JEE Journal of Ecological Engineering

Journal of Ecological Engineering 2024, 25(9), 340–353 https://doi.org/10.12911/22998993/191640 ISSN 2299–8993, License CC-BY 4.0 Received: 2024.06.24 Accepted: 2024.07.24 Published: 2024.08.01

Classification of Municipalities Located in National Parks in Poland with Respect to the Wastewater and Waste Management

Konrad Podawca*, Agata Pawłat-Zawrzykraj

¹ Department of Remote Sensing and Environmental Assessment, Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warszawa, Poland

* Corresponding author's e-mail: konrad_podawca@sggw.edu.pl

ABSTRACT

The study concerns waste and wastewater management in municipalities located within borders of national parks in Poland. In the case, the desired direction of development is understood as undertaking pro-environmental measures, such as: the development of a collective sewage network and household sewage treatment facilities in place of holding tanks, and organized waste management, effective segregation of generated waste for future reutilization. The analysis is based on statistical data for the years 2019–2022 obtained from the local data bank. The multi-criteria analysis involved following stages: calculation of selected diagnostic variables for each municipality, normalization of indicators for the selected features to achieve their comparability, designation of a synthetic indicators describing the rate of wastewater and waste management. The obtained synthetic indictors enable to determine groups and types of municipalities related to the level of waste and wastewater management and above-average wastewater management. The largest group of the municipalities (57%) consists of units rated as average. No correlation can be observed between the level of waste and sewage management in individual municipalities and their location within the boundaries of a particular national park.

Keywords: technical infrastructure, nature protection, multi-criteria analysis, zero unitarization method, sustainable development.

INTRODUCTION

Technical infrastructure, especially wastewater and waste management is an important element in reducing pressure on the natural environment and ensuring sanitary and epidemiological safety of various users (Kulczyk-Dynowska and Stacherzak 2020). Activities related to the planning, implementation, organisation of service, and maintenance of the technical infrastructure and related facilities belong to the so-called own tasks of municipalities (Journal of Laws 1990 No. 16 item 95 as amended Art. 7.1). They are associated with the requirement to meet the key needs of the local community (Białas 2018). Proper development of technical infrastructure is the basis for multifunctional (Kudłacz 2015) and sustainable development (Podawca and Karsznia 2017, Podawca and Pawłat-Zawrzykraj 2017). It determines socio-economic development of municipalities, affects investment attractiveness – foster or limit the development of housing estates, tourist facilities, production and services-related development (Pawłat-Zawrzykraj and Podawca 2020).

Three basic systems can be distinguished within technical infrastructure: communication infrastructure – subdivided into transport and telecommunications; sanitation infrastructure – water supply and sewage network, facilities for the removal, storage and disposal of waste and sewage; energy infrastructure – the electricity, district heating and gas subsystem (Stawasz, 2005). Technological progress has greatly facilitated the implementation of technical infrastructure. Its development is most often described by relatively easily accessible parameters, such as network length, availability or investment costs (Podawca 2014; Podawca 2015; Paluch and Zuzek 2017, Śleszyński 2018).

In the case of municipalities located within the boundaries of national parks, the problem of technical infrastructure development is complex. It raises the living standards and comfort of their inhabitants but also provides conditions for developing of new investment areas. This is beneficial for the municipality's economy and, at the same time, it may be regarded as a threat to landscape and natural values of a national park. Therefore, quoting Zawilińska and Mika (2013) 'it is necessary to see a national park as a system linked to the socio-economic environment and to take planning actions based on a holistic look at natural, social and economic issues of a national park and its neighborhood'.

The scope of analysis regarding technical infrastructure in National Parks and municipalities located within their boundaries was restricted to sewage and waste management. It was considered that in the case of these two types of spatial units, the needs and objectives are particularly consistent. The appropriate actions in this respect help to reduce the negative environmental impact of progressive residential and tourist development and ensure sanitary safety of various users, which is important both for the functioning of the national park and for the proper development of the municipalities located in its area. The desired direction of development in terms of sewage and waste management is understood as undertaking pro-environmental measures, such as: the development of a collective sewage network and household sewage treatment facilities in place of holding tanks, organized waste management, effective segregation of generated waste for future reutilization.

Wastewater management in Poland should receive particular attention. When joining the EU, Poland, has undertaken to achieve a level of wastewater management in compliance with the requirements of Directive 91/271/EEC concerning urban wastewater (Council Directive 91/271/ EEC) by 31.12.2015. The adoption of this Directive was primarily associated with the need to build, expand and modernise the collective sewage systems. The scope of investment activities needed and the sources of their financing are established in the National Urban Wastewater Treatment Plan (KPOŚK 2003). The Plan was adopted in 2003 and has been updated six times (most recently in 2022). It concerns municipalities that are part of so-called agglomerations, defined as "area where the population and/or economic activities are sufficiently concentrated for urban wastewater to be collected and conducted to an urban waste water treatment plant or to a final discharge point". According to the research on the effectiveness of the implementation of the KPOSK for 2002-2022, the development of wastewater infrastructure in Poland, both in terms of quantity and quality, was significant (Stachowicz 2023). Unfortunately, the requirements of EU law, despite many investments, are not yet fulfilled. At the end of 2020, in 675 out of 1,524 agglomerations (44.3%), the sewerage infrastructure was insufficient or the existing combined sewerage systems and treatment plants still did not meet the requirements of the Directive. Similar conclusions have been drawn with respect to rural wastewater infrastructure for the period 2008-2017 (Piasecki 2019). Many of these areas face the problem of serving the scattered building network. In many cases, economic and technical problems make individual sewage management systems the only available solution. These include: (i) the storage of wastewater in non-drainage tanks, which unfortunately can pose a severe threat to surface and groundwater or land due to leakage; (ii) domestic wastewater treatment plants (sand filters, hydrobotanical beds, filter drains (Bugajski et al. 2016, Wałega et al. 2018). In the years 2008–2017 the number of holding tanks in rural areas decreased by 8,7%, whereas number of independent wastewater treatment facilities increased by 373.7% (Piasecki 2018). The latter solution is considered a better alternative, but the environmental impact depends on the technology used.

The condition of municipal waste management results from two main factors: the organisational, regulatory, and investment activities of the municipal authorities and the inhabitants' attitude. Due to tourist attractiveness of municipalities located in vicinity of national parks, responsible attitude of tourists is also significant (Podawca and Pawłat-Zawrzykraj 2017, Podawca and Pawłat-Zawrzykraj 2018). Municipal waste management includes the following activities: waste collection and disposal, street and property cleaning, and waste storage and treatment. The obligations of municipalities are regulated by legal acts, such as The Waste Act (Journal of Laws 2013, item 21 as amended) and the Act on Maintaining Cleanliness and Order in Municipalities (Journal of Laws 1996 No 132, item 622 as amended). The municipality is currently obliged to:

- lay down rules and principles for permanent and short-term residents regarding collection and disposal of waste,
- charge a fee from residents for municipal waste management,
- commission entrepreneurs to collect waste from residents and transport it to regional municipal waste treatment facilities,
- organise the construction, maintenance, and operation of local waste facilities.

For this issue, one of the key pro-environmental measures is waste treatment. In accordance with Article 3b. 1 of the Act on Maintaining Cleanliness and Order in Municipalities (Journal of Laws 1996 No 132, item 622 as amended), there will be progressive reinforcement of the requirements relating to the share of recycled and reused waste (excluding non-hazardous construction and demolition municipal waste). It should be at least 50% by weight of total waste for each year in 2020-2024, and respectively 55% - in 2025-2029, 60% - in 2030-2034, 65% - for 2035, and for each subsequent year. A study on waste management in Poland for the years 2013-2022 conducted by Kotlińska and Żukowska (2023) indicated that local government units generally fulfil the task of municipal waste management properly although it still needs some improvement in order to meet the European Union's requirements. The main achievements are: the decrease in the number of active landfills, reduction of mass of municipal waste generated, including by households, growing the ratio of segregated municipal waste (in 2013 it was 13.5%, in 2017 – 27% and in 2022 - 39.9%). Moreover, waste collected separately constitutes a significant part intended for storage. The municipal waste management system is more effective in cities and the least in rural communes.

