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INTRODUCTION

Urbanization processes modify the energy 
balance, since the darker the body, the greater the 
radiation absorbed; this process affects the surface 
and atmospheric energy balance. In urban areas, 
radiation from the sun accumulates on the sur-
face more intensely, compared to rural areas. The 

accumulated energy is released, also intensely, and 
propagates in the atmosphere, impacting the upper 
levels, thus initiating the so-called forced convec-
tion processes [1, 2]. This configuration denotes 
an urban heat island (UHI), in which temperature 
changes are a product of human activities [3, 4]. 
With marked characteristics in mid-latitude cities, 
such as the formation of urban microclimates that 
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3 cities studied, with less monthly variation compared to the surface temperature of the Earth’s surface.
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are warmer than their surroundings [5–7]. Be-
ing of importance since this differentiated local 
warming (urban-rural) can increase the intensity 
and frequency of extreme precipitation events 
[8, 9], as it favors atmospheric turbulence and in-
tensifies precipitation events. The surface urban 
heat island (SUHI) can be defined as the relative 
warming of the surface temperature and is present 
both day and night [10]. This phenomenon is more 
evident in cities with removed or changed forests, 
as it causes an increase in temperature, perceived 
especially in city centers. To study the formation 
of the SUHI, the calculation of the SUHI footprint 
is usually used (influenced by urbanization and lo-
cal climate). However, the SUHI footprint is not 
a determining factor, since in some cases it leads 
to erroneous conclusions [11]. For this reason, it 
must be accompanied by the calculation of SUHI 
intensity (SUHII), which describes the difference 
between urban and suburban temperatures.

The relative thermal contributions influen-
cing SUHI formation are difficult to quantify. 
Well, generally only records from surface stations 
are available, which have limited representation. 
This is because the urban surface is constantly 
modified and this is reflected in the release of 
anthropogenic heat [11]. To understand the for-
mation processes of SUHI, some researchers use 
various techniques such as the use of meteorolo-
gical models, such as the WRF. Since, it makes 
possible the investigation of the impacts of urba-
nization on weather and climate. For example, the 
Weather Research and Forecasting (WRF) Urban 
Canopy Coupling Model (UCM) was developed 
as a tool to study urban environmental problems 
[12–16], even understand the impact of urbaniza-
tion on temperature over long periods [17]. This 
makes it possible to study other phenomena, such 
as the formation of heat islands, such as that carri-
ed out for Singapore, a city with a tropical climate 
where the UHI can reach 5 °C [18].

Another way to study heat islands is by using 
satellite data. Like the one made by [19] who 
based their study on measurements of spectral 
albedo, thermal emissivity and radiative surface 
temperatures, recorded by the moderate resolu-
tion spectroradiometer (MODIS). As soon as, 
[20] uses this database to investigate the forma-
tion of SUHI for continental areas. Another form 
of objective application of MODIS satellite data 
is the study related to the formation of SUHI and 
its relationship with the load of atmospheric aero-
sols and vegetation cover [21]. The advantage of 

this database is due to the fact that it is robust 
data, since the tropical region has abundant cloud 
coverage, which impairs the continuous acquisi-
tion of quality data. Thus, its use is possible for 
the study of SUHI in mega-cities with tropical 
climates [22–28], adequately representing diurnal 
and nocturnal variations [3, 29]. The majority of 
Brazilian states are located in the tropical region. 
Given the territorial extension of this country, it is 
possible to find very noticeable topographic and 
climatic variations, which also affect local envi-
ronmental conditions. As indicated by [10], the in-
crease in temperature is influenced by roughness, 
soil occupation, permeability, physical properties 
of the materials, among other factors. One of the 
main cities of the Amazon, Manaus, a metropolitan 
area with an equatorial climate, is a humid region 
with high temperatures. It presents high intensities 
of diurnal UHI with a trend of 0.33 °C increase per 
decade. While cities such as Belo Horizonte and 
Salvador (with a tropical altitude and coastal cli-
mate, respectively) with similar UHI intensities, 
present a less intense increase trend, 0.23 °C and 
0.14 °C per decade, respectively [30].

