AA-7000) with a 
wavelength of 283.3 nm for Pb and 324.7 nm for 
Cu (Zhong et al., 2016; Susilowati et al., 2022).

DATA ANALYSIS

Quality standards

The concentrations of heavy metals in wa-
ter, sediment, and polychaeta obtained from the 
analysis results were further compared with the 
quality standard values (Table 1).

ECOLOGICAL RISK ASSESSMENT

Bioconcentration factor (BCF)

Metal absorption by biota from sediments 
occurs through a process known as bioaccumula-
tion. The BCF value is used to determine metal 
bioaccumulation in polychaeta from sediments 
[Almahasheer, 2019]. 

	
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐵𝐵𝐵𝐵𝐵𝐵) = 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 
(1) 

 
 
I geo = Log 2 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠t

1.5.𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ) (2) 
 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐶𝐶𝐶𝐶) = 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  

 
(3) 

 
Pollution load index (PLI) =  
[ Cf1 x Cf2 x Cf3... x Cfn] 𝟏𝟏/𝒏𝒏

 
 

	 (1)

where: BCF < 1 implies that polychaeta is an ex-
cluder; BCF = 1 implies that polychaeta 
is an indicator; and BCF > 1 implies that 
polychaeta is a hyperaccumulator.

Geoacumulation index (Igeo)

Igeo quantitatively evaluates the extent of 
heavy metal contamination and assigns pollu-
tion levels according to the classification criteria 
(Zhang et al., 2021; Xie et al., 2022b). 
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1.5.𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ) (2) 
 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐶𝐶𝐶𝐶) = 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  

 
(3) 

 
Pollution load index (PLI) =  
[ Cf1 x Cf2 x Cf3... x Cfn] 𝟏𝟏/𝒏𝒏

 
 

	 (2)

where: Igeo value criteria: Igeo < 0 = not pol-
luted; 0 < Igeo < 1 = slightly polluted; 1< 
Igeo < 2 = moderately polluted; 2 < Igeo 
3 = severely polluted; 3 < Igeo < 4 = se-
verely polluted; 4 < Igeo < 5 = extremely 
polluted; Igeo > 5 = extremely severely 
polluted (Xie et al., 2022b).

Contamination factor (Cf)

A contamination factor is a condition in which 
something is polluted by another element that has 
a certain effect [Antoniadis et al., 2019].
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1.5.𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ) (2) 
 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝐶𝐶𝐶𝐶) = 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  

 
(3) 

 
Pollution load index (PLI) =  
[ Cf1 x Cf2 x Cf3... x Cfn] 𝟏𝟏/𝒏𝒏

 
 

	(3)

where: contamination Factor criteria according to 
[Shaheen et al., 2017]: Cf <1 = low level 
of contamination; 1<Cf< 3 medium level 

Table 1. Heavy metal quality standards
Sample Pb Cu References

Water (mg/L) 0.0044 0.0013 [ANZECC and ARMCANZ, 2000]

Sediment (mg/kg) 50 65 [ANZECC and ARMCANZ, 2000]

Polychaeta (mg/kg) 0.12 3.28 (IAEA, 2003)
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of contamination; 3<Cf<6 = enough level 
of contamination; Cf>6 = contamination 
level is very high.

Pollution load index (PLI)

The pollution load index is used to determine 
the quality of pollution. The pollution load in-
dex value uses the formula (Shaheen et al., 2019; 
Singh et al., 2020).

	 Pollution load index (PLI) =	

	 [Cf1 × Cf2 × Cf3 ... × Cfn] 𝟏/𝒏	 (4)

where: criteria for pollution load index (PLI): 
PLI<0 = not polluted; PLI 0–2 = not 
polluted to slightly polluted; PLI 2–4 = 
moderately polluted; PLI 4–6 = severely 
polluted; PLI 6–8 =severely polluted; PLI 
8–10 = extremely polluted.

Statistical analysis 

The data were tested for homogeneity of 
variance with the Levene test and for normality 
of distribution with the Shapiro-Wilk test. Sig-
nificant differences within each region by pollu-
tion source were assessed by one-way analysis 
of variance (ANOVA), followed by a post-hoc 
Tukey test if the conditions were met (Dolagaratz 
et al., 2018). The level of significance was p < 
0.05. All statistical analyses were performed us-
ing the IBM SPSS V.26 application.