As mentioned earlier, waste treatment efficiency also depends on the active participation of the municipality's and temporary residents. This opinion seems to be confirmed by recent survey results (Tuszyńska 2013, Kłos 2015, Stefaniuk 2021). According to the Poles surveyed, the state of the environment depends primarily on each citizen's activity. Institutional factors (good laws, actions of the authorities, etc.) are considered less significant. For several years, the Ministry of the Environment has been conducting surveys on the environmental awareness and behaviour of the Polish population with regard to waste management. The survey results indicate favourable trends (Report on the survey of environmental awareness 2022). In 2022, regular segregation of household waste was declared by almost 96% of respondents. In previous years, this was respectively: 62% – in 2018, 68% – in 2014, 54% – in 2013, 44% – in 2012. However, declarations are not always in line with reality. The authors of this research believe that the very good result of the recent survey is less due to raising society's ecological concerns, but more due to the amendment of the law, which introduced a general obligation to separate waste (National Environmental Policy 2019).

The subject of the study is to assess the diversity of municipalities located within the boundaries of national parks in terms of waste and wastewater management. It was assumed that the analysed administrative units, due to their unique location, represent a model directed to the maximum extent towards environmentally friendly solutions. The additional question of the study is whether the municipalities spatially related to a given national park represent a similar level (effectiveness) of activities in terms of wastewater and waste management.

STUDY AREA

There are 23 national parks (NP) in Poland (Fig. 1) and 114 municipalities located within their borders (4.5% of all municipalities). The share of NPs in the total area of such municipalities varies. It covers up to 10% of the area of the municipality in case of 49 units; 11-30% of the municipality's area - 43 units, 31-50% - 11 units; more than 50% - 11 units. The latter group of municipalities includes: Zwierzyniec (52% of its area located in the Roztocze NP, Karpacz (53%) in the Karkonosze NP, Goniądz (59%) in the Biebrzański NP, Smołdzino (57%) in the Słowiński NP, Zakopane (60%) and Kościelisko (60%) in the Tatra NP, Krempna (62%) in the Magura NP, Międzyzdroje (63%) in the Woliński NP, Leoncin (62%) and Izabelin (86%) in the Kampinos NP (Podawca 2006). 11 urban municipalities were excluded from the study due to their different characteristics in terms of wastewater and waste management. They are mostly areas with a combined sewerage system and more favourable waste management level compared to less

Figure 1. Location of national parks in Poland:
I – Babia Góra NP, II – Karkonosze NP, III – Bory Tucholskie NP, IV – Biebrza NP, V – Ojców NP, VI – Gorce NP, VII – Białowieża NP, VIII – Wolin, IX – Góry Stołowe NP, X – Magura NP, XI – Tatra NP, XII – Słowiński NP, XIII – Wielkopolski NP, NP XIV – Ujście Warty NP, XV – Roztocze NP, XVI – Narew NP, XVII – Wigry NP, XVIII – Drawa NP, XIX – Polesie NP, XX – Świętokrzyski NP, XXI – Pieniny NP, XXII – Bieszczady NP, XXIII – Kampinos NP.

urbanized areas. The indicators obtained for urban municipalities might disturb the accurate statistical picture of the other units. In the absence of complete input data, the municipality of Cisna was also excluded. The final spatial scope of the assessment covered 102 rural and urban-rural municipalities (Table 1).

METHODS

The study relies on comparable analysis using specific indicators, that are unable to describe the intensity of the phenomena in absolute or relative values (Zielińska 2006). It is particularly useful for the evaluation of various sets of spatial units in terms of social, environmental, infrastructural and economic development (Rosner 1999, Zielińska 2006, Kruk 2015, Śleszyński 2013). A key point here seems to be an appropriate selection of variables and access to statistical data on particular issue. In this case, statistical data were obtained from the Local Data Bank (BDL). The data for the years 2019–2022 covered the fields of: housing and public utilities, the condition and protection of the environment, population, and territorial division. The multi-criteria analysis involved the following stages:

- calculation of selected diagnostic variables for each municipality;
- normalization of indicators for the selected features to achieve their comparability
- designation of a synthetic indicators describing the rate of wastewater and waste management

In order to assess the diversification of the municipalities located within national parks in terms of waste management, the following variables were indicated:

- the amount of waste generated from households in relation to average number of inhabitants [t per capita] – X1;
- the amount of segregated waste in relation to the total amount of waste from households [t] – X2;
- the amount of biodegradable waste in relation to the total amount of waste from households [t] – X3;
- the amount of segregated waste (paper, glass, metals, plastics) in relation to the total amount of waste from households per capita[t per capita] – X4;
- the amount of biodegradable waste from households per capita [t per capita] X5.

Diversification of the municipalities in terms of wastewater management was established on the basis of the following variables:

- The average volume of municipal (domestic) waste water collected from individual sewage collection facilities per 1 inhabitant living in buildings without collective sewerage system [m³ per capita] X6;
- the number of sewage connections for residential buildings to an average number of inhabitants [pcs. per capita] – X7
- the number of household sewage treatment plants in relation to the number of septic tanks [pcs.] – X8;
- the number of septic tanks per capita in buildings without collective sewage system [pcs. per capita] – X9;
- the number of household sewage treatment plants per capita in buildings without collective sewage system [pcs. per capita] X10.

The obtained values of the individual variables, expressed in different units, were transformed into a comparable form using the of zero unitarisation method. It is regarded as one of the best normalization methods used for building a ranking of complex phenomena (Kukuła 1999, Kukuła and Luty 2015; Kądziołka 2021). In the first step minimum and maximum values were determined for each variable. Then in the case of variables that have a stimulant character (x6-x8, x10), the values were normalized by using the Equation 1 and in the case of variables that have a destimulant character (x1, x9), their values were normalized according to the Equation 2:

$$Z_{ij} = \frac{x_{ij} - min_i x_{ij}}{max_i x_{ij} - min_i x_{ij}} \cdot 100 \tag{1}$$

$$Z_{ij} = \frac{max_i x_{ij} - x_{ij}}{max_i x_{ij} - min_i x_{ij}} \cdot 100$$
(2)

where: x_{ij} – the value of j_{th} variable for the i_{th} municipality; max x_{ij} – the maximum value of j_{th} variable; min x_{ij} – the minimum value of j_{th} variable; z_{ij} – the normalized value of x_{ir} .

A synthetic picture of wastewater and waste management in the studied municipalities was obtained by aggregating the normalised variables (z_i) using the non-model based method. In this method, the normalised values of the diagnostic characteristics are averaged according to formula 3:

$$W_{WM(WWM)} = \frac{1}{n} \sum_{j=1}^{n} z_{ij} \tag{3}$$

where: $W_{WM(WWM)}$ – the synthetic indicator of the waste (wastewater) management level for the analyzed municipalities; z_{ij} – the normalized value of the j_{th} diagnostic variable for the i_{th} municipality; j = 1, 2, ..., n; n – number of diagnostic variables.

The values calculated for the synthetic indicators range between 0 and 1. The overall classification of the analyzed municipalities regarding the level of waste and wastewater management was developed on the basis of the standard deviation.

RESULTS

The detailed summary of the calculated variables, the results of their normalization, and the value of the synthetic indicator characterizing the level of waste and sewage management for the analyzed municipalities are presented in Tables 1 and 2. In order to obtain general typology and spatial distribution of the analyzed municipalities regarding proenvironmental waste and sewage management level, they were divided into groups and types according to the synthetic indicators W_{WM} and W_{WWM} . The classification was based on standard deviation. In the case of waste management, the analyzed municipalities were assigned to one of the following groups:

- Group A (high level), where the synthetic indicator exceeds the sum of the mean value and the standard deviation W_{WM} > XP_{WM} + SP_{WM}, i.e., 0.4006;
- Group B (above average level), where XP_{WM} + $SP_{WM} \le WP_{WM} \ge XP_{WM}$, i.e., in the range <0.3220; 0.4006>;
- Group C (average level), where the indicator WP_{WM} meets the condition XP_{WM} < WP_{WM} ≥ XP_{WM}-SP_{WM}, i.e. <0.2434; 0.3220>;
- Group D (low level), where the synthetic indicator is less than 0.2434, i.e. WP_{WM} < XP_{WM} SP_{WM}.