Of the traditional ways of estimating the 
SUHII, the Gaussian method stands out, pro-
posed by [31], which fits the SUHI to a Gauss-
ian surface. [31] shows that this method turns 
out to be versatile, especially when it comes to 
mega city studies. Surface heat islands in mega 
cities have greater interannual amplitude, due 
to the growing expansion of their suburban 
regions [32–34]. On the other hand, [25] sug-
gests the Quantile method, based on the analy-
sis of the median and the 95th quantile. This 
methodology is based on the fact that the ur-
banization processes of many cities have been 
inappropriate or not very homogeneous, which 
contributes to the formation of dispersed heat 
nuclei in cities. In this sense, the objective of 
this work is to estimate and verify the impor-
tance of the method used to estimate the SUHI 
intensity calculation. During the period of time, 
between 2001 and 2016, especially interested 
in the metropolitan areas of Belo Horizonte 
(MAB), Manaus (MAM), Salvador (MAS). For 
this, the Gaussian and Quantile methodologies 
proposed by: [31] and [25] respectively, based 
on data acquired from the MODIS satellite and 
results from the WRF model.
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MATERIALS AND METHODS

Study site

The study regions are located in Brazil, as 
shown in Figure 1, from which 3 different regions 
stand out, southeast (AMB), north (AMM) and 
northeast (AMS).

The Brazilian city of Belo Horizonte is loca-
ted at latitude -19.92, longitude -43.94, with an 
average altitude of 760 meters above sea level. Of 
rugged relief, it presents the highest altitudes in 
its southern end, reaching a maximum altitude of 
1506 m. The characteristic climate of this Brazi-
lian state is humid subtropical, hot and temperate, 
with abundant rainfall more intense in summer 
than in winter. Also, there are two well-defined se-
asons in Belo Horizonte due to the influence of air 
masses from mid-latitudes and tropical [35]: dry/
cold season (April to October) and rainy/warm 
season (November to March). In the dry season 
(winter), the area is predominantly influenced by 
the atlantic polar front (APF), the south Atlantic 
subtropical area anticyclone (SASA), and the At-
lantic polar anticyclone (across the Atlantic polar 
mass). The amount of precipitation and RH in the 
rainy season is expected. In general (according to 
the last ten years of recorded data), the prevailing 
wind in the directions in the region are NE to SE; 

the annual mean wind speed and temperature is 2.6 
m/s and ~22 °C (range between 9 °C and 34 °C), 
respectively. Mean annual atmospheric pressure is 
~920 mbar and mean annual RH is ~60%, with 
lower values in July, August and September. Pre-
cipitation rates are typically >50 mm/h in the sum-
mer, and become moderate and light (<3 mm/h) 
in spring/autumn and winter, respectively, with 
~100 total rainy days per year. Meteorological in-
formation according to [36] at 10 and 40 m above 
ground levels from October 2019–September 
2020. During this period, E to SE winds predomi-
nated, with a mean wind speed of 2.4 m/s.  Higher 
temperatures (mean value: 23.1 °C) and precipita-
tion amount (total = 1,817.4 mm) were recorded 
in the wet season (November-March) compared 
to the dry season (mean temperature of 21.1 °C 
and precipitation amount of 216.4 mm), although 
surprisingly high temperatures were recorded 
in September and October (mean value of these 
months = 24.5 °C). The highest daily rainfall vol-
umes (>100 mm/d) were recorded in January, well 
above the annual average for the region. Rainfall 
events had a duration of ~3–4 days, starting with 
low rainfall intensity that gradually increased and 
decreased during the last day.

The Brazilian city of Manaus is located at 
latitude -3.12, longitude -60.03 and mean altitude 
of 100 m, with characteristic relief of plains. The 

Figure 1. Brazil localization in South America, over the map are the states of the studies areas color different 
with. Satellite image of each metropolitan studying areas: AMB (southeast), AMM (north), AMS (northeast)
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climatological behavior of this region has 2 dis-
tinct seasons, dry season from June to October 
and rainy season from November to May. The 
average annual temperature and precipitation are 
26.78 °C and 2277 mm, respectively [37] and the 
accumulated precipitation was 412.8 mm; with 
temperature values in the hottest month (Sep-
tember: 28.3 °C) and the coldest month (Feb-
ruary: 26.7 °C) (Auler et al., 2020; Yu Media 
Group, 2020). The predominant wind direction in 
Manaus is from the east-northeast, with diurnal 
variations due to breeze circulations [38]. 