RESULTS

Environmental parameters

The results of measuring the quality of the 
aquatic environment at three different locations 
have various values (Table 2). The DO and pH 
values at the study sites varied quite a lot, with 
a range of 4.67–7.34 mg/L and 6.35–8.10 cate-
gorized as normal and evenly distributed across 
all observation stations. Salinity values varied, 
with a range between 0 and 25 PSU. Based on 
the results, the lowest salinity value was found at 
station 6, namely 0 PSU, and the highest salinity 
was found at station 2, which was 25.0 PSU. The 
temperature measurement results obtained ranged 
from 24.35 to 30.3 °C. The results of determining 
the type of substrate at three locations with the 
highest percentage of sediment fraction at each 
station were dominated by clay. 

The chemical physics of the aquatic environ-
ment plays an important role in the survival of 
fish, invertebrates, and all organisms in the wa-
ter. Anthropogenic-induced release of inorganic 
nutrients impacts water quality and affects mac-
roinvertebrate communities [Duque et al., 2022]. 
Dissolved oxygen, pH, salinity, and temperature 
have varied measurements at each observation 
station, which are influenced by aquaculture, ur-
ban river, and port activities. Dissolved oxygen 
in the study area is still relatively good as a place 
for aquatic organisms to live. Bozorg-Haddad et 

Table 2. Water environment quality parameters

Stations Dissolved oxygen
(mg/L) Acidity Salinity

(PSU)
Temperature

(°C) Substrate type

1 7.34 ± 0.05 7.93 ± 0.06 24.67 ± 0.58 28.07 ± 0.12 Clay

2 6.87 ± 0.15 8.10 ± 0.10 25.00 ± 0.50 28.8 ± 0.20 Sand

3 6.81 ± 0.02 7.90 ± 0.01 23.33 ± 0.58 29.17 ± 0.29 Clay

4 5.88 ± 0.08 7.87 ± 0.15 21.33 ± 1.15 29.3 ± 0.61 Clay

5 5.86 ± 0.06 8.07 ± 0.12 20.67 ± 0.58 30.3 ± 0.61 Clay

6 4,81 ± 0.10 6.47 ± 0.03 0 24.38 ± 0.04 Clay

7 5.15 ± 0.03 6.35 ± 0.09 1.10 ± 0.10 24.43 ± 0.05 Clay

8 6.75 ± 0.09 7.10 ± 0.07 0.90 ± 0.10 24.35 ± 0.12 Sand

9 5.99 ± 0.14 6.99 ± 0.15 5.00 ± 0.30 25.19 ± 0.04 Clay

10 6.58 ± 0.52 6.98 ± 0.14 5.53 ± 0.15 25.41 ± 0.04 Sand

11 5.11 ± 0.25 6.85 ± 0.04 1.80 ± 0.00 24.38 ± 0.04 Clay

12 5.11 ± 0.25 6.85 ± 0.04 1,80 ± 0.00 24.43 ± 0.05 Clay

13 5.11 ± 0.25 6.85 ± 0.04 1.80 ± 0.00 24.35 ± 0.12 Clay

14 4.67 ± 0.33 6.77 ± 0.06 1.80 ± 0.00 25.19 ± 0.04 Clay

15 6.02 ± 0.10 6.81 ± 0.09 1.80 ± 0.00 25.41 ± 0.04 Clay
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al. (2021) reported that most aquatic plants and 
animals require oxygen to survive and cannot sur-
vive in water with dissolved oxygen less than 5 
mg/L. The higher the DO level, the more the mac-
rozoobenthos can carry out their biological and 
physiological functions properly so that they can 
grow and develop (Duque et al., 2022; Bonifazi et 
al., 2023). The high and low pH were influenced 
by the fluctuations of oxygen and carbon dioxide 
in the waters. The area affected by port activity at 
stations 11–15 has a lower pH because it is influ-
enced by Bangka Strait water input. This is con-
sistent with [Rugebregt and Nurhati, 2020] The 
pH is increasing toward the open sea.