The spatial distribution of the individual groups of municipalities located within certain national parks is presented in Figure 2.

A similar division of the municipalities was applied with regard to the state of wastewater management. The following types of municipalities were identified:

- Type 1 (high level), where the synthetic indicator exceeds the sum of the mean value and the standard deviation, i.e. W_{WWM} > X_{WWM} + S_{WWM}, i.e. 0.31495;
- Type 2 (above average level), where X_{WWM} + $S_{WWM} \le W_{WWM} \ge X_{WWM}$, i.e. in the range <0.23243; 0.31495>;
- Type 3 (average level), where the indicator W_{WWM} meets the condition $X_{WWM} < W_{WWM} \ge X_{WWM} S_{WWM}$, i.e. <0.14991; 0.23243);
- Type 4 (low level), where the synthetic indicator is less than 0,14991, i.e. W_{WWM} < X_{WWM} S_{WWM}.

The spatial distribution of the individual types of municipalities is presented in Figure 3. A comprehensive analysis of the situation in municipalities regarding wastewater and waste management has identified 12 outstanding municipalities (Table 3). The clear leader is the Dopiewo municipality in the Wielkopolski National Park (Group A, Type 1). Six administrative units exhibit high-level waste management (Group A) and above-average wastewater management (Type 2), which include the municipality of Komorniki in the Wielkopolski NP; Izabeli, Leszno, and Stare Babice in the Kampinos NP; Łapy in the Narew NP; and Ustka in the Słowiński NP. Five municipalities represent high-level wastewater management (Type

No.	Municipality*	NP [™]	x,***	X ₂	Х ₃	X ₄	Х ₅	Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	W _{WM}
1	Lipnica Wielka	_	0.1520	26.1225	0.8236	39.7046	1.2518	0.9115	0.4187	0.0230	0.2477	0.0076	0.3217
2	Zawoja		0.1911	40.0498	1.3929	76.5230	2.6614	0.8477	0.6607	0.0388	0.5154	0.0162	0.4158
3	Podgórzyn	÷	0.3713	20.7302	16.3275	76.9681	60.6214	0.5533	0.3251	0.4551	0.5186	0.3683	0.4441
4	Chojnice	≡	0.2797	13.0604	5.8829	36.5314	16.4551	0.7029	0.1918	0.1640	0.2246	0.1000	0.2767
5	Wizna		0.1652	17.1107	2.8718	28.2585	4.7427	0.8900	0.2622	0.0801	0.1644	0.0288	0.2851
6	Nowy Dwór		0.1110	21.7496	0.0000	24.1477	0.0000	0.9784	0.3428	0.0000	0.1345	0.0000	0.2911
7	Bargłów Kościelny		0.1280	21.0476	0.0000	26.9358	0.0000	0.9507	0.3306	0.0000	0.1548	0.0000	0.2872
8	Jedwabne		0.1989	12.3137	1.8627	24.4955	3.7054	0.8348	0.1788	0.0519	0.1371	0.0225	0.2450
9	Grajewo		0.1413	22.6321	1.1479	31.9757	1.6218	0.9290	0.3581	0.0320	0.1915	0.0099	0.3041
10	Jaświły		0.1467	26.2761	3.6894	38.5580	5.4139	0.9201	0.4214	0.1028	0.2393	0.0329	0.3433
11	Rajgród		0.2362	23.0626	12.9220	54.4673	30.5179	0.7740	0.3656	0.3602	0.3550	0.1854	0.4080
12	Lipsk	\geq	0.1745	22.8462	16.6646	39.8667	29.0797	0.8747	0.3618	0.4645	0.2488	0.1767	0.4253
13	Dąbrowa Białostocka		0.1679	19.8846	5.7888	33.3811	9.7178	0.8856	0.3104	0.1614	0.2017	0.0590	0.3236
14	Suchowola		0.1589	22.3701	9.7467	35.5406	15.4851	0.9003	0.3535	0.2717	0.2174	0.0941	0.3674
	Radziłów			12.0135									
15			0.1322		0.0000	15.8771	0.0000	0.9439	0.1736	0.0000	0.0744	0.0000	0.2384
16	Sztabin		0.1514	26.7031	1.6543	40.4239	2.5043	0.9125	0.4288	0.0461	0.2529	0.0152	0.3311
17	Trzcianne		0.1514	16.7904	2.4545	25.4154	3.7153	0.9125	0.2566	0.0684	0.1438	0.0226	0.2808
18	Goniądz		0.2180	16.4269	12.3647	35.8141	26.9577	0.8036	0.2503	0.3447	0.2194	0.1638	0.3564
19 20	Wielka Wieś Jerzmanowice-		0.3639	16.4078 12.9326	12.4606 9.2547	59.7125 30.4148	45.3478 21.7652	0.5653	0.2500	0.3473 0.2580	0.3932	0.2755	0.3663
20	Przeginia Sułoszowa	>	0.2352	12.9320	0.0157	22.8156	0.0295	0.8517	0.1751	0.2380	0.1249	0.1322	0.2305
22	Skała		0.3541	9.3436	12.9630	33.0865	45.9033	0.5813	0.1272	0.3614	0.1995	0.2789	0.3097
23	Nowy Targ		0.1807	12.9366	7.0826	23.3784	12.7994	0.8646	0.1897	0.1974	0.1290	0.0778	0.2917
23 24	Ochotnica Dolna		0.1598	7.8748	0.0296	12.5844	0.0474	0.8987	0.1037	0.0008	0.0505	0.0003	0.2317
		-											
25	Mszana Dolna	>	0.1393	20.3195	1.6733	28.2988	2.3303	0.9323	0.3179	0.0466	0.1647	0.0142	0.2951
26	Kamienica		0.1291	23.8598	0.1931	30.8007	0.2493	0.9489	0.3794	0.0054	0.1829	0.0015	0.3036
27	Niedźwiedź		0.1734	10.6118	0.3240	18.4048	0.5620	0.8765	0.1493	0.0090	0.0928	0.0034	0.2262
28	Narewka	N	0.1798	14.2767	4.6676	25.6617	8.3898	0.8662	0.2129	0.1301	0.1456	0.0510	0.2812
29	Białowieża		0.2209	16.8570	4.9899	37.2402	11.0236	0.7989	0.2578	0.1391	0.2297	0.0670	0.2985
30	Wolin	,III	0.2692	20.5973	15.8496	55.4543	42.6720	0.7200	0.3228	0.4418	0.3622	0.2592	0.4212
31	Międzyzdroje	_	0.7100	20.1645	12.9027	143.1662	91.6083	0.0000	0.3152	0.3597	1.0000	0.5565	0.4463
32	Lewin Kłodzki	÷.,	0.2491	19.8572	9.2172	49.4626	22.9593	0.7529	0.3099	0.2569	0.3186	0.1395	0.3556
33	Szczytna	Ň	0.2640	16.4315	8.3720	43.3775	22.1011	0.7286	0.2504	0.2334	0.2744	0.1343	0.3242
34	Radków		0.3101	14.8990	2.4563	46.1952	7.6159	0.6533	0.2238	0.0685	0.2949	0.0463	0.2574
	Osiek Jasielski			12.7035		15.9892		i					
36	Sękowa		0.1647	26.7454	0.6250	44.0439	1.0293	0.8908	0.4296	0.0174	0.2792	0.0063	0.3247
37	Lipinki	\times	0.1458	21.2865	0.9446	31.0451	1.3776	0.9215	0.3347	0.0263	0.1847	0.0084	0.2951
38	Nowy Żmigród		0.1070	16.1690	0.0418	17.2927	0.0447	0.9851	0.2458	0.0012	0.0847	0.0003	0.2634
39	Dębowiec		0.1435	10.5541	0.1142	15.1481	0.1639	0.9253	0.1483	0.0032	0.0691	0.0010	0.2294
40	Krempna		0.1291	15.4185	0.0503	19.9082	0.0650	0.9489	0.2328	0.0014	0.1037	0.0004	0.2574
41	Poronin Bukowina		0.3191	10.2343	9.1720	32.6620	29.2718	0.6385	0.1427	0.2557	0.1965	0.1778	0.2822
42	Tatrzańska	X	0.3466	18.3549	4.1113	63.6117	14.2483	0.5937	0.2838	0.1146	0.4215	0.0866	0.3000
43	Kościelisko		0.3029	13.8951	6.0156	42.0859	18.2201	0.6650	0.2063	0.1677	0.2650	0.1107	0.2829
44	Ustka		0.3582	23.7766	10.5952	85.1763	37.9557	0.5746	0.3780	0.2953	0.5783	0.2306	0.4114
45	Główczyce	×II	0.1968	17.9353	13.5285	35.2963	26.6238	0.8383	0.2765	0.3771	0.2156	0.1617	0.3738
46	Wicko		0.3319	9.4710	13.2399	31.4348	43.9439	0.6176	0.1295	0.3691	0.1875	0.2670	0.3141
47	Smołdzino		0.2592	24.1941	12.2108	62.7210	31.6553	0.7363	0.3852	0.3404	0.4150	0.1923	0.4138
48	Dopiewo		0.4106	17.7882	21.1236	73.0374	86.7323	0.4891	0.2740	0.5888	0.4901	0.5269	0.4738
49	Mosina	XIII	0.2796	2.0191	3.2792	5.6458	9.1691	0.7030	0.0000	0.0914	0.0000	0.0557	0.1700
50	Komorniki	×	0.2225	32.0255	32.1913	71.2501	71.6191	0.7964	0.5213	0.8974	0.4771	0.4351	0.6255
51	Stęszew		0.3910	16.1363	14.7330	63.0963	57.6091	0.5210	0.2453	0.4107	0.4178	0.3500	0.3890
50	Górzyca		0.3146	14.3818	11.5405	45.2455	36.3067	0.6459	0.2148	0.3217	0.2880	0.2206	0.3382
52													
5∠ 53	Witnica	XIV	0.3963	6.2283	18.6073	24.6826	73.7406	0.5124	0.0731	0.5187	0.1384	0.4480	0.3381