Salvador, a Brazilian city in the northeastern 
region of Brazil, is located at latitude -12.97, lon-
gitude -38.47 and average altitude of 8 meters.  Its 
characteristic geography is geographically con-
stituted by narrow valleys and plains. The rainy 
period in this region occurs between March and 
July, in general the temperature has little varia-
tion, however, the average temperature decreases 
during the period of heavy rains. The meteorolo-
gical characteristics show a maximum air tempe-
rature of 33.18 °C and a minimum of 25.54 °C 
(period 1980–2019) [39]. 

MODIS sensor

Carried by the TERRA and AQUA satellites, 
the MODIS sensor was launched into orbit in 200 
and is managed by the National Aeronautics and 
Space Administration (NASA). The TERRA satel-
lite provides information about the Earth’s surface 
in wavelengths that include the visible and near-in-
frared spectra distributed over 36 bands [25]. 

MODIS thermal infrared (MODIS TIR) 
channels measure radiation from the top of the 
atmosphere (TOA), from which brightness tem-
peratures can be derived using Planck’s law. 
Land surface temperature (LST) level 2 and 3 
are contained within the MOD11 product, with 
spatial resolution of 1 km and 5 km under clear 
sky conditions. Land surface temperature (LST) 
data are corrected using day-night TIR data pairs 
grouped into seven bands, without knowing the 
water vapor and atmospheric temperature profi-
les with high accuracy [40]. In addition, in order 
to generate more regionally representative urban 
temperature estimates, the three-dimensional rou-
ghness of urban surfaces, whose scale depends on 
satellite images, is considered [10].

Figure 2. Land cover classes for the 3 study areas (AMB, AMM and AMS), 
according to the IGBP classification, for the period of December 2006
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The identification of land cover types, with 
which we were able to identify urban and rural 
land cover. This information was verified with 
the parameters established by the International 
Geosphere-Biosphere Project (IGBP), on the 
MCD12C1 MODIS land cover classes (resolution 
0.05°), which served as a baseline for the identi-
fication and delimitation of urban and rural areas 
and the delimitation of the corresponding borders. 
This project identifies 17 land cover classes de-
fined by the IGBP [41] (example, [23–25, 42–45], 
whose results can be observed in Figure 2.

The satellite data used in our study, with a re-
solution of 5 km, provides a valuable overview of 
urban heat island (UHI) patterns across the study 
areas. However, due to the intricate urban com-
plexity and diverse topography of these regions, 
there are limitations in capturing microclimatic va-
riations within smaller urban zones [46–48]. The 
5 km resolution may overlook significant micro-
climatic variations, particularly in areas with hete-
rogeneous land cover and urban structures. These 

localized variations can be influenced by factors 
such as building density, land use patterns, topo-
graphy, and vegetation cover, which might not be 
fully captured at this spatial scale [49]. While our 
study aims to provide a comprehensive analysis of 
UHIs at a broader scale, it’s essential to recognize 
the potential limitations when extrapolating these 
findings to smaller urban areas within the studied 
cities, as highlighted by different research groups 
[50–52]. Future research using higher spatial reso-
lution satellite data or incorporating ground-based 
measurements could offer more detailed insights 
into these microclimatic variations, thereby en-
hancing the accuracy and reliability of UHI assess-
ments in complex urban environments [53].