The lowest salinity value is in the port area. 
According to (Rozirwan et al., 2022) that the sa-
linity around the area varies. This is because the 
influence of fresh water and seawater is very fluc-
tuates depending on conditions at high and low 
tides. Water temperature values tend to be high in 
aquaculture areas. This is related to the infiltration 
of sunlight into the surface and deeper layers and 
the movement of water masses (Sui et al., 2022; 
Li et al., 2022). The distribution of polychaeta 
can be affected by changes in salinity in the es-
tuary area, which will result in a decrease in the 
number of macrobenthos (Liu et al., 2023). The 
clay substrate is the type of substrate favored by 
polychaeta. According to Ryabchuk et al., (2020) 
clay is a substrate that strongly supports the life of 
polychaeta. The smooth substrate has a stronger 

ability to bind organic matter compared to the 
coarser substrate (Chenot et al., 2017; Rizqydiani 
et al., 2018; Huang and Gu, 2019). The smooth-
er the sediment, the greater the strength to bind 
heavy metals [Özşeker et al., 2022].

Description of polychaeta

The polychaeta species found in the field is 
Neoleanira tetragona (Figure 2). Polychaetes-
Polychaetes found in the field are morphological-
ly characterized by segmented bodies (metamer), 
which are red, antennae on their heads, and many 
legs all over their bodies (chaetae).

Polychaeta found at observation stations live 
in and on the surface of the sediments. The re-
search location is domiciled in a mangrove for-
est community with a mud substrate type [Fitria 
et al., 2023]. At this research location, birds were 
also found looking for food in the form of poly-
chaeta (Rozirwan et al., 2022). The diversity of 
polychaeta is highest and most abundant in ma-
rine or estuarine habitats and decreases in fresh-
water habitats (Quirós-Rodríguez et al., 2023; 
Kohlenbach et al., 2023). Polychaeta also has an 
important role in determining environmental fer-
tility and is also used as biomonitoring of marine 
health for indicators of organic pollution (Qu et 
al., 2016; Kies et al., 2020). Phylum Annelida 
inhabits marine, freshwater, and terrestrial habi-
tats, ranging in size from microscopic to several 

Figure 2. Morphology of polychaeta (Neoleanira tetragona). (a) body parts (50 mm size),
 (b) head parts (15 mm size), (c) Antenna (10 mm size), (d) Chaeta
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meters, and includes highly motile swimmers or 
crawlers as well as tube-dwelling and tube-dwell-
ing species [Schulze, 2023]. In particular, poly-
chaetes were commonly used in ecotoxicological 
studies because of their abundance, easy capture, 
and assimilation of heavy metals from sediments 
through their skin and gut (Dolagaratz et al., 2018). 

Heavy metals concentration

The concentrations of heavy metals Pb and 
Cu in water, sediment, and polychaeta from three 
areas affected by aquaculture, urban rivers, and 
ports are summarized in Figure 3. The concentra-
tion of the heavy metal Pb in water ranged from 

Figure 3. Heavy metal concentrations of Pb and Cu (median with min and max, n = 3), 
A: Water, B. Sediment, C. Polychaeta (Neoleanira tetragona). Significant differences among 

affinity groups are represented with different letters (p < 0.05). nd: not detected
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not detectable to 0.625 mg/L. Meanwhile, the 
concentration of Cu heavy metal in the water of 
each area was not detected. The concentration of 
heavy metal Pb in sediments ranges from 1,261 
to 11,070 mg/kg. The lowest concentrations were 
found at stations 10 and 12. The concentration 
of Cu heavy metal in the sediment ranged from 
1.930–19.30 mg/kg. The concentration of heavy 
metal Pb in polychaeta ranged from not being de-
tected to 0.0044 mg/kg, while the concentration 
of heavy metal Cu ranged from 0.0003 to 0.0024 
mg/kg. The differences in each area statistically 
using ANOVA and post hoc Tukey (P < 0.05) 
showed that each area was significantly different.

Based on the quality standards [ANZECC 
and ARMCANZ, 2000]. The concentration of 
heavy metal Pb in water has passed the quality 
standard (0.0044 mg/L) at the observation station, 
which is influenced by aquaculture and port ac-
tivities (Figure 3A). While the areas affected by 
urban river activities, in general, did not detect 
Pb metal. Outliers from Pb indicate higher enrich-
ment. Lead (Pb) is a metalloid that is often used 
as a poison (Usman et al., 2020; Silva-Gigante et 
al., 2023). As commonly used in ship transporta-
tion fuel and industrial waste [Chen et al., 2022]. 
Pb enrichment is directly related to anthropogenic 
activity. There are large-scale ports, aquaculture, 
and urban rivers or waste disposal on the Banyua-
sin Coast (Purwiyanto et al., 2020; Almaniar et 
al., 2021). Pb enrichment can cause a decrease in 
ecosystem health (Liu et al., 2022). On the other 
hand, the concentrations of Pb and Cu in sedi-
ments were higher than in water because they had 
accumulated for a long time. According to Yu et 
al., (2022) this could be due to the influence of 
dynamic water conditions.