Table 1. Values of variables concerning waste management in the analyzed municipalities (x_1-x_5) , normalized values of the variables (z_1-z_5) , and the synthetic indicator (W_{WM})

Cont. Table 1.

Con	t. Table 1.												
55	Zamość		0.1794	26.9690	9.1828	48.3766	16.4719	0.8668	0.4334	0.2560	0.3107	0.1001	0.3934
56	Józefów	X	0.1869	16.2851	2.2009	30.4429	4.1144	0.8544	0.2478	0.0614	0.1803	0.0250	0.2738
57	Adamów		0.1239	17.3440	1.1383	21.4880	1.4102	0.9574	0.2662	0.0317	0.1152	0.0086	0.2758
58	Zwierzyniec		0.1759	16.5174	3.4460	29.0574	6.0622	0.8724	0.2519	0.0961	0.1702	0.0368	0.2855
59	Tykocin		0.2330	14.4484	0.3418	33.6655	0.7964	0.7792	0.2159	0.0095	0.2038	0.0048	0.2426
60	Kobylin- Borzymy		0.1268	13.0668	0.0876	16.5715	0.1111	0.9526	0.1919	0.0024	0.0795	0.0007	0.2454
61	Suraż		0.1950	10.6029	6.4396	20.6769	12.5580	0.8412	0.1491	0.1795	0.1093	0.0763	0.2711
62	Sokoły] 🕺	0.1983	13.1210	0.6668	26.0172	1.3222	0.8359	0.1929	0.0186	0.1481	0.0080	0.2407
63	Turośń Kościelna		0.2240	12.8646	6.7758	28.8145	15.1768	0.7939	0.1884	0.1889	0.1685	0.0922	0.2864
64	Choroszcz		0.2862	7.0146	14.1969	20.0752	40.6306	0.6923	0.0868	0.3957	0.1049	0.2468	0.3053
65	Łapy		0.2178	10.2626	24.1691	22.3555	52.6487	0.8040	0.1432	0.6737	0.1215	0.3198	0.4124
66	Krasnopol		0.1497	19.2323	0.1058	28.7808	0.1583	0.9153	0.2990	0.0030	0.1682	0.0010	0.2773
67	Nowinka	XVII X	0.2132	30.5216	4.9188	65.0714	10.4867	0.8115	0.4952	0.1371	0.4321	0.0637	0.3879
68	Giby	×	0.1753	18.0617	0.2955	31.6561	0.5180	0.8735	0.2787	0.0082	0.1891	0.0032	0.2705
69	Suwałki	1	0.1946	12.2055	4.9241	23.7489	9.5810	0.8419	0.1770	0.1373	0.1316	0.0582	0.2692
70	Bierzwnik		0.2363	10.4608	0.0066	24.7195	0.0156	0.7738	0.1467	0.0002	0.1387	0.0001	0.2119
71	Krzyż Wielkopolski		0.2982	11.6173	5.7480	34.6418	17.1402	0.6727	0.1667	0.1602	0.2109	0.1041	0.2629
72	Tuczno	∥∧x	0.2365	9.4363	8.8780	22.3205	20.9998	0.7734	0.1289	0.2475	0.1213	0.1276	0.2797
73	Drawno	×	0.2759	14.3605	3.6166	39.6201	9.9780	0.7091	0.2144	0.1008	0.2471	0.0606	0.2664
74	Człopa	1	0.2792	7.8835	1.1155	22.0133	3.1148	0.7037	0.1019	0.0311	0.1190	0.0189	0.1949
75	Dobiegniew	1	0.3410	11.8415	7.1215	40.3764	24.2827	0.6028	0.1706	0.1985	0.2526	0.1475	0.2744
76	Ludwin		0.1247	22.8254	0.0136	28.4598	0.0169	0.9561	0.3615	0.0004	0.1659	0.0001	0.2968
77	Stary Brus	1	0.0978	25.1647	1.7683	24.6145	1.7296	1.0000	0.4021	0.0493	0.1379	0.0105	0.3200
78	Hańsk		0.1133	21.4139	7.1479	24.2609	8.0982	0.9747	0.3369	0.1993	0.1354	0.0492	0.3391
79	Wierzbica	XIX	0.1425	13.0104	4.6078	18.5416	6.5668	0.9270	0.1909	0.1285	0.0938	0.0399	0.2760
80	Sosnowica	1	0.1282	23.8832	5.9164	30.6190	7.5850	0.9504	0.3798	0.1649	0.1816	0.0461	0.3446
81	Urszulin	1	0.1853	15.6157	9.0345	28.9294	16.7373	0.8572	0.2362	0.2518	0.1693	0.1017	0.3232
82	Górno		0.1363	30.6400	2.4729	41.7757	3.3717	0.9371	0.4972	0.0689	0.2627	0.0205	0.3573
83	Masłów	1	0.2244	16.2033	13.5430	36.3588	30.3892	0.7932	0.2464	0.3775	0.2233	0.1846	0.3650
84	Łączna		0.1867	17.9316	0.2511	33.4794	0.4688	0.8548	0.2764	0.0070	0.2024	0.0029	0.2687
85	Bieliny	×	0.1087	25.9790	0.1302	28.2293	0.1415	0.9823	0.4162	0.0036	0.1642	0.0009	0.3134
86	Nowa Słupia	1	0.1304	32.1328	0.2979	41.8988	0.3884	0.9468	0.5232	0.0083	0.2636	0.0024	0.3489
87	Bodzentyn	1	0.1541	19.0531	4.6988	29.3673	7.2425	0.9080	0.2959	0.1310	0.1725	0.0440	0.3103
88	Łapsze Niżne		0.1922	11.8813	2.6863	22.8329	5.1623	0.8459	0.1713	0.0749	0.1250	0.0314	0.2497
89	Szczawnica	1	0.2735	26.7330	0.7059	73.1255	1.9310	0.7130	0.4293	0.0197	0.4907	0.0117	
90	Krościenko nad Dunajcem	X	0.1710	15.4737	0.1004	26.4572	0.1716	0.8805	0.2337	0.0028	0.1513	0.0010	0.2539
91	Czorsztyn	1	0.1487	59.5810	0.0000	88.6206	0.0000	0.9168	1.0000	0.0000	0.6034	0.0000	0.5040
92	Czarna	=	0.1064	53.2018	0.0000	56.5985	0.0000	0.9860	0.8892	0.0000	0.3705	0.0000	0.4491
93	Lutowiska	×	0.2044	16.6380	0.0000	34.0074	0.0000	0.8259	0.2540	0.0000	0.2062	0.0000	0.2572
94	Tomaszów Mazowiecki		0.2752	17.4776	2.6492	48.0972	7.2905	0.7103	0.2686	0.0739	0.3087	0.0443	0.2812
95	Łomianki	1	0.3399	15.1462	12.5221	51.4808	42.5619	0.6046	0.2281	0.3491	0.3333	0.2586	0.3547
96	Stare Babice	1	0.4422	11.5904	29.5300	51.2548	130.5866	0.4374	0.1663	0.8232	0.3317	0.7933	0.5104
97	Kampinos	1_	0.2629	22.5501	13.1316	59.2842	34.5230	0.7303	0.3567	0.3661	0.3900	0.2097	0.4106
98	Brochów	XXIII	0.2287	18.2500	3.4998	41.7306	8.0026	0.7863	0.2820	0.0976	0.2624	0.0486	0.2954
99	Izabelin	1	0.4589	9.5843	35.8740	43.9774	164.6073	0.4103	0.1314	1.0000	0.2787	1.0000	0.5641
100	Czosnów	1	0.3055	12.3512	17.6658	37.7348	53.9718	0.6607	0.1795	0.4924	0.2333	0.3279	0.3788
100	Leszno	{	0.3033	10.2359	23.4988	43.1996	99.1741	0.4704	0.1793	0.4524	0.2333	0.6025	0.3788
101		1	0.4220	9.5132						0.0214	0.1221	0.0025	0.4287
102	Leoncin		0.2358	9.5132	0.7685	22.4309	1.8120	0.7746	0.1302	0.0214	0.1221	0.0110	0.2119

