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INTRODUCTION

The world’s supply of fossil fuels is gradually 
depleting, whereas the global need for energy in-
creases continuously. The principle of sustainable 
development dictates that, in order to provide a 
better future for subsequent generations, non-re-
newable fuels should be used rationally, and, at 
the same time, the obtainability of energy from 
alternative sources should be improved. 

Poland has a considerable potential in terms 
of renewable energy sources, especially wind and 
biomass energy [Krawiec 2010]. The latter, when 
subjected to thermochemical or biochemical con-
version in the presence of microorganisms, can 
provide electricity, heat, and biofuels (Figure 1). 
Importantly, energy can be obtained not only from 
biomass as a product, but communal, agricultural, 
forestry, and industrial waste as well.

The main constituent of plant biomass is lig-
nocellulose, which is made up of three types of 
polymers: cellulose, hemicellulose, and lignin 
[Perez et al. 2002, Kumar et al. 2009]. Lignocel-
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ABSTRACT
The aim of the study was to assess the cellulolytic activity of a strain of Trichoderma 
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level of activity depends on the type of material introduced into the culture as a ligno-
cellulosic substrate as well as on the temperature. The highest value of AI was found 
in objects with added maize straw. The optimal temperature for the biosynthesis of 
cellulolytic enzymes equalled 30 °C. 
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lulosic materials are the most promising feed-
stock for bioenergy [Perez et al. 2002]. While 
a range of microorganisms are able to degrade 
cellulose and hemicellulose by using them as a 
source of carbon and energy, much fewer micro-
organisms show the same activity towards lignin 
[Sanchez 2009]. Among the microorganisms that 
play an important role in these processes are fila-
mentous fungi, including those from the genus 
Trichoderma [Miettinen-Oinonen and Suominen 
2002, Neethu et al. 2012, Rubeena et al. 2013]. 
Fungi have two types of exogenous enzymatic 
systems: the hydrolytic system, responsible for 
degrading polysaccharides, and the lignolytic 
system, which determines the decomposition of 
lignins [Sanchez 2009]. Lignocellulosic materi-
als intended for energy production must undergo 
initial processing with physical, chemical, or 
biological methods applied independently or in 
combination, e.g., thermochemical or biochemi-
cal methods [Lim et al. 2012]. Another impor-
tant consideration that may affect the viability 
of these materials as an energy source is the pos-
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Figure 1. Biomass energy conversion [based on Sanchez 2009]

sibility to provide optimal environmental condi-
tions, adjusted appropriately to the needs of the 
microorganisms, including the basic ones such 
as pH and temperature [Tholudur et al. 1999, 
Bhattacharya et al. 2014]. 

The aim of this study was to assess the 
capability of Trichoderma viride to biosyn-
thesise cellulolytic enzymes with regard to 
selected lignocellulosic substrates in different 
temperatures.

MATERIALS AND METHODS

The researched material constituted a strain 
from the collection of the Department of Mi-
crobiology and Environmental Biotechnology. 
The production of cellulolytic enzymes was as-
sessed in 250 cm3 Erlenmeyer flasks containing 
100 cm3 of liquid modified medium composed 
of (g·L-1): urea 0.3; (NH4)2SO4 1.4; KH2PO4 
2.0; CaCl2 0.3; MgSO4 0.3; yeast extract 0.25; 

peptone 0.75 g [Mandels 1975]. Added to the 
flasks were lignocellulosic substrates weight-
ing 10 g (respectively wheat straw – WS, bar-
ley straw – BS or maize straw – MS), that had 
been broken down and then ground into frag-
ments with a maximum size of 1–3 mm in order 
to increase bioavailability. Also prepared were 
flasks with a control medium (C) that contained 
crystalline cellulose instead of lignocellulosic 
materials.