The concentrations of heavy metals Pb and 
Cu in the sediments obtained did not exceed the 
quality standards (Table 1). This means that the 
sediment in the waters of the study location is still 
classified as a good habitat for the macrozooben-
thos group. Observation stations 11–15 in areas 
affected by port activities have a higher concentra-
tion than aquaculture and urban river areas (Figure 
3B). The port is a place for loading and unload-
ing export-import goods, raising and lowering 
passengers, and inter-island trade so it becomes 
a land-sea coordinated area that is heavily influ-
enced by human activities (Wang et al., 2019). 
These activities can release pollutants into the 
water and sediments (Lim et al., 2022). Generally, 
ports are semi-enclosed water areas with limited 

water circulation and slow renewal after being 
polluted. This causes this area to be vulnerable to 
a large accumulation of pollutants, especially in 
sediments, which are considered anthropogenic 
pollution hotspots [Gu and Gao, 2019]. Pollutants 
at observation stations 1–5 in areas affected by 
aquaculture activities are lower than those in port 
areas. This can be caused by sources of pollution, 
which can come from leftover feed and cultivated 
manure in the form of suspended and dissolved 
solids that are transported through the water flow, 
which is a source of organic matter in pond land. 
Other factors can come from the activities of fish-
ing boats transporting pond products (Herbeck 
et al., 2013; Mustafa et al., 2022). Another fac-
tor can come from the activities of fishing boats 
carrying pond products (Prasetiawan et al., 2022; 
Lim et al., 2022). Whereas at observation stations 
6–10, the areas affected by urban river activity 
had concentrations of Pb and Cu metals that were 
not significantly different (P > 0.05) from the cul-
tivation areas. Pollution in the Musi River Estu-
ary is caused by domestic and industrial activities 
[Tjahjono et al., 2022]. Domestic activity is said to 
have more impact than industry. Its condition can 
be seen in organic decay due to household waste 
[Abdel-Shafy and Mansour, 2018]. Not only that, 
Gaete et al., (2017) reported that metal-containing 
residue receptors from anthropogenic activities in 
river mouths have different basin levels.

The results in Figure 3C show fluctuations 
in the concentrations of Pb and Cu metals in the 
polychaeta collected from three different loca-
tions. These data also indicate that the polychaeta 
contains relatively low levels of lead and copper. 
This may be due to environmental conditions and 
the concentration of heavy metals in sediments, 
which is also relatively low. The concentrations of 
the heavy metals Pb and Cu in the polychaeta ob-
tained did not exceed the established quality stan-
dards (Table 1). Each observation station, starting 
from areas affected by aquaculture activities, urban 
rivers, and ports, was not significantly different (P 
> 0.050) for Pb and Cu concentrations. The con-
centration of heavy metals can increase depend-
ing on the environmental conditions of the waters 
(Tchounwou et al., 2012; Briffa et al., 2020; Mitra 
et al., 2022). Heavy metals can move into the bod-
ies of organisms through the food chain [Stein-
hausen et al., 2022]. Apart from going through 
the food chain, heavy metals can enter the body 
of the polychaeta through the habits and diet of 
the polychaeta. Macrozoobenthos has filter feeder 
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Tabel 3. Comparison of Pb and Cu concentrations associated with polychaetes from different locations in the world
Sub factor Location Species Pb Cu Reference

Aquaculture

Banyuasin, South 
Sumatera, Indonesia

Neoleanira 
tetragona

0.0026 – 0.0044 0.0014 – 0.0022 This study

Calimere Wildlife 
Sanctuary, Kodikkarai

Polychaeta 5.4 ± 2.21 0.8 ± 0.21
[Pandiyan et al., 

2021]
The Banyuasin estuary 

shrimp pond area
N. violacea

T. telescopium
0.091 ± 0.143
0.026 ± 0.034

0.006 ± 0.003
0.021 ± 0.006

[Fitria et al., 2023]

Urban river

Banyuasin, South 
Sumatera, Indonesia

Neoleanira 
tetragona

0.0004 - 0.0020 0.0004 - 0.0021 This study

Mar Grande of Taranto 
(Northern

Ionian Sea)

S. spallanzanii
B. luctuosum

B. bairdi

0.383 ± 0.031
0.96 ± 0.012

-

13.9 ± 0.97
29 ± 0.132
14.5 ± 3.75

[Giangrande et al., 
2017]