Note: *According to the methodology, urban municipalities were not included in the study. **I – Babia Góra NP, II – Karkonosze NP, III – Bory Tucholskie NP, IV – Biebrza NP, V – Ojców NP, VI–Gorce NP, VII – Białowieża NP, VIII – Wolin, IX – Góry Stołowe NP, X – Magura NP, XI – Tatra NP, XII–Słowiński NP, XIII – Wielkopolski NP, NP XIV – Ujście Warty NP, XV – Roztocze NP, XVI – Narew NP, XVII – Wigry NP, XVIII – Drawa NP, XIX – Polesie NP, XX – Świętokrzyski NP, XXI –Pieniny NP, XXII – Bieszczady NP, XXIII – Kampinos NP. ***Cells containing minimum values are highlighted in light grey, while maximum values are marked in dark grey.

No.	s of the variables Municipality	NP	1					7	7	7	7	7	W
1	Lipnica Wielka	INF	x ₆ 0.3650	x ₇ 0.2237	x ₈ 0.0000	x ₉ 0.2363	x ₁₀ 0.0000	z ₆ 0.0084	z ₇ 0.3595	Z ₈	z ₉ 0.6118	Z ₁₀	W _{wwм} 0.1959
2		—	1.2810	0.2237	0.0000	0.2303	0.0000	0.0084	0.3595	0.0000	0.4614	0.0000	0.1939
2	Zawoja	·											
3	Podgórzyn	;= _	2.4815	0.2088	0.1113	0.4972	0.0554	0.0573	0.3355	0.0132	0.1476	0.2154	0.1538
	Chojnice	≡	2.5454	0.0213	0.9437	0.0852	0.0804	0.0588	0.0342	0.1120	0.8805	0.3128	0.2797
5	Wizna		0.7633	0.0896	0.0546	0.2332	0.0127	0.0176	0.1439	0.0065	0.6172	0.0495	0.1669
6	Nowy Dwór		5.4049	0.0655	0.0630	0.2240	0.0141	0.1248	0.1052	0.0075	0.6335	0.0550	0.1852
7	Bargłów Kościelny		0.2548	0.0291	0.4265	0.1321	0.0563	0.0059	0.0468	0.0506	0.7971	0.2192	0.2239
8	Jedwabne		0.9269	0.0668	0.1097	0.1415	0.0155	0.0214	0.1074	0.0130	0.7803	0.0604	0.1965
9	Grajewo		0.0695	0.0003	0.5065	0.1625	0.0823	0.0016	0.0004	0.0601	0.7429	0.3203	0.2251
10	Jaświły		0.2321	0.0997	0.0548	0.2089	0.0115	0.0054	0.1602	0.0065	0.6605	0.0445	0.1754
11	Rajgród		0.0013	0.0867	0.2402	0.1488	0.0358	0.0000	0.1393	0.0285	0.7674	0.1391	0.2149
12	Lipsk	≥	0.9215	0.0582	0.0473	0.1757	0.0083	0.0213	0.0935	0.0056	0.7195	0.0323	0.1744
13	Dąbrowa Białostocka		0.3466	0.0670	1.2855	0.0748	0.0962	0.0080	0.1077	0.1525	0.8989	0.3742	0.3083
14	Suchowola		0.9681	0.0939	0.1809	0.0868	0.0157	0.0224	0.1508	0.0215	0.8777	0.0611	0.2267
15	Radziłów		0.6626	0.1036	0.4713	0.1448	0.0682	0.0153	0.1665	0.0559	0.7745	0.2655	0.2556
16	Sztabin		0.0510	0.0582	0.3119	0.2311	0.0721	0.0012	0.0935	0.0370	0.6209	0.2805	0.2066
17	Trzcianne		0.5422	0.0302	0.1778	0.2311	0.0721	0.0012	0.0933	0.0370	0.7655	0.2003	0.2000
18	Goniądz		0.9456	0.0903	0.2248	0.2064	0.0200	0.0123	0.1473	0.0211	0.6649	0.1805	0.2078
19	Wielka Wieś		1.0480	0.0903	0.2240	0.2004	0.0404	0.0210	0.1430	0.0207	0.9272	0.1803	0.3015
	Jerzmanowice-												
20	Przeginia	>	1.0352	0.1069	0.0838	0.2454	0.0206	0.0239	0.1718	0.0100	0.5956	0.0800	0.1763
21	Sułoszowa		0.3396	0.2255	0.0647	0.1090	0.0071	0.0078	0.3623	0.0077	0.8382	0.0274	0.2487
22	Skała		1.3033	0.2484	0.1019	0.1758	0.0179	0.0301	0.3992	0.0121	0.7193	0.0697	0.2461
23	Nowy Targ		1.4984	0.1350	0.0211	0.1733	0.0037	0.0346	0.2170	0.0025	0.7238	0.0142	0.1984
24	Ochotnica Dolna	ĺ	0.2430	0.2456	0.0247	0.0799	0.0020	0.0056	0.3946	0.0029	0.8899	0.0077	0.2602
25	Mszana Dolna	\geq	0.5057	0.1168	0.0359	0.1929	0.0069	0.0117	0.1876	0.0043	0.6890	0.0269	0.1839
26	Kamienica		0.1158	0.1687	0.0869	0.1310	0.0114	0.0027	0.2711	0.0103	0.7991	0.0443	0.2255
27	Niedźwiedź		0.4724	0.0792	0.0328	0.2262	0.0074	0.0109	0.1273	0.0039	0.6297	0.0289	0.1601
28	Narewka	_	0.8630	0.3438	1.4072	0.1194	0.1680	0.0199	0.5524	0.1670	0.8197	0.6536	0.4425
29	Białowieża	N	0.0963	0.3710	0.0102	0.1517	0.0016	0.0022	0.5961	0.0012	0.7622	0.0060	0.2735
30	Wolin	·	4.2688	0.0642	0.0242	0.2148	0.0052	0.0985	0.1032	0.0029	0.6499	0.0202	0.1750
31	Międzyzdroje	VIII*	2.3415	0.1192	0.0120	0.5802	0.0069	0.0541	0.1916	0.0014	0.0000	0.0270	0.0548
32	Lewin Kłodzki		1.8383	0.1602	3.4925	0.0212	0.0739	0.0424	0.2574	0.4144	0.9944	0.2876	0.3992
33	Szczytna	×	0.5970	0.0470	0.1729	0.2453	0.0424	0.0138	0.0755	0.0205	0.5957	0.1651	0.1741
34	Radków		1.2966	0.1276	0.5959	0.0404	0.0241	0.0299	0.2050	0.0707	0.9601	0.0938	0.2719
35	Osiek Jasielski		0.1394	0.1149	0.0000	0.2265	0.0000	0.0032	0.1846	0.0000	0.6291	0.0000	
36	Sękowa		0.7429	0.1689	1.3390	0.0901	0.1207	0.0172	0.2714	0.1589	0.8717	0.4695	0.3577
37	Lipinki		0.1718	0.1727	0.4717	0.0524	0.0247	0.0040	0.2774	0.0560	0.9389	0.0961	0.2745
38	Nowy Żmigród	×	0.2233	0.1516	0.0002	0.2590	0.0001	0.0052	0.2436	0.0000	0.5714	0.0002	0.1641
39	Dębowiec		0.0303	0.1093	0.2041	0.2883	0.0589	0.0007	0.1757	0.0242	0.5192	0.2290	0.1898
40	Krempna		0.2831	0.0791	1.2314	0.1237	0.1523	0.0065	0.1271	0.1461	0.8120	0.5927	0.3369
41	Poronin		2.1351	0.1489	0.0459	0.3007	0.0138	0.0493	0.2393	0.0054	0.4972	0.0537	0.1690
	Bukowina												
42	Tatrzańska	×IX	3.4833	0.1124	0.0117	0.3944	0.0046	0.0804	0.1807	0.0014	0.3304	0.0180	0.1222
43	Kościelisko		4.8489	0.1557	0.0213	0.4211	0.0090	0.1119	0.2502	0.0025	0.2830	0.0348	0.1365
44	Ustka		2.1896	0.2010	0.5565	0.0768	0.0428	0.0505	0.3229	0.0660	0.8954	0.1664	0.3003
45	Główczyce	×II*	0.5171	0.0278	0.1188	0.1237	0.0147	0.0119	0.0446	0.0141	0.8120	0.0572	0.1880
46	Wicko	×	1.4665	0.1462	0.2215	0.0463	0.0103	0.0339	0.2348	0.0263	0.9497	0.0399	0.2569
47	Smołdzino		6.7583	0.0000	0.0966	0.1380	0.0133	0.1560	0.0000	0.0115	0.7865	0.0519	0.2012
48	Dopiewo		43.3234	0.2255	0.0632	0.3026	0.0191	1.0000	0.3624	0.0075	0.4937	0.0744	0.3876
49	Mosina	=	22.0163	0.2051	0.0367	0.4616	0.0169	0.5082	0.3295	0.0044	0.2111	0.0659	0.2238
	Komorniki	XIII	4.2350	0.2021	0.0167	0.0857	0.0014	0.0978	0.3247	0.0020	0.8795	0.0056	0.2619
50					0.0007	0 4072	0.0416	0.5379	0.3152	0.0099	0.1476	0 1610	0.2345
50 51	Stęszew		23.3043	0.1962	0.0837	0.4972	0.04101	0.55791	0.0102	0.0000	0.14701	0.1619	0.2010
			23.3043 3.4974	0.1962 0.1698	0.0837	0.4972	0.0410	0.0807	0.2729	0.0187	0.6464	0.1330	0.2303
51	Stęszew	XIV*											

