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INTRODUCTION

The adverse impact of climate change on 
water availability has increasingly ignited inter-
est on wastewater reclamation and enhanced the 
efforts to explore innovative ways to save water 
resources for next generations [1, 2]. The removal 
of hazardous dyes from industrial wastewater is 
an increasingly critical concern in environmental 
science and engineering. Dispersed Red 17 Dye, 
a common organic dye used in industries such 
as textiles and dyeing due to high compatibility 
with hydrophobic fiber [3], poses a significant 
threat to both the environment and human health 
unless effectively eliminated from aqueous solu-
tions [4, 5]. Around (280,000 tons/year) of dyes 
are being discharged into wastewater streams [4, 
5].  In response to this challenge, Fenton process 

has been employed successfully to remove vari-
ous refractory substances from wastewater [5, 
6]. A well-known advanced oxidation process 
(AOP) is powerful oxidative for the removal of 
recalcitrant organic contaminants from water and 
wastewater, the Fenton process is a efficient and 
versatile technique. The Fenton technique offers 
a glimmer of hope in an era where environmen-
tal pollution is becoming an increasingly press-
ing globally concern. It is depending on a simple 
chemical process that generates hydroxyl radi-
cals (OH*), which is one of the most powerful 
oxidative species recognized to technology. Nu-
merous organic substances, such as, dyes, can be 
efficiently oxidized by these radicals converting 
them to harmless and non-toxic to the ecosystem. 
Because of its effectiveness in breaking down 
prolonged pollutants, which includes industrials 
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dyes, pharmaceutical residues and new toxins, the 
Fenton process is becoming more and more fa-
mous and useful in the fight for eco-friendly wa-
ter and wastewater treatment [2, 7]. Despite the 
high performance of AOP, the main drawback, 
however, is the elevated cost of application due 
to using chemical reagents in this process. The 
use of hydrogen peroxide (H2O2) and ultraviolet 
(UV) light in large-scale applications of water 
wastewater treatment can indeed raise environ-
mental and safety considerations. For that reason, 
it is important to carefully assess and mitigate the 
potential risks associated with these technologies, 
even though H2O2 has been reported as a green 
oxidant [8]. The efficiency of AOP was investi-
gated through experimental work and systematic 
analysis of the role of the intensity of applied UV, 
mixing speed, H2O2 doses, Fe+2 concentration, 
and contact time.  

PROPOSED GENETIC CASCADE-
FORWARD NEURAL NETWORK

In order to achieve feasible and cost-ef-
fective ways to investigate the performance of 
AOP, researchers have turned to advanced tech-
nologies, particularly integrated artificial neural 
networks (ANNs) with genetic algorithms (GA), 
as a promising approach for modeling and opti-
mizing the removal of these dyes from water [9]. 
The application of genetic cascade-forward neu-
ral network (GCNN) in wastewater treatment 
represents a cutting-edge approach to optimiz-
ing and enhancing the efficiency of water puri-
fication processes [10]. GCNN is a novel archi-
tecture that influences the power of genetic al-
gorithms to evolve and optimize neural network 
structures, allowing for the automatic discovery 
of complex and efficient network architectures 
(Figure 1). This approach holds promise for ad-
dressing the challenges of feature selection, net-
work design, and hyperparameter tuning, which 
are often labor-intensive and time-consuming 
processes in traditional neural network develop-
ment [11]. By integrating the principles of evo-
lution and selection, GCNNs have the potential 
to revolutionize the field, providing efficient and 
customized solutions for a wide range of tasks, 
from pattern recognition to predictive model-
ing, and ultimately advancing the frontiers of 
artificial intelligence. The GCNN is adaptive for 
the studied application, where the inputs were 

considered as: H2O2, UV, Fe+2, mixing speed and 
contact time, and the output was assigned for 
removal efficiency. In addition, the numbers of 
utilized hidden neurons, connection weights and 
layer can be considered suitable according to the 
proposed method of GCNN. Such numbers are 
varied and may not be sufficient for other tra-
ditional ANN models. By employing GCNN-
based modeling, this study sought to contribute 
to more effective and sustainable solutions for 
treating industrial wastewater, thereby safe-
guarding the environment and human well-be-
ing. GCNN has obtained the outcomes that can 
provide insight overview for the case of cost-
effectiveness after considering all accountable 
cost requirements. Moreover, this model can be 
adapted or expanded by considering the required 
inputs and output, then, training the new model 
and – consequently – testing the trained model.