Mar Piccolo of Taranto 
(Northern Ionian Sea)

M. infundibulum
M. lanigera

0.409 ± 0.018
0.176 ± 0.096

7.79 ± 0.852
5.36 ± 0.613

[Giangrande et al., 
2017]

Aconcagua River 
estuary

Perinereis 
gualpensis

1.3 ± 0.2 112.4 ± 12 [Gaete et al., 2017]

Maipo River estuary
Perinereis 
gualpensis

2.2 ± 0.2 29 ± 0.6 [Gaete et al., 2017]

Catapilco River estuary
Perinereis 
gualpensis

0.3 ± 0.1 13.6 ± 0.8 [Gaete et al., 2017]

Miami, Alexandria 
Coast, Egypt

Pinctada radiata
Brachidontes 

pharaonis
Holothuria polii

0.864 ± 0.608
3.742 ± 2.818
0.677 ± 0.451

0.623 ± 0.272
1.667 ± 0.703
0.940 ± 0.622

[Hamed et al., 
2020]

Port

Banyuasin, South 
Sumatera, Indonesia

Neoleanira 
tetragona

0.0001 - 0.0037 0.0003 - 0.0022 This study

Port of Aveiro,
Portugal’s northwest 

Atlantic coast

Diopatra 
neapolitana

1.07 ± 0.06 - 5.19 
± 0.00

0.55 ± 0.010 - 
26.22 ± 8.99

[Pires et al., 2017]

Termini Imerese 
Harbor

(Sicily, Italy)

S.spallanzanii
M. galloprovincialis

S. plicata

0.05 – 2.21
0.123 ± 0.15

0.337 ± 0.163

0.1 – 2.94
0.252 ± 0.21
1.22 ± 0.92

[Bellante et al., 
2016]

properties that allow it to absorb several heavy 
metals in the waters (Rong et al., 2021; Windarto 
et al., 2023). There are variations in heavy metal 
uptake, which is an indication of the extent to 
which the species is taking up particulate matter 
from the surrounding water and sediments while 
feeding [Dange and Manoj, 2015]. Differences 
in heavy metal content in biota can be caused by 
species, the physiological capabilities of organ-
isms, and environmental conditions (Rajeshku-
mar and Li, 2018; Zaynab et al., 2022). Wang et 
al., (2022) reported that macroinvertebrate com-
munity characteristics have a sensitive response 
to heavy metals in surface water and sediment of 
the Heihe River, which can be used to evaluate 
the status of heavy metal pollution in inland riv-
ers. The content of heavy metals in polychaeta 
has been widely studied based on the source of 
pollution (Tabel 3). The presence of heavy metals 
in polychaeta originates from natural processes 
such as river abrasion and community activities 
such as disposal and household waste markets, 

ship repair, and painting, which are then carried 
by water and accumulated in various aquatic biota 
(Agoro et al., 2020; Zhang et al., 2023; Yozuk-
maz and Yabanlı, 2023). This indicates that the 
accumulation of heavy metals in polychaeta can 
be used as an instrument for monitoring environ-
mental and ecological risks in marine waters.

Ecological risk assessments of 
heavy metals concentration

The results of the ecological risk assessment 
of heavy metal pollution in the aquaculture area 
are summarized in Table 4, the urban river area 
in Table 5, and the port area in Table 6. Overall, 
the results of polychaeta bioconcentration fac-
tor (BCF) from aquaculture areas, urban rivers, 
and harbors in carrying out soil metal bioaccu-
mulation are an excluder for all Pb heavy metals 
(0.0276, 0.0026, 0.0113 ) and Cu (0.0250, 0.0125, 
0.0155). The geo-accumulation index shows un-
contaminated properties for Pb (-1.3458, -2.5823, 
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-1.0097) and Cu (-4.6688, -5.6919, -2.5445). 
Contamination factor (CF) showed enrichment 
of various metals for Pb (-0.9882, 0.2724, and 
0.7509) and Cu (0.0449, 0.0404, and 0.2634), in-
dicating that heavy metal contamination did not 
occur high on the Banyuasin Coastal Shelf. The 
PLI ranges from 0.103796 to 0.4385, which in-
dicates that the quality of pollution in these three 
areas is not polluted. 	