Table 2. Values of variables concerning wastewater management in the analyzed municipalities (x_6-x_{10}) , normalized values of the variables (z_6-z_{10}) , and the synthetic indicator (W_{WWM})

Cont. Table 2.

Cont	. Table 2.												
55	Zamość		4.8122	0.0632	0.0619	0.1464	0.0091	0.1111	0.1016	0.0073	0.7717	0.0352	0.2054
56	Józefów	× ×	0.9743	0.1182	0.0328	0.2139	0.0070	0.0225	0.1899	0.0039	0.6515	0.0273	0.1790
57	Adamów	×	1.1524	0.0012	0.0728	0.2195	0.0160	0.0266	0.0020	0.0086	0.6416	0.0622	0.1482
58	Zwierzyniec		32.2360	0.1358	0.0556	0.2159	0.0120	0.7441	0.2182	0.0066	0.6481	0.0467	0.3327
59	Tykocin		1.7834	0.0468	0.0479	0.1094	0.0052	0.0412	0.0753	0.0057	0.8375	0.0204	0.1960
60	Kobylin-Borzymy		0.0000	0.1420	0.0437	0.2127	0.0093	0.0000	0.2281	0.0052	0.6538	0.0362	0.1847
61	Suraż		0.1191	0.1402	2.9918	0.0746	0.2230	0.0028	0.2252	0.3550	0.8994	0.8679	0.4700
62	Sokoły	X	0.5209	0.6224	0.1478	0.2149	0.0318	0.0120	1.0000	0.0175	0.6498	0.1236	0.3606
63	Turośń Kościelna		1.2139	0.0896	0.1344	0.2460	0.0331	0.0280	0.1439	0.0160	0.5945	0.1286	0.1822
64	Choroszcz		7.9609	0.1119	0.1102	0.2877	0.0317	0.1838	0.1798	0.0131	0.5203	0.1234	0.2041
65	Łapy		0.0632	0.1717	0.0753	0.0317	0.0024	0.0015	0.2758	0.0089	0.9756	0.0093	0.2542
66	Krasnopol		0.0119	0.0000	0.0789	0.1972	0.0156	0.0003	0.0000	0.0094	0.6813	0.0605	0.1503
67	Nowinka	=	0.6561	0.2013	5.9814	0.0430	0.2570	0.0151	0.3234	0.7097	0.9556	1.0000	0.6008
68	Giby	XVII	0.9620	0.0000	0.2041	0.4714	0.0962	0.0222	0.0000	0.0242	0.1935	0.3743	0.1228
69	Suwałki		0.8421	0.1049	0.5960	0.1468	0.0875	0.0194	0.1685	0.0707	0.7708	0.3405	0.2740
70	Bierzwnik		3.0088	0.1523	0.1643	0.3324	0.0546	0.0695	0.2447	0.0195	0.4408	0.2125	0.1974
71	Krzyż Wielkopolski		17.6441	0.1186	0.0810	0.2587	0.0209	0.4073	0.1905	0.0096	0.5718	0.0815	0.2521
72	Tuczno	≣	5.4419	0.1138	0.1419	0.1924	0.0273	0.1256	0.1829	0.0168	0.6899	0.1062	0.2243
73	Drawno	XVIII	5.3681	0.1060	0.1898	0.1837	0.0349	0.1239	0.1703	0.0225	0.7053	0.1357	0.2315
74	Człopa		0.0632	0.1078	0.1051	0.1428	0.0150	0.0015	0.1732	0.0125	0.7781	0.0584	0.2047
75	Dobiegniew		3.4504	0.1250	0.3235	0.1022	0.0331	0.0796	0.2009	0.0384	0.8503	0.1286	0.2596
76	Ludwin		13.7717	0.0896	0.0889	0.1750	0.0156	0.3179	0.1440	0.0105	0.7208	0.0605	0.2507
77	Stary Brus		0.9485	0.0577	1.6152	0.0754	0.1218	0.0219	0.0927	0.1917	0.8979	0.4740	0.3356
78	Hańsk	×	0.0434	0.0617	8.4277	0.0180	0.1517	0.0010	0.0992	1.0000	1.0000	0.5904	0.5381
79	Wierzbica	XIX	0.4376	0.0843	0.1854	0.2016	0.0374	0.0101	0.1355	0.0220	0.6734	0.1455	0.1973
80	Sosnowica		0.4329	0.0938	0.1144	0.1921	0.0220	0.0100	0.1508	0.0136	0.6903	0.0855	0.1900
81	Urszulin		0.8419	0.1123	0.2273	0.1445	0.0328	0.0194	0.1804	0.0270	0.7751	0.1277	0.2259
82	Górno		0.8100	0.1380	0.0369	0.2483	0.0092	0.0187	0.2217	0.0044	0.5905	0.0357	0.1742
83	Masłów		2.6816	0.2060	0.0702	0.2202	0.0155	0.0619	0.3310	0.0083	0.6403	0.0602	0.2203
84	Łączna	5	1.2305	0.1239	0.0450	0.1897	0.0085	0.0284	0.1990	0.0053	0.6946	0.0332	0.1921
85	Bieliny	XX	1.5042	0.1408	0.0013	0.1730	0.0002	0.0347	0.2263	0.0002	0.7242	0.0009	0.1973
86	Nowa Słupia		0.2536	0.1020	0.0571	0.0815	0.0047	0.0059	0.1639	0.0068	0.8871	0.0181	0.2164
87	Bodzentyn		0.5995	0.1625	0.0569	0.0578	0.0033	0.0138	0.2611	0.0068	0.9292	0.0128	0.2448
88	Łapsze Niżne		3.6299	0.1845	0.1156	0.1543	0.0178	0.0838	0.2965	0.0137	0.7576	0.0694	0.2442
89	Szczawnica		3.0579	0.2181	0.0498	0.3201	0.0159	0.0706	0.3504	0.0059	0.4627	0.0620	0.1903
90	Krościenko nad Dunajcem	XXI	0.9146	0.1823	0.0251	0.2431	0.0061	0.0211	0.2928	0.0030	0.5996	0.0237	0.1881
91	Czorsztyn		1.3235	0.2259	0.0215	0.3371	0.0073	0.0306	0.3630	0.0026	0.4324	0.0282	0.1713
92	Czarna	=	0.3282	0.0327	0.0994	0.2508	0.0249	0.0076	0.0526	0.0118	0.5860	0.0970	0.1510
93	Lutowiska	XXII	0.3363	0.1164	0.2581	0.1133	0.0292	0.0078	0.1870	0.0306	0.8305	0.1138	0.2339
94	Tomaszów Mazowiecki		4.4346	0.1660	0.0844	0.2966	0.0250	0.1024	0.2668	0.0100	0.5045	0.0974	0.1962
95	Łomianki		16.5828	0.2018	0.0007	0.3513	0.0002	0.3828	0.3243	0.0001	0.4072	0.0009	0.2230
96	Stare Babice		5.9499	0.2961	0.0188	0.1573	0.0030	0.1373	0.4758	0.0022	0.7522	0.0115	0.2758
97	Kampinos	_	3.2874	0.1588	0.0612	0.2111	0.0129	0.0759	0.2552	0.0073	0.6565	0.0502	0.2090
98	Brochów	XXIII	3.2466	0.1227	0.0201	0.1775	0.0036	0.0749	0.1972	0.0024	0.7162	0.0139	0.2009
99	Izabelin		9.9687	0.2707	0.0025	0.2154	0.0005	0.2301	0.4350	0.0003	0.6489	0.0021	0.2633
	Czosnów		5.8384	0.2224	0.1080	0.1232	0.0133	0.1348	0.3574	0.0128	0.8129	0.0518	0.2739
100													
100 101	Leszno		16.1049	0.0709	0.0494	0.2174	0.0108	0.3717	0.1139	0.0059	0.6454	0.0418	0.2357