Importance equation

The importance equation of a neural network-
based approach is a fundamental concept in un-
derstanding the inner workings and decision-
making processes of these complex machine-
learning models. This equation helps reveal the 
significance of each input feature in the output of 
the neural network, allowing researchers to iden-
tify which features have the most substantial in-
fluence on the model’s predictions. By assigning 
importance scores to input features, the equation 
aids in feature selection, model interpretability, 
and fine-tuning, enabling data scientists and re-
searchers to focus on the most relevant factors. 
This knowledge not only enhances the model’s 
performance but also provides valuable insights 
into the relationships between input variables, 
ultimately advancing scientists understanding of 
the neural network’s decision-making logic. The 
importance equation, often computed through 
techniques like feature importance scores or gra-
dient-based methods, plays a crucial role in vari-
ous applications and a key component in optimiz-
ing the efficiency and accuracy of neural network 
models. The importance equation that used in this 
study (Eq. 1) was derived from in some previous 
publications for the employed cascade-forward 
neural network [12]. The effect of each variable in 
the removal process was isolated by eliminating 
the redundant parameters and maintaining the pa-
rameters of a certain input. In other words, these 
are attained by implementing equation (1).    
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	(1)

where:	Ni and Nh are the numbers of input and 
hidden neurons, respectively; w’s are 
connection weights; superscripts ‘i’, ‘h’, 
and ‘o’ denote input, hidden, and output 
layers; subscripts ‘k’,’m’, and ‘n’ denote 
input, hidden, and output neurons; and Ij 
is the relative importance of the jth input 
variable on output variable [12].

This research aimed to explore the applica-
tion of GCNNs as a powerful tool in the model-
ing of Dispersed Red 17 Dye removal, offering 
insights into the intricacies of this removal pro-
cess and the potential for improving its efficien-
cy. The only drawback associated with this study 
is that it has a limitation of requiring additional 
memory size and additional computations for 
the connection weights between the inputs and 
output. However, this point can be sorted out by 
simply employing a computer machine with suf-
ficient or high characteristics. Moreover, in fu-
ture it can be suggested that other optimization 
methods can be applied instead of genetic algo-
rithm such as Red Fox optimization (RFO) and 
Polar Bear optimization (PBO).

MATERIALS AND METHODS

A series of experimental work was done to in-
vestigate the effect of hydrogen peroxide (H2O2), 
ferrous sulfide heptahydrate (FeSO4.7H2O), UV 

light, contact time and mixing speed on removal 
efficiency of Disperse red 17 dye (C17H20N4O4). 
The concentrations of H2O2 were (0, 0.5, 1.5, 
3, and 5) mM/L while the concentrations of 
FeSO4.7H2O were (0, 0.4, 1, 1.7, and 2.3) mM/ 
L. Three different intensities of UV light were 
applied (0, 20, and 40) Watt to enhance the AOP 
process. Different mixing speed was also applied 
(100, 200, and 300 rpm) to further improve the 
contact between chemicals and dye. The role of 
contact time was also investigated in this study 
by measuring the removal efficiency after a wide 
range of time (5,7, 10, 15, 20, 30, 35, 60) minute. 
The residual dye in solution was detected using 
UV spectrophotometer at wavelength of 464 nm. 
For the purpose of comparison, the GCNN has a 
great advantage over classical backpropagation 
neural network and cascade-forward neural net-
work. That is, it is not deceived by the local error 
problem during the training phase. Conversely, 
both classical backpropagation and cascade-
forward neural networks can be tricked by such 
problem. This is due to the optimization ability 
of GA in overcoming the problems of local errors 
and go efficiently toward the global error.

Fitness function

The fitness function of the proposed GCNN 
approach considers obtaining the minimum error 
between the targets and outputs of the cascade-
forward neural network. It basically produces the 
investigated weights that provide minimum error 
value. Thus, the fitness function can be represent-
ed by the following equation (Eq.2).

Figure 1. Suggested cascade-forward neural network for predicting the output of removal 
efficiency from the inputs of H2O2, UV, Fe+2, mixing speed, and contact time
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where: E(W) is the fitness function of the genet-
ic algorithm and it represents the error 
function of all cascade-forward neural 
network weights; W, S is the number of 
available training vectors, Tq is a provid-
ed target for qth training vector and Yq is 
a cascade-forward neural network output 
for the same qth training vector.