The bioconcentration factor, geoaccumulation 
index, contamination factor, and pollution load in-
dex (PLI) were calculated for the heavy metals Pb 
and Cu, which indicated that they did not experi-
ence a decrease in BCF < 1, Igeo < 0, CF <, and 
PLI < 1). Apart from industrial activities, many 
factors increase the pollution load in coastal areas, 
such as aquaculture, urban rivers, and ports. Sev-
eral previous studies have reported similar find-
ings. [Lyla et al., 2022] reported ecological risk 
assessment from the southwest Bay of Bengal, In-
dia, by heavy metals Mn, Zn, Ni, Cu, and Pb (CF 
= <1, Igeo = <0, Cp = <1, Eir = <40, and RI = <95) 
indicates the nature of waters that are not polluted 

by, while Hg is highly contaminated (CF = 1.538, 
Igeo = >0.04, Cp = <1.6, Eir = <80–>40, RI = 95> 
– <190–190> – <380). The source of mercury is 
traced to nearby industrial waste. 

Water quality assessments often focus on a 
select number of contaminants based on regula-
tory standards, local concerns, or specific risks 
associated with particular pollutants in a given re-
gion. Other similar studies in different geographi-
cal locations was presented in Table 7. Pollution 
levels are being reported by Perumal et al., (2021) 
calculated EF, CF, Cd, mCd, Cp, RI, and Igeo In-
dices on Cu, Zn, Pb, and Cr in the Thondi coastal 
region of the southeastern coast of India induced 
by anthropogenic inputs. In contrast, the evalua-
tion of the high metal pollution load index located 
in the Al-Salam Lagoon (Red Sea) indicates un-
controlled pollution due to anthropogenic impacts 
[Mannaa et al., 2021]. Likewise Iskenderun Bay, 
Turkey, with the risk of ecological contamination 
[Kutlu et al., 2021]. Dong et al. (2023) reported 
status of habitat quality (EcoQs) shows that al-
though several locations in Laoshan Bay have 

Table 4. The results of ecological risk assessment of heavy metal concentrations from areas affected by aquaculture

Station
BCF Igeo Cf

PLI
Pb Cu Pb Cu Pb Cu

1 0.0225 0.0040 -1.1111 -4.9131 0.6767 0.0498 0.185935

2 0.0350 0.0049 -1.1484 -5.3383 -1.1484 0.0371 0.158393

3 0.0362 0.0046 -1.1028 -3.0985 -1.1028 0.0398 0.166727

4 0.0150 0.0075 -1.8853 -4.5766 -1.8853 0.0629 0.159766

5 0.0294 0.0040 -1.4811 -5.4178 -1.4811 0.0351 0.137311

Min 0.0150 0.0040 -1.8853 -5.4178 -1.8853 0.0351 0.137311

Max 0.0362 0.0075 -1.1028 -3.0985 0.6767 0.0629 0.185935

Average 0.0276 0.0250 -1.3458 -4.6688 -0.9882 0.0449 0.161626

Stdv 0.0089 0.0015 0.3400 0.9412 0.9821 0.0115 0.017479

Tabel 5. The results of ecological risk assessment of heavy metal concentrations from areas affected by urban river

Station
BCF Igeo Cf

PLI
Pb Cu Pb Cu Pb Cu

6 0.0043 0.0034 -2.1146 -4.6455 0.3464 0.0599 0.144074

7 0.0013 0.0009 -2.4119 -5.1296 0.2819 0.0428 0.109897

8 0.0019 0.0059 -2.2328 -4.8694 0.3191 0.0513 0.127966

9 0.0031 0.0020 -2.2574 -5.0728 0.3137 0.0446 0.118247

10 0.0026 0.0003 -3.8947 -8.7423 0.1008 0.0035 0.018794

Min 0.0013 0.0003 -3.8947 -8.7423 0.1008 0.0035 0.018794

Max 0.0043 0.0059 -2.1146 -4.6455 0.3464 0.0599 0.144074

Average 0.0026 0.0125 -2.5823 -5.6919 0.2724 0.0404 0.103796

Stdv 0.0011 0.0022 0.7413 1.7158 0.0986 0.0217 0.049188
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Tabel 6. The results of ecological risk assessment of heavy metal concentrations from areas affected by port