1) alongside above-average waste management (Group B), which are Lewin Kłodzki in the Góry Stołowe NP, Hańsk in the Poleski NP, Słońsk in the Ujście WartyNP, Sękowa in the Magurski NP, and Nowinka in the Wigry NP. The results indicate the lack of administrative units that are extremely negatively rated, meaning those with low sewage and waste management levels. The least favourable situation is in the municipalities:

with a low level of sewage management (Type 4) and an average level of waste management (Group C) – 4 municipalities (Adamów

Figure 2. Spatial distribution of groups of municipalities regarding waste management level within particular national parks

in Roztocze NP, Bukowina Tatrzańska and Kościelisko in Tatra NP, and Giby in Wigry NP).

 with a low level of waste management (Group 4) and an average level of sewage management (Type 3) – 8 municipalities (Dębowiec and Osiek Jasielski in Magura NP, Człopa and Bierzwnik in Drawa NP, Niedźwiedź in Gorce NP, Leoncin in Kampinos NP, Tykocin in Narew NP, and Mosina in Wielkopolski NP).

The largest group of the municipalities (57%) consists of units rated as average. This is partly

Figure 3. Spatial distribution of types of municipalities regarding wastewater management within particular national parks

due to the method of assessment applied, but it may also display that municipalities' authorities and their residents act in a similar, moderately active manner. Survey results also show the municipalities with no correlation between waste management and sewage management activities. These include the municipalities where the waste management was evaluated at a very good level (Group A) and the sewage management at an average or poor level (Type 3 and 4), such as: Zawoja in Babia Góra NP, Międzyzdroje and Wolin in Wolin NP, Rajgród and Lipsk in Biebrza

Municipalities	Group A	Group B	Group C	Group D	Σ
Type 1	48-XIII*	32-IX; 78-XIX; 54-XIV; 36-X; 67-XVII	58-XV; 40-X; 61-XVI; 28-VII; 77-XIX	62-XVI	12 (11,8%)
Type 2	96,99,101-XXII; 50-XIII; 65-XVI; 44-XII	19-V; 100-XXIII; 13-IV; 51-XIII	34-IX; 76-XIX; 71,75-XVIII; 4-III 22-V; 88-XXI; 93-XXII; 29-VII; 69-XVII; 37-X; 46-XII; 87-XX	21-V; 24-VI; 15-IV	26 (25,5%)
Туре 3	3-II; 91-XXI; 47-XII; 11,12-IV; 97-XXIII; 92-XXII; 30-VIII	33-IX; 95-XXIII; 80,81-XIX; 55-XV; 52,53-XIV; 89-XXI; 45-XII; 10,14,16,18-IV; 82,83,86-XX	56-XV; 79-XIX; 94,98-XXIII; 1-I; 20-V; 90-XXI; 23,25,26- VI; 38-X; 66-XVII; 5,6,7,8,9,17-IV; 60,63,64-XVI; 84,85- XX; 41-XI; 72,73-XVIII	27-VI; 49-XIII; 102-XXIII; 35,39-X; 59-XVI, 70,74-XVIII	58 (56,9%)
Type 4	2-I, 31-VIII	_	57-XV; 68-XVII; 42, 43-XI		6 (5,9%)
Σ	17 (16,7%)	25 (24,5%)	48 (47,1%)	12 (11,8%)	102

Table 3. The quantitative distribution of the groups and types of municipalities related to the level of waste and wastewater management

Note: * The numbers of municipalities and national parks are given in Figure 1 and Table 1.

NP, Podgórzyn in Karkonoski NP, Kampinos in Kampinos NP, Czorsztyn in Pieniny NP, Czarna in Bieszczady NP, and Smołdzino in Słowiński NP. The other group of the municipalities is the one where the level of waste management was assessed as low (Group D), while the level of sewage management was at good or very good level (Type 1 and 2). This particularly refers to the municipalities of Sokoły in Narwia NP, Sułoszowa in Ojcowski NP, Ochotnica Dolna in Gorczański NP, and Radziłów in Biebrza NP.

The percentage distribution of individual municipalities is as follows (Table 3):

- high level of activities regarding waste management – 16.7% of the municipalities, and respectively, in the case of wastewater management - 11.8% of the municipalities;
- above the average level of activities regarding waste management – 24.5% of the municipalities, and in the case of wastewater management – 25.5%;
- average level of activities regarding waste management – 47.1% of the municipalities, in the case of wastewater management – 56.9%;
- low level of activities regarding waste management – 11.8% of the municipalities, in the case of wastewater management – 5.9%.

CONCLUSIONS

Statistics show that the coefficients of variation for both synthetic indicators range between 20–40%, which signifies moderate variability in the results. However, it should be noted that the similarity is higher in the case of waste management (coefficient of variation equal to 24%) than in sewage management (coefficient of variation over 35%). In the case of waste management, it may be primarily related to a similar positive altitude attitude of residents and tourists towards proenvironmental activities. The level of wastewater management is more dependent on the specific characteristics of municipalities, as well as organizational and investment activities of their local authorities. This results in more significant variability of assessment outcomes. The overall evaluation in this field is also less favourable for some municipalities.

The analysis of individual indicators regarding waste segregation (paper, glass, metals, plastics) indicates significant similarity among municipalities. However, such similarity is not observed in the case of biodegradable waste. When it comes to wastewater management, the variation is considerable. The main similarity between municipalities can be observed in the number of septic tanks per capita. The variation is very large regarding indicators related to more ecological solutions such as collective sewage systems and household sewage treatment plants. Nevertheless, it can be stated that in municipalities located in highly valuable natural areas, the level of proecological actions in the field of wastewater management is still unsatisfactory.