Thermal characteristics

The LST data are available on the MODIS 
satellite web page with a spatial resolution of 5 
km. The thermal amplitude was calculated from 
the difference between the temperature value at 

Figura 3. Representation of LST, on the left the surface temperature distribution, on the right 
the thermal amplitude. In both cases the figures represent the average from 2001 to 2016
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each point in the study area minus the minimum 
value found in the LST. The surface surface tem-
perature (LST) and thermal amplitude, for each 
study region, are shown in Figure 3. As shown in 
Figure 3, the SMA is the region with the highest 
temperature among the three regions considered 
in this study. In the WMA we can find thermal 
amplitudes of up to 15 °C, while the maximum 
temperatures are concentrated in the central urban 
region. Similarly, this characteristic is repeated 
for the other metropolitan areas. However, the 
AMS region shows areas of maximum tempera-
tures (35 °C) outside the capital, due to the fact 
that the densest groups of buildings are scattered 
and are formed around the industrial poles. The 
geographical situation of Salvador, located be-
tween the coast of the Atlantic Ocean and the 
Bay of Todos os Santos, presents less variation 
in thermal amplitude. This situation is caused by 
the trade winds, which guarantee an exchange of 
air masses and help to cool the city. Therefore, 
the formation of heat islands is more complex 
than in other cities.

The monthly LST variations for AMB, 
AMM and AMS, Figure 4, show the diurnal and 
nocturnal evolution, for 3 regions of each met-
ropolitan area: urban, border and rural. Being 
surrounded by rock formations AMB (Figure 

4a), acts as a natural barrier to airflow and 
makes heat dissipation less intense. LST in the 
AMB is more intense during the warm months. 
The month of greatest intensity is October, with 
temperatures reaching 34 °C in the interior of 
the rural area, the border region (urban-rural) 
reaching 29 °C and the rural region reaching 30 
°C. Being surrounded by mountain ranges, hea-
ting can be less varied in the cold months. This 
condition is especially observed in June, the 
month with the lowest thermal amplitude; thus, 
the central urban region has 25 °C, the border 
region 23 °C, and the rural region 22 °C. Du-
ring the night period, the temporal evolution of 
the LST presents similar amplitudes for all lo-
cations. The maximums were found in January, 
central urban region with 21 °C, border with 20 
°C and rural with 18 °C; while the minimum 
was found in July, where the urban center rea-
ches 15 °C, border 14 °C and rural 11 °C.

The LST for the WMA, the maximum found 
for each region, urban center, border and rural, 
are 31 °C, 28 °C and 28 °C, respectively, during 
the month of August. The minimums found are in 
February, where the urban center, border and rural 
areas have 25 °C, 24 °C and 24 °C, respectively. 
The mean LST during the night period, has ma-
ximums in October for the urban centers, frontier 

Figure 4. Temporal evolution of LST for the 3 study areas, in the daytime and nighttime periods. In the 
graphs we can distinguish 3 regions within each study area: the urban center, urban and rural border
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and rural areas, with temperatures of 25 °C, 24 °C 
and 24 °C, respectively. Even in the night period, 
the minimums are observed in March, where the 
urban centers have 21 °C, the frontier 21 °C and 
the rural area 22 °C.

The maximum LST is observed in December 
for the urban area 30 °C, border 28 °C and rural 
28 °C. The minimums are observed in June for 
all localities, urban center 25 °C, border 24 °C 
and rural 24 °C. During the night period, the tem-
poral evolution of the LST has maximums in Ja-
nuary for urban (24 °C), border (23 °C) and rural 
(22 °C) centers. The minimums are observed in 
August for the urban (18 °C), border (17 °C) and 
rural (17 °C) areas.

WRF meteorological model 

The Weather Research and Forecasting 
(WRF) model, a meteorological forecasting mo-
del, was used to simulate the behavior of surface 
temperature. The initial conditions for the simu-
lations were defined from synoptic-scale mete-
orological data. This database is available at the 
web address https://rda.ucar.edu/, from which 
the NCEP-GFS data were taken, with a spatial 
resolution of 0.25° (27–28 km) and a time inter-
val of 6 hours. In the case of geographic data, the 
MODIS database of the United States Geological 
Survey (USGS), available as standard on the mo-
del’s website, was used.