The media were inoculated by introducing 
discs with a diameter of 2 mm cut from a seven-
day-old mycelium of T. viride (the material was 
cultivated on the PDA medium at 30 °C). Each 
culture was incubated for seven days at 25, 30 
and 35 °C. In order to determine the activity of 
the produced enzymes, 0.1 cm3 of culture liquid 
was taken from flasks with the appropriate ob-
jects of research and transferred centrally onto 
a medium solidified on Petri dishes (composi-
tion as stated above) with added carboxymethyl 
cellulose (1% w/v). The experiment was per-
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formed three times. After seven days of incuba-
tion at 30 °C, the dishes were flooded with a 1% 
aqueous solution of Congo red for 15 minutes 
and bleached using 1M NaCl (20 min). Next, 
the diameter of the clear zone around the colo-
ny was measured (in mm). AI (activity index) 
was determined based on these measurements 
by comparing the size of the clear zone to the 
size of the colony. The results were subjected to 
statistical analysis using the Statistica ver. 10.0 
computer program by StatSoft Poland.

RESULTS AND DISCUSSION

The annual yields of lignocellulosic bio-
mass in the world is about 220 billion tons [Ren 
et al. 2009]. Lignocellulosic substrates are re-
newable, available in large quantities [Bisaria 
and Ghose 1981] and undergo bioconversion. 
As many authors indicate, strains belonging to 
the genus Trichoderma [Khokhar et al. 2012, 
Neethu et al. 2012, Sartori et al. 2015], may 
play an important role in these processes, as 
also confirmed by the presented research. It 
was found that for the tested strain of Tricho-
derma viride, the presence of lignocellulosic 
materials in the growth medium benefitted the 
production of cellulolytic enzymes (Figure 
2.A–C), which is significant taking into ac-
count that the materials are waste that can be 
used to produce biofuels. Also noted were dif-
ferences in the activity of the strain depending 
on the applied lignocellulosic substrate. All 
waste materials contained substances essential 
for fungal growth and activity, i.e. the source 
of carbon or nitrogen [Kancelista et al. 2013], 
but the highest AI was observed in the pres-
ence of maize straw. 

The average content of cellulose, hemicel-
lulose, and lignin in materials such as those 
used in this study may amount to, respective-
ly, 29–35%, 26–32%, and 16–21% for wheat 
straw, 31–34%, 24–29%, and 14–15% for bar-
ley straw [Sanchez 2009], and approx. 49%, 
29%, and 7.5% for maize straw [Song et al. 
2014]. Maeda et al. [2011] indicate that cellu-
lolytic enzymes may bind with lignin, causing 
their effectiveness to drop considerably. Maize 
straw contains markedly less lignin that the 
other substrates, which means that the poten-
tial level of the reduction of enzymatic activity 
may be lower in this case. 

It is not only the type of substrate, but the 
environmental conditions as well that have a 
significant effect on the amount of the produced 
cellulolytic enzymes [Herculano et al. 2011]. 
The conducted experiments indicated that the 
optimal temperature is 30 °C. Similar results 
were obtained by Bhattacharya et al. [2014], 
who assessed the relationship between the effec-
tiveness of cellulase production by T. viride and 
such parameters as pH, incubation time, or tem-
perature. In the presented research, an increase 
in temperature led to an increase in the activity 
of the strain with regard to maize straw. The ob-
served values of AI were higher than in the other 
objects of research, including the control. No 
similar relationship was observed with regard to 
the other lignocellulosic substrates, in which an 
increase in temperature over 30 °C reduced the 
activity of the strain, which is also confirmed by 
other authors [Malik et al. 2010].

Figure 2. The activity index (AI) in the presence of 
various lignocellulosic substrates

C – control, WS – wheat straw, BS- barley straw, 
MS – maize straw
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CONCLUSIONS

The influence of two factors, different lig-
nocellulosic waste materials and temperature, 
were examined in the current work. The results 
showed that the lignocellulosic waste substrates 
introduced into growth media induced the bio-
synthesis of cellulolytic enzymes by the strain 
of Trichoderma viride. Cellulolytic activity var-
ied depending on the type of substrate (maize 
straw>barley straw>wheat straw). The optimal 
temperature for the biosynthesis of extracellular 
cellulolytic enzymes is 30 °C, regardless of the 
type of the lignocellulosic substrate.
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