No correlation can be observed between the level of waste and sewage management in individual municipalities and their location within the boundaries of a particular national park. This clearly indicates that the economic and social factors of the given municipality primarily determine the actions of municipalities in this regard..

REFERENCES

- BDL Local Data Bank of Statistics in Poland. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 1.03 2024).
- Białas M. 2018. Municipal responsibility for technical infrastructure and its condition (in Polish). Miasto. Pamięć i Przyszłość, 3/2. https://doi.org/10.26774/ mpp.81file:///C:/Users/p405094/Downloads/81--Tekst%20artyku%C5%82u-335-1-10-20190610. pdf (accessed on 3.04.2024).
- Bugajski P., Chmielowski K., Cupak A., Wąsik E. 2016. Influence of sewage from septic tanks on the variability concentration of pollutants in sewage undergoing purification processes. Infrastruct. Ecol. Rural Areas, 2, 517-526.
- 4. Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment. (OJL 135, 30.05.1991).
- 5. Journal of Laws 1990, No 16, Item. 95 as amended. Act of 8 March 1990 on the local self-government.
- Journal of Laws 1996, No 132, Item. 622 as amended. Act of 13 September 1996 on Maintaining Cleanliness and Order in Communes.
- Journal of Laws 2005, No 94, Item. 794. The Ordinance of the Minister of the Environment of 12 May 2005 on drawing up a draft conservation plan of a national park, a nature reserve and a landscape park, amending this plan and protecting resources, creatures and components of nature.
- Journal of Laws 2013 Item 21 as amended. Act of 14 December 2012 on Waste.
- National Environmental Policy, 2019. Polityka Ekologiczna Państwa 2019. Ministerstwo Środowiska, Warszawa, 1-355.
- Kądziołka K. 2021. Comparison of selected normalisation methods in terms of rankings similarity (in Polish). Zeszyty Naukowe ZPSB Firma i Rynek, 2(60), 70-80.
- 11. Kłos L. 2015. Environmental awareness of polish people – overview of research (in Polish). Zeszyty Naukowe Uniwersytetu Szczecińskiego. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania, 42(2), 35-44. DOI: https://doi.org/10.18276/ sip.2015.42/2-03.
- Kotlińska J., Żukowska H. 2023. Tasks of Municipalities in the Field of Municipal Waste Management in Poland and Sources of Their Financing. Przegląd Prawno-Ekonomiczny, 4/20, 43-73.
- 13. KPOŚK, 2003. National Urban Wastewater

Treatment Programme (in Polish). Ministerstwo Środowiska, Warszawa.

- Kruk H. 2015. Measurement and estimation methods of ecological dimension of the sustainable development at the national and supranational levels (in Polish), Ekonomia i Środowisko, 4 (55), 26-42.
- 15. Kudłacz T. 2015. Types and characteristics of infrastructure and its functions in regional and local development - an overview of the problem (in Polish). In: Infrastruktura w rozwoju regionalnym i lokalnym. Wybrane problemy, T. Kudłacz, A. Hołuj. CeDeWu, Warszawa, 13-32.
- Kukuła K. 1999. The method of zero linearization in the background of chosen normalization methods (in Polish) Acta Scientifica Academiae Ostroviensis, 4, 5-31.
- 17. Kukuła K., Luty L. 2015. The proposal for the procedure supporting selection of a linear ordering method (in Polish). Przegląd Statystyczny, vol. LXII(2), 219-231.
- Kulczyk-Dynowska A., Stacherzak A. 2020. Selected Elements of Technical Infrastructure in Municipalities Territorially Connected with National Parks. Sustainability, 12(10), 4015, 1-14, https://doi.org/10.3390/su12104015.
- Paluch Ł., Zuzek D. 2017. An assessment of level of development infrastructure in the environmental protection in polish voivodeships (in Polish), Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 334, 120-130.
- Pawłat-Zawrzykraj A., Podawca K. 2020. Diversification of Municipalities Located in the Impact Area of National Parks in Terms of Environmental Requirements of Sustainable Tourism. Sustainability, 12(12), 1-19.
- Piasecki, A. 2019. Water and Sewage Management Issues in Rural Poland. Water, 11, 625, 1-16. DOI: 10.3390/w11030625
- Podawca K. 2006. Spatial planning of municipalities in terms of spatial management national parks (in Polish). Acta Scientiarum Polonorum. Architectura, 5(2), 97-110.
- 23. Podawca K. 2014. The analysis of sanitation services variation for communes under influence of national parks, Infrastructure And Ecology of Rural Areas. Nr III/1, Polska Akademia Nauk, oddział w Krakowie, 985–999.
- 24. Podawca K. 2015. The analysis of socio-spatial availability of gas pipeline infrastructure for communes located in the impact zone of national parks. Economic and Regional Studies, 8(2), 67-79.
- 25. Podawca K., Karsznia K. 2017. The development of technical infrastructure between 2004-2014 as a factor of a sustainable development of the municipalities of Kampinoski National Park (in Polish), Zeszyty Naukowe Inżynieria Środowiska, Seria

Inżynieria Środowiska, 46, 85-95.

- 26. Podawca K., Pawłat-Zawrzykraj A. 2017. The analysis of agritourism accommodation indicators for areas located in vicinity of national parks, Annals of Warsaw University of Life Sciences – SGGW, Land Reclamation, 49(4), 289-300.
- Podawca K., Pawłat-Zawrzykraj A. 2018. Diversification of tourist attractiveness in municipalities located in impact area of national parks. Polish Journal of Environmental Studies, 5, 2213-2227.
- 28. Podawca K., Pawłat-Zawrzykraj A. 2017. Analysis of the availability of educational and technical infrastructure, as factor of sustainable development for Biebrza national park communes, Journal of Ecological Engineering, 18 (1), 159-167.
- 29. Report on the survey of environmental awareness and behaviour of Polish residents 2022. (in Polish). Available online: https://www.gov.pl/web/edukacja-ekologiczna/badania-swiadomosci-ekologicznej (accessed on 3.03.2024).
- Rosner A. (Ed.) 1999. Typology of rural problem areas (in Polish). Polska Akademia Nauk-Instytut Rozwoju Wsi i Rolnictwa, Warszawa.
- Stachowicz M. 2023. Implementation of investments resulting from the National Plan for Municipal Wastewater Treatment. Humanities & Social Sciences Review, 11(6), 1-7.
- Stawasz D. (Ed.). 2005. Technical infrastructure and urban development (in Polish). Wyd. Uniwersytetu Łódzkiego. Łódź.

- 33. Stefaniuk M. 2021. Environmental Awareness in Polish Society with Respect to Natural Resources and Their Protection (Overview of Survey Research). Studia Iuridica Lublinensia vol. XXX, 2, DOI: 10.17951/ sil.2021.30.2.357-379 (accessed on 15.05.2024).
- Śleszyński P. (edit.). 2013. Indicators of spatial organization and spatial order in communes (in Polish), Biuletyn KPZK PAN, 252, Warszawa.
- 35. Śleszyński P. 2018. Expenditures Related to Technical Infrastructure (in Polish). Studia KPZK, vol. 182, Studia nad chaosem przestrzennym; Koszty chaosu przestrzennego, 196-227.
- Tuszyńska L. 2013. Ecological awareness of local societies. Expectations and the reality (in Polish). Rocznik Świętokrzyski. Seria B – Nauki Przyrodnicze, 34, 152-171.
- 37. Wałega A., Chmielowski K., Młyński D. 2018. Influence of the Hybrid Sewage Treatment Plant's Exploitation on its Operation Effectiveness in Rural Areas. Sustainability, 10, 2689, 1-17.
- Zawilińska, B., Mika M. 2013. National parks and local development in Poland: A municipal perspective. Hum. Geogr. J. Stud., 7.
- 39. Zielińska A. 2006. Use of multidimensional comparative analysis for areas of high natural values according to sustainable development indicators (in Polish). In: Richling A., Stojek B., Strzyż M., Szumacher I., Świercz A. (Eds.) Regionalne studia ekologiczno-krajobrazowe, Problemy Ekologii Krajobrazu, vol. XVI/2, Warszawa, 117-123.