The following combination of parameteriza-
tions was used in the development of this work: the 
Betts - Miller - Janjic cluster scheme and the Mel-
lor - Yamada - Janjic (MYJ) planetary boundary 
layer, both proposed by [54]. Formulated to try 
to solve precipitation simulation problems, which 
were sometimes widely scattered over the oceans, 
so, it introduces the “cloud efficiency” method to 
provide an additional degree of freedom in deter-
mining the heat and moisture fate profiles. The 
WRF Double Moment 5 and 6 class micro-physi-
cs scheme, allows flexibility in variable raindrop 
size distribution, predicting cloud number, preci-
pitation amount and explicit organization of con-
densation nuclei [55]. The RRTMGU shortwave 
and longwave radiation scheme, a new version of 
RRTM, includes the MCICA method of random 
cloud superposition [56]. With this information, 
WRF simulations were performed with a spatial 
resolution of 5 km and a temporal resolution of 
one hour, from which the calculations were made.

Given the vast size and quasi-continental 
characteristics of the country, simulating its dif-
ferent territorial units represents a significant 
challenge. Although the country’s climate is 
predominantly tropical, there is notable clima-
tic variability across its territory. Therefore, the 
selection of parameterizations for this study was 
complex, considering that not all configurations 
are suitable for each locality, which led to the 
decision to base the parameterizations on those 
used by CPTEC. However, not all parameteri-
zations work for the studied locations. Priority 
was given to maintaining the stability and con-
tinuity of the simulations without excessively 
sacrificing their accuracy. For cumulus parame-
terization, Betts-Miller-Janjic was chosen for its 
numerical stability and effectiveness in tropical 
regions where deep convection is common, whi-
ch can be used for our study areas. For the plane-
tary boundary layer, MYJ was selected due to its 
ability to accurately represent local turbulence 
and rapid transitions thereof. The WRF double 
moment 5 and 6 class schemes can simulate a 
wide range of meteorological conditions and 
cloud types, from deep convective clouds to 
stratiform clouds. The rest of the parameteriza-
tions follow those defined by CPTEC.

The WRF model faces challenges when si-
mulating wind fields, requiring a thorough and 
detailed exploration of suitable parameteriza-
tions. However, it performs well in modeling 
temperature fields, even at high spatial resolu-
tions, suggesting that a spatial resolution of 5 km 
should not pose significant issues. Despite the 
viable alternatives of using urban schemes, these 
may have a moderate impact on very high-reso-
lution simulations (500m) for variables such as 
2-meter temperature or relative humidity as hi-
ghlighted by [57]. This suggests that using this 
methodology with a spatial resolution of 5 km 
would likely be ineffective.

On the WRF model a spatial scale of 5 km, 
temperature simulation proves to be optimal at 
this resolution as found by [58]. It is possible to 
capture important processes that influence urban 
circulation, as this resolution allows for the obser-
vation of the seasonality of mesoscale and synop-
tic systems, as well as local microclimatic behav-
ior. In places like Belo Horizonte, where no spe-
cific microclimatic system predominates, a higher 
resolution may be unnecessary, as studying the 
local microclimate requires more detailed and fo-
cused analysis on specific areas; consequently, no 
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direct impact is perceived across the entire urban 
region. On the other hand, in areas with frequent 
dual phenomena, such as Salvador, the most ob-
served systems, the sea and land breezes, are ad-
equately captured with a resolution of 5 km and 
are the main factors influencing urban ventilation 
in this area. In Manaus, two well-defined climatic 
periods are identified: one with regular rain in the 
afternoons and another in which mesoscale and/
or synoptic systems trigger periods of intense rain 
that can last several consecutive days.

Gaussian and quantile method

The Gaussian adjustment method [31], of the 
special SUHII distribution and its purpose is to 
characterize the complete UHI in magnitude and 
spatial extent without the use of in situ measure-
ments. This method is suitable for comparative 
studies of SUHI for several cities because the es-
timated quantity is not the absolute temperature, 
but the simultaneous temperature difference be-
tween urban and rural areas. This differentiation 
procedure partially eliminates the influences of 
meteorological conditions and other sources of er-
ror [22]. However, the method of [31] for estimat-
ing the intensity and spatial extent of SUHI has 
some drawbacks. For example, the rural LST field 
may not be correctly represented by a plane, also 
the use of higher spatial resolution data allowing 
the identification of smaller features would prob-
ably not make a Gaussian surface and, therefore, 
would require a re-scaling process. In addition, 
the method works well for cities with ellipsoidal 
shapes, but has problems for cities with different 
shapes [25], such as those developed around lakes 
and bays like the AMM and AMS as shown in 
Figure 1. Finally, in nighttime periods the SUHI 
intensity may decrease enough to no longer have 
a Gaussian shape, because urban and rural tem-
peratures are sometimes very similar.