Station
BCF Igeo Cf

PLI
Pb Cu Pb Cu Pb Cu

11 0.0120 0.0040 -1.0097 -2.7093 0.7450 0.2294 0.4134

12 0.0014 0.0092 -0.7602 -2.9727 0.8856 0.1911 0.4114

13 0.0357 0.0281 -0.9574 -2.6719 0.7725 0.2354 0.4264

14 0.0000 0.0125 -1.3335 -2.0958 0.5952 0.3509 0.4570

15 0.0077 0.0238 -0.9878 -2.2729 0.7563 0.3104 0.4845

Min 0.0000 0.0040 -1.3335 -2.9727 0.5952 0.1911 0.4114

Max 0.0357 0.0281 -0.7602 -2.0958 0.8856 0.3509 0.4845

Average 0.0113 0.0155 -1.0097 -2.5445 0.7509 0.2634 0.4385

Stdv 0.0145 0.0101 0.2064 0.3542 0.1036 0.0653 0.0315

Table 7. Study of heavy metals Pb and Cu in some characteristics of aquatic environment
Location Sources of Pb and Cu Ecological risk implications References

Winongo River, 
Indonesia

Urban, highway, 
fishery

The level of heavy metal pollution were classified as low, 
medium to high. However, the heavy metal content of 
water and sediment in the Winongo River must still be 
monitored because it was used for agriculture, household 
purposes, and fisheries.

[Fadlillah et al., 2023]

Houjing River, 
Taiwan Industrial

Surface water and sediments showed signs of heavy 
metal contamination. This required treatment technology 
to improve water and sediment quality.

[Hoang et al., 2020]

Pearl Estuary, 
China Industrial and urban

Ecological risks of metals to aquatic organisms 
decreased from the estuary to the sea. Cu had higher 
risk to ecosystem health than other metals

[Niu et al., 2021]

Yangtze 
Estuary, China Urban anthropogenic

All sampling sites experienced mild to moderate 
pollution, respectively, and had a moderately high to 
high ecological risk of causing changes in microbial 
community composition

[Yi et al., 2021]

Tianjin Sea, 
North China

Marine transportation, 
ports, aquaculture, 

and metal fabrication
Adversely affect ecological systems and human health [Han et al., 2021]

Abu Zenima 
Sea, Egypt

Gypsum and 
manganese 

industries, kaolin 
deposits, urban 

sewage, and coastal 
irrigation

Pose a high risk to marine mollusks and affects the food 
chain

[Nour and El-Sorogy, 
2020]

Palk Bay, 
South India

Urban sewage, 
domestic sewage 

disposal, fishing port 
activities, industrial 

sewage, aquaculture

Impacted the entire food chain in the marine ecosystem. [Perumal et al., 2021]

Laosan Bay, 
China

Natural and 
anthropogenic Potential risks to the health of the Laosan Bay ecosystem [Jin et al., 2023]

Honghu Lake, 
Liangzi Lake, 

Daye Lake 
and East Lake 
are located on 
the Jianghan 
Plain, China

Agriculture, 
transportation, and 
chemical industry

Disruption of heavy metal pollution control in lakes with 
high human activity loads [Wang et al., 2023]

relatively high levels of heavy metal (Hg and Cd) 
pollution due to its semi-enclosed nature in the 
Yellow Sea facing various external pressures, in-
cluding increased metal pollution weight in seawa-
ter and sediment and the expansion of land-based 

ponds, vessel (seaweed) and fish farming, and 
port operations. This ecological risk assessment of 
heavy metal pollution is very helpful in describ-
ing the environmental status. Moreover, by using 
this index, the trend of load pollution from time to 
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time can be understood. Based on the pollution sta-
tus, stakeholders can formulate appropriate control 
measures [Goher et al., 2017].

CONCLUSIONS 

Total concentrations of Pb and Cu were eval-
uated statistically to have significant differences 
(P < 0) in water and sediment samples collected 
from areas affected by aquaculture, urban rivers, 
and Meanwhile, the polychaeta of each area did 
not differ significantly (P > 0). The concentra-
tion of Pb in the water at all stations exceeded 
the quality standard that had been set; Cu was not 
detected. Pb and Cu concentrations in sediments 
and polychaeta (Neoleanira tetragona) are still 
below the quality standards. The levels of Pb and 
Cu contamination in sediments and polychaeta 
were also evaluated by bioconcentration factor, 
geoaccumulation index, contamination factor, 
and ecological risk assessment. The observed 
heavy metals Pb and Cu did not accumulate in the 
polychaeta; the concentrations of Pb and Cu were 
found to be low in the sediment, resulting in no 
significant ecological risk.
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