Other genetic algorithm factors for the pro-
posed GCNN were set as follows: population size 
(number of utilized chromosomes in each genera-
tion) of 200, fitness scaling of type top (consider-
ing the top evaluated fitness values), selection of 
type stochastic uniform, cross-over of type scat-
tered, mutation of type adaptive feasible and stop-
ping criteria for the value fitness limit of 0.177. 
The produced values of weights were used to 
test or predict the GCNN, but this time by using 
the testing vectors. The principles of the testing 
procedure of the cascade-forward neural network 
with its final weights can be investigated in previ-
ous publications [12, 13].
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GCNN is developed by training its weights 
according to the genetic algorithm. It is validated 
by applying the obtained weights in the testing 
phase, which shows valuable outcomes. A testing 
process is carried out to assess the correctness of 
the neural network after the training phase. It has 
one phase, the same as the feed forward stage of 
the training algorithm. Neither input data analysis 
nor output enhancements are being carried out at 
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presented below [11]:
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where:	Xi represents the inputs (i = 1,2,3,…, n), 
vij stands for the connection weights be-
tween the input and hidden neurons, Zj is 

the function calculations of hidden neu-
rons, y_ink denotes the input calculations 
of each output neuron (k = 1,2,3,…, m), 
w0k represents the connection weights be-
tween the bias and output neurons, wjk are 
the connection weights between the hid-
den and output neurons, vwik represents 
the additional connections between the 
input and output neurons in the central 
feature network (CFN), and yk are the 
function calculations of output neurons.

RESULTS AND DISCUSSIONS 

The results of the study are crucial in under-
standing the potential of the proposed GCNN in-
novative optimization approach. The investiga-
tion included various factors affecting the removal 
process, such as H2O2 concentration, FeSO4.7H2O 
concentration, intensity of UV light, contact time 
and mixing speed providing valuable insights into 
the intricate dynamics of the system. Furthermore, 
the study discussed the practical implications of 
the ANN-based modeling, highlighting its poten-
tial for real-world applications in water treatment 
and environmental protection. The discussion of 
the results highlighted several key points:

Predictive accuracy

A robust correlation (0.955) has been ob-
served between the anticipated and experimen-
tal removal efficiency, as illustrated in Figure 2. 
The results of the study probably show that the 
GCNN model has a high level of predicting accu-
racy. This indicates that the model can accurately 
predict how well the dye removal method will 
work in various scenarios. This is an important 
point since it shows that GCNNs may be able to 
provide an accurate tool for assessing the removal 
effectiveness of Disperse red 17 dye without the 
need for lengthy and laborious tests.

Influence of input variables 
on dye discoloration  

The relative significance of several input vari-
ables that affect the dye removal process is clari-
fied by the importance analysis results. Using this 
information, one can determine which variables 
most significantly affect the removal efficiency. 
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Gaining insight into these factors facilitates im-
proved process control and optimization. 

The influence of H2O2 

Table 1 demonstrates that H2O2 had a greater 
influence on the dye removal efficacy compared 
to the other parameters, making it the most sig-
nificant parameter. Additionally, as seen in Fig-
ures (3a through 3e), a strong correlation was 
examined between the experimental data and 
the predicted outputs from the GCNN output at 
different H2O2 concentrations (i.e., 0, 0.5, 1.5, 3, 
and 5 mM/L). Although the importance analy-
sis showed that H2O2 was crucial to remove the 
dye from wastewater, the removal efficiency in-
creased by only 5%, from 83% to 88%, when the 
dose of H2O2 was increased by ten times from 0.5 
mM/L to 5 mM/L), it is clear that the concentra-
tion of H2O2 alone has no obvious effect. This 
finding is in agreement with previous studies [7, 
14]. It is commonly recognized that a rise in H2O2 

concentration causes a greater concentration of 
HO˙ radicals, which are what cause the miner-
alization process. Hydrogen peroxide excess, on 
the other hand, decreases the catalytic activity 
because it promotes the interaction of HO˙ with 
peroxide, which lowers the quantity of accessible 
radicals and produces the scavenger effect. When 
there is an excess of H2O2 in the solution, hydro-
gen peroxide breaks down to generate water and 
oxygen (an unproductive process) [15].

The impact of UV

Three UV power levels (0, 20, and 40 W) 
were used to increase the effectiveness of dye re-
moval. Figures 4a through 4c illustrate the influ-
ence of UV on dye discoloration. From experi-
mental results and GCNN output regarding the 
UV influence, it can be concluded that the more 
irradiation may enhance dyes discoloration reac-
tions and lessen their quantity in aqueous solu-
tions [16].

The influence of Fe+2 

In water treatment research, the impact of 
ferrous iron (Fe+2) on wastewater dye removal is 
an important factor. Through a variety of meth-
ods, ferrous iron can be extremely important in 
the elimination of dyes. Coagulation is a popular 
technique in which Fe+2 functions as a coagulant 
to destabilize colloidal particles and promote their 
aggregation. Larger flocs that are easier to sepa-
rate from the water and transport the dye mole-
cules with them are formed as a result. Ferrous 

Figure 2. The correlation between predicted and experimental removal efficiency

Table 1. The importance percentages of studied Input 
parameters

Variable Importance (%)

H2O2 37.01

UV 21.95

Fe2+ 18.03

Speed 16.11

Time 6.90

Total (%) 100
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iron can also take part in redox processes, which 
may result in the reduction of certain color mol-
ecules. The dye may change into a less soluble or 
more readily removed form as a result of this de-
crease. Nevertheless, the kind of dye, the waste-
water pH, and the particular treatment method 
used can all affect how well Fe+2 removes dye. 
Figure (5a through 5e) illustrates the effect of Fe+2 

dosage on the removal effectiveness of Dispersed 
Red 17 Dye was examined by applying various 
doses (0, 0.4, 1, 1.65, and 2.33) mM/L. As the 
dose of Fe+2 increased to 1 mM/L. 