The Quantile method [25], is based on the 
statistical analysis of urban and rural region LST 
quantiles. Which points out the difficulty of Gaus-
sian methods, which adjust the spatial distribution 
of UHI intensities so that the highest heat island 
intensities are centrally located. Thus, in the pre-
sence of multiple heat sources, it presents difficul-
ties. In sum, the quantile method becomes robust 
because the calculations do not use the absolute 
temperature difference, but the simultaneous tem-
perature difference between urban and rural areas.

The Gaussian method is commonly used to 
analyze spatial patterns and smooth out noise, 
while the Quantile method is effective in captu-
ring extreme values and variability in the data. 
By employing these two methods in tandem, 
we aim to provide a comprehensive analysis 
of SUHII, capturing both its general spatial di-
stribution and its extreme variations. However, 
it’s important to note that each method has its 
limitations; Gaussian may oversmooth the data, 
while Quantile may be sensitive to outliers. In 
our study, we have attempted to mitigate these 
limitations through careful calibration and vali-
dation processes.

RESULTS

Daytime and nighttime SUHI

Case Brazil: Belho Horizonte, 
Salvador Bahia and Manaus

Figures 5 and 6 A, B and C show the scat-
ter plots, between the methods (Gaussian and 
Quantiles) used for this work, for AMB, AMM 
and AMS. Secondly, for AMM in Figure 5B, the 
straight line fitting the data is equal to 1.06, the 
intercept is equal to -0.04 and the correlation in-
dex is equal to 0.47. For the AMS in Figure 5C, 
the straight line fitting the data is equal to 1.95, 
the intersection is equal to -2.43 and the correla-
tion index is equal to 0.11. The best correlation is 
observed for the AMB, with a positive trend for 
both daytime and nighttime, indicating the agree-
ment of the results found. 

Likewise, in Figure 6A for the night time, 
the line that fits the data is equal to 0.94, the 
intersection is equal to 0.08 and the correlation 
index is equal to 0.74. In Figure 6B for the ni-
ght schedule, the line that fits the data is equal 
to 0.44, the intersection is equal to 0.97 and 
the correlation index is equal to 0.10. In Figure 
6c for the night schedule, the line that fits the 
data is equal to 0.61, the intersection is equal to 
3.13 and the correlation index is equal to 0.07. 
The estimation made based on the WRF model 
calculations for all cases shows the tendency 
to overestimate the values. The calculation of 
SUHI with the quantile methodology, see Fi-
gures 7 and 8, most of the time the WRF can 
follow the behavior.
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Figure 5. Scatter plot of diurnal SUSHI, obtained with the Streutker 
method vs quantiles, for the 3 metropolitan areas

Figure 6. Scatter plot of nocturnal SUSHI, obtained with the Streutker 
method vs quantiles, for the 3 metropolitan areas

Surface urban heat island (SUHI)

The long-term average SUHI behavior 
(2001–2016) are shown in Figures 7 and 8. The-
se figures organize the information so that SUHI 

values for day and night can be presented on a 
monthly basis. For this analysis we must consider 
that the diurnal interannual amplitude of SUHI 
has greater variation than the nocturnal, this is 
due to the effect of seasonal changes and its effect 
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on the change of vegetation cover, especially in 
rural áreas [33].

Figure 7 shows the results found for the 
AMB. Using the Gaussian method for the diurnal 
period, the extremes occur in the months of Janu-
ary and August, maximum and minimum respec-
tively. With the quantile method for the diurnal 
period, the maximum month is in January and the 
minimum in July. The difference between maxi-
mum and minimum is about 4 °C and 2 °C, for 
the Gaussian and Quantile method respectively, 
which could be the effect of the influence of the 
seasons in the southern hemisphere (summer and 
winter). Being of similar intensity to that found 
by [49], who report mean UHI of 4.7 °C for the 
city of Belo Horizonte. On the other hand, see 
Figure 8, the nocturnal variations are smaller, 
highlighting that the maximum found (coinciden-
tally) for both methods occurs in the same month 
(August) and the values found by both methods 
are very close. The formation of SUHI maxima 
in the AMB, day-night, is more than 2 °C, whose 
summed fluctuations exceed 2 °C, this behavior 
is repetitive in most of the warm months. On the 
other hand, the lowest day-night SUHI variation 
occurs in the month of July, where the variation is 
less than 0.1 °C for both methods, while the sum 
of their fluctuations can exceed 1 °C.

The SUHI for the WMA is presented in Fi-
gure 7. With the Gaussian method, the diurnal 
maximum occurs in a seasonal transition month 
(winter–spring) and the minimum occurs during 
the summer. The quantile method shows the same 
behavior as the Gaussian method. However, the 
Quantile method shows higher SUHI variation 
of about 3 °C (maximum - minimum) while the 
Gaussian method shows 2 °C. On the other hand, 
the SUHI Gaussian Figure 8, nocturnal maxi-
mum, occurs in the same month as those found 
by the diurnal maximum, the SUHI Quantile is 
advanced one month. On the other hand, the mini-
mum occurs in a cold month (April–Autumn) for 
the Gaussian and the other during the transition of 
season change (December) [30]. For the diurnal 
UHI, Manaus recorded the highest value among 
all metropolises, with a mean intensity of +5 °C.

The diurnal-nighttime variation of Gaussian 
SUHI, in the WMA is greater than 3 °C, and the 
accumulated fluctuations exceed 4 °C. The smal-
lest variations were found in February, being gre-
ater than 1 °C, whose summed fluctuations exceed 
4 °C. The SUHI with the quantile method presen-
ts greater differences, exceeding 1.5 °C in most of 
the months. The calculation of the SUHI for the 
AMS, see Figure 7, with the Gaussian method, 
shows that the maximum diurnal SUHI formation 

Figure 7. Monthly variation of SUSHI training in the different metropolitan areas, 
the monthly values correspond to the period from 2001 to 2016
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occurs during the summer, while the minimum 
during the winter. The Quantile method shows 
totally different behavior, with the maximum in 
a winter month and the minimum in an autumn 
month. The difference between extremes with the 
Gaussian method is about 4 °C, for the Quantiles 
2 °C. With respect to the night values, Figure 8, 
the Gaussian method changes diametrically the 
extremes (with respect to the daytime observa-
tion), the maximum being in a winter month and 
the minimum in an autumn month. With the quan-
tile method, the formation of nocturnal SUHI, the 
maximum occurs in a spring month and the mini-
mum in a transition month. The variations betwe-
en the extremes for the nocturnal Gaussian are 
about 2 °C, while with the Quantiles the variation 
is a little more than 0.6 °C. The results of the WRF 
model for the analysis of the SUHI formation can 
be seen in Figures 7 and 8 (diurnal and nocturnal), 
for the AMB the diurnal and nocturnal maxima 
occur in spring and summer months. In the MMA 
the maxima are found in winter months and the 
minima in different periods, end of summer and 
winter. In the AMS the diurnal maximum occurs 
in a spring month and the minimum in an autumn 
month, while the nocturnal maximum occurs in a 
winter month and the minimum in spring. Howe-
ver, it is highlighted that for both periods (diurnal 

and nocturnal) the WRF estimates are usually hi-
gher than those found by the other methods, whi-
ch is a common result, being that the estimates 
run by meteorological models usually over-esti-
mate the predictions [50].