By the time the Fe+2 dose reached 1 mM/L, 
the discoloration efficiency had significantly im-
proved. However, the efficacy of dye removal 
was not significantly affected by the increased 

Figure 3. Experimental results and predicted output from GCNN at different 
H2O2  concentrations (a) 0, (b) 0.5, (c) 1.5, (d) 3, and (e) 5 mM/L
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Fe+2 concentration. This suggests that the optimal 
concentration of Fe+2 was 1 mM/L and that Fe+2 
levels above that have no beneficial effects. The 
results of other published research that indicated 
that the ideal concentration of Fe+2 to eliminate 
dyes from wastewater was approximately 1 mM/L 
are consistent with the conducted study [17].

The role of mixing speed 

The impact of mixing speed on dye removal 
efficiency is a significant factor in many water 
treatment processes and wastewater treatment 
systems. The rate at which a dye reacts with oxi-
dants is dependent on the degree of mixing. The 
impact of various mixing speeds (100, 150, 200, 
250, and 300 rpm) on dye removal efficiency is 
displayed in Figures 6a through 6e. It is evident 
that 150 rpm was the optimum mixing speed to 
achieve higher discoloration efficiency.  Incom-
plete dispersion of the dye molecules, which 

reduces their contact with the treatment chemi-
cals, can result in lower dye removal efficiency. 
Conversely, very vigorous mixing could reduce 
the efficiency of removal by obstructing the oxi-
dation process [18, 19].

The influence of time

An important consideration in the treatment of 
wastewater and water is the effect of contact time 
on dye removal efficiency. The length of time that 
solution is exposed to a treatment agent directly 
affects how well dyes are removed. The longer 
contact times generally provide dye molecules the 
more chances to interact with oxidants, increasing 
the removal effectiveness of the dye. Beyond a cer-
tain point, though, an unnecessarily long contact 
time may not yield a discernible improvement in 
removal efficiency and may even be impracticable. 
Therefore, determining the ideal contact time is 
essential to achieving a balance between effective 

Figure 4.  Experimental results and predicted output from GCNN at 
different speeds UV intensities  (a) 0, (b) 20, and (c) 40 W
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dye removal and treatment system practicality. 
Over time, the discoloration of Dispersed Red 17 
Dye improved significantly for all applied condi-
tions. However, after 60 minutes of interaction 
time, this improvement was not significant. This 
result demonstrates that extending the duration of 
contact beyond sixty minutes has no positive effect 
on removal effectiveness. However, it has been 
noted that the ideal duration of contact for elimi-
nating certain dyes was less than what was found 
in this investigation, suggesting that numerous 

factors, including temperature, pH, and kind of 
oxidant, influence the discoloration of dye [14, 18].

Environmental and industrial implications

Critical insights into the possibilities of this 
technology in water treatment and environmental 
remediation were provided by the findings of this 
work on the modeling of Dispersed Red 17 Dye re-
moval using GCNNs. They showed how accurate 
the model is, how well it can highlight different 

Figure 5. Experimental results and predicted output from GCNN at different 
Fe2+  concentrations (a) 0, (b) 0.4, (c) 1, (d) 1.65, and (e) 2.33 mM/L
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elements, and how useful it is in solving real-world 
problems. The contribution of this study was to 
evaluate the efficacy of AOP in a safe, ecologically 
friendly, practicable, and cost-effective manner.

CONCLUSIONS

The obtained results show that the GCNNs 
strategy may be successfully used to forecast and 
maximize the removal efficiency of this hazardous 

organic dye. The GCNN approach was found to 
have remarkable prediction accuracy, making it 
a viable tool for dealing with dye removal issues. 
The study elucidated the significance of every 
parameter under investigation and demonstrated 
that H2O2 exerted the greatest influence on the dye 
removal efficacy from solution. The results of this 
study established the way for improved and effec-
tive approaches to managing dye pollution, which 
will have a substantial impact on environmental 
sustainability and water quality management.

Figure 6. Experimental results and predicted output from GCNN at different 
speeds (a)100, (b) 150, (c) 200, (d) 250, and (e) 300 RPM
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