DISCUSSION

The SUHII found for the regions studied fol-
low a quasi-seasonal behavior (Figure 7 and 8), 
which decreases with the arrival of the warm 
months. This indicates that the main SUHI cen-
ters are gaining intensity. Therefore, we can un-
derstand that the formation of SUHII, in addition 
to being directly influenced by urban and rural 
characteristics, is also affected by the phenology 
of the rural environment, since it can differ consi-
derably between cities, even in the same climatic 
zone (Sismanidis et al., 2022). The presence of 
vegetation cover alters the thermal contrast, urban 
areas with high vegetation cover and water have 
lower thermal amplitude, as they have higher 
evapotranspiration rates, consequently altering 
sensible and latent heat fluxes, keeping the surfa-
ce temperature cooler than in the border zone [3, 
51]. Likewise, urban and population growth con-
tributes to the increase in SUHI intensity, which 

Figure 8. Temporal evolution of 2001–2016, monthly average nocturnal SUHI (°C) with their respective 
standard deviations using the quantile method, Streutker and WRF, for AMB, (b) AMM and (c) AMS.
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can reach values higher than 1.5 °C per decade 
(Monteiro et al., 2021). Therefore, the vulnerabi-
lity of cities may be affected, given the intrinsic 
relationship formed between SUHI and local hy-
droclimatic conditions, such as the induction of 
local storms caused by urbanization.

The Brazilian cities studied do not show an 
exclusively homogeneous urban development, 
which is reflected by showing several nuclei of 
higher SUHI intensity (see Figure 2), however, 
there is always a predominant area. By presen-
ting several high intensity cores, these could 
influence the representativeness of the final 
mean, since, SUHI estimation methods are not 
always sensitive enough to detect and include 
non-Gaussian forms, as highlighted by  [24, 25, 
52]. In this way, [53] stresses on the importance 
of the early study of urban geometry, since, it is 
the aspect that most contributes to the develop-
ment of the UHI effect.

Thus, environmental and geographic factors 
are of great importance, since they can favor or 
obstruct local ventilation patterns, contributing 
to or retarding accelerated warming. Thus, al-
bedo directly influences the temperature of the 
local atmosphere [54]. Urban ventilation is di-
rectly dependent on horizontal configuration, as 
it alters surface roughness and reduces heat dis-
sipation by ventilation, while vertical configura-
tion modifies SUHI by up to 30% [55]. Tropical 
cities are dependent on urban design and plan-
ning, as they modify ventilation factors. Urban 
ventilation is more efficient than extensive use 
of vegetation, water bodies or albedo modifica-
tions for air temperature, where there is already 
a high level of humidity [56].

CONCLUSIONS

The study of SUHI formation is a complex 
task, since it involves the study of several factors 
(environmental, climatic, geographic, population, 
among others). In this sense, we corroborated 
the existence of the formation of multiple areas 
of intense SUHI, and they are influenced by sea-
sonal variation, being of lower intensity in winter 
and reaching their maximum levels in summer. 
In general, the region that presented the lowest 
surface temperature and consequently the lowest 
SUHI variation was the AMS, while the most af-
fected region was the AMM.

It was possible to corroborate the feasibility 
of the quantile method, used as a method for esti-
mating SUHI of non-ellipsoidal cities. Especially 
when the spatial resolution is so high that it does 
not allow a Gaussian surface adjustment or when 
the cities have more than one center of maximum 
surface temperature, or when the city has a bor-
der with water bodies. Therefore, it was important 
to couple the quantile method to the WRF model 
to calculate the SUHI, thus proposing future re-
search to not only predict surface temperatures, 
since the WRF model will be able to estimate pre-
dictions of surface urban heat island intensities. 
Thus, detailed knowledge of urban heat islands, 
with their differences and specificities, are vital 
for the formulation of public health policies. Sin-
ce, there is a relationship between SUHI forma-
tion and the intensity of meteorological events, 
as it directly influences the management of na-
tural (heat waves) and anthropogenic (urban heat 
island) risks. Serving as a supply of information 
for the development of mitigation strategies for 
extreme events and disaster risks.

Our results indicate significant seasonal va-
riations in SUHII across different regions. The-
se findings have important implications for ur-
ban planning and public health in tropical cities. 
Seasonal variations in UHIs can impact energy 
consumption, air quality, and human health, par-
ticularly during extreme heat events. Urban plan-
ners and policymakers should consider these se-
asonal variations when developing strategies to 
mitigate the impacts of UHIs and improve urban 
resilience. For instance, in strategies to mitigate 
neglected Tropical Infectious Diseases such as 
Dengue epidemics. 
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