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INTRODUCTION

Albania is rich in both surface and groundwa-
ter; the latter is mainly related to karst and alluvial 
aquifers. The Tirana-Fushe Kuqe alluvial aquifer, 
which extends from Tirana at SE to the Mat river at 

NW (Figure 1), covering an area of over 300 km2 
in central-western Albania, represents not only an 
interesting hydrologic unit but also an important 
basin for drinking water supply of about 1/3 of 
the country population. A groundwater quantity 
of about 2000 l/s was pumped from the alluvial 
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ABSTRACT
During the research, 71 groundwater samples were collected over a 300 km2 area of Tirana-Fushe Kuqe alluvial 
aquifer extension (central-western Albania) and subsequently analyzed for 11 parameters (pH, K+, Na+, Ca2+, Mg2+, 
HCO3

-, Cl-, SO4
2-, NO3

-, TH and TDS). Both geochemical conventional (Piper and Chadha diagrams) methods 
of groundwater classification and multivariate statistical (principal components analysis – PCA and hierarchical 
cluster analysis – HCA) methods were applied to the dataset to evidence the geochemical processes control-
ling groundwater geochemistry evaluation through the aquifer. The conventional geochemical methods revealed 
four (G1–G4) hydrochemical groups where the dominant group is G2 the samples of which are from unconfined 
to semiconfined recharge zone and the majority of them have Ca-Mg-HCO3 groundwater. Group G3 includes 
the samples from the confined coastal aquifer having Na-Cl groundwater. Group G1 includes three groundwater 
samples of Ca-Mg-SO4 from the central part of the aquifer, while group G4, the samples of which are spatially 
located between G3 and G2 zones, has Na-HCO3 groundwater. The first four components of the PCA account for 
85.35% of the total variance. Component PC1 is characterized by very high positive loadings of TH, Ca2+, and 
Mg2+, suggesting the importance of dissolution processes in the aquifer recharge zone. Component PC2 is char-
acterized by very high positive loadings in Na+, K+, and Cl- and moderate to high loadings of TDS, revealing the 
involvement of seawater intrusion and diffusion from clay layers. On the basis of their variable loadings, the first 
two components are defined as the “hardness” and “salinity”, respectively. The HCA produced four geochemically 
distinct clusters, C1–C4. The samples of cluster C1 are from the coastal confined aquifer and their groundwater 
belongs to the Na-Cl type. The samples from cluster C2 are located in the south and east recharge areas and most 
of them have Ca–Mg–HCO3 groundwater, while the samples from cluster C3, which are located in the northeastern 
recharge zone, have Mg-Ca–HCO3 groundwater. Finally, cluster C4 includes two groundwater subgroups having 
Na-Cl-HCO3 and Na-Mg-Cl-HCO3 groundwater in the vicinity of cluster C1 as well as Na-HCO3-Cl and Na-Mg-
HCO3-Cl groundwater next to cluster C2 and C3.
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aquifer of Tirana-Fushe Kuqe by public pumping 
stations [Tartari and Dakoli, 2001] which after 
5 years was increased to 2500 l/s [Eftimi et al., 
2006]. Nowadays, the pumped groundwater quan-
tity from this aquifer is over 3000 l/s due to an ad-
ditional pumped water quantity of 600 l/s for the 
supply of Durresi coastal city.

This aquifer is among the most studied; abun-
dant quantitative and qualitative data are gener-
ated since the year 1961 when the first drillings 
started. Tartaei and Dakoli [2001] constructed a 
hydrochemical map of the TDS and total hardness 
values for the whole Tirana-Fushe Kuqe aquifer 

extension, based on the chemical data of previous 
studies accomplished by ex-Albanian Hydrogeo-
logical Enterprise. Systematic hydrochemical mon-
itoring (thirty sites), during the hydrological year 
2000–2001, was realized as part of Beqiraj’s post-
doctoral studies at the Department of Earth Sci-
ences (University of Rome “La Sapienza”) whose 
preliminary results were presented by Beqiraj et 
al. [2002]. Within the framework of the bilateral 
project between the Institute of Geosciences and 
Georesources (Pisa-Italy) and the Faculty of Geol-
ogy and Mining (Tirana-Albania) during the period 
2017 to 2018, about 30 samples were collected and 

Figure 1. Geological map of the Tirana-Fushe Kuqe region (alluvial 
aquifer extension along with sampling sites are shown) 
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analyzed for the main chemical parameters and H-2 
and O-18 stable isotopes, the results of which were 
integrated by Cenameri [2021].

This paper aimed to bridge a gap that consists 
of the missing multivariate analysis of the abun-
dant hydrochemical data of the aquifer ground-
water. In addition to routine statistical estimations 
like basic statistics, correlations between vari-
ables, and boxplots, two well-known multivari-
ate methods of geochemical data were used, i.e. 
principal components analysis (PCA) and hierar-
chical cluster analysis (HCA) to better evidence 
the factors and processes that control the forma-
tion of geochemical composition of groundwater. 
This was done by confronting and integrating the 
results of PCA and HCA with those of traditional 
geochemical groundwater classifications like 
PIPER, CHADHA, etc. 

The multivariate analysis is widely used to 
supplement classical hydrogeochemical methods 
helping to solve different compositional issues 
of groundwater: to identify groundwater sourc-
es [Steinhorst and Williams, 1985], to evidence 
major water groups and factors affecting ground-
water quality [Melloul et al. 1992], to identify 
rock–water interaction processes [Farnham, et 
al., 2003], to understand groundwater flow in the 
aquifer [Stetzenbach, et al., 2001], and to indicate 
the hydrogeochemical evolution of groundwater 
[Cloutier et al., 2008].

GEOLOGY AND HYDROGEOLOGY 
OF THE STUDY AREA

The Tirana-Fushë Kuqe basin extends from Ti-
rana city in the southeast to River Mat in the north-
west, covering an area of over 300 km2. It belongs 
to the Tirana depression, a flat physiographic area, 
gently sloping toward the northwest. In the east, 
south, and southwest the study area is bordered by 
hilly terrains. To the west and northwest, it is bor-
dered by the Adriatic Sea coastal line and the River 
Mat watercourse, respectively. The plain area is 
crossed by several rivers that drain from the eastern 
mountains among which River Mat represents the 
most important hydrographic feature of the area, 
followed by River Droja and Ishmi southward. The 
latter collects the waters of some small rivers that 
flow from the mountains of Dajti and Kruja such as 
Zeza, Terkuza, Tirana and Lana (Figure 1).

Tirana-Fushe Kuqe depression was created 
during the Quaternary as a consequence of earth 

sinking confronted with a raising up regime of the 
older (Neogene to Cretaceous) eastern geologi-
cal formations (Figure 1). The Neogene forma-
tions that represent the basement of the alluvial 
sediments compose an intermountain southeast-
northwest extending syncline and consist of Mio-
cene mudstone – siltstone - sandstone intercala-
tions, which crop out at the foot of the bordering 
hills. The depression was successively filled up 
mainly with alluvial sediments the thickness of 
which ranges from about 20–30 m in the South 
(Tirana) through 60–80 m in the Center (Fushe 
Kruja) up to about 200 m in the North (Fushe 
Kuqe) [Tartari and Dakoli, 2001]. Quaternary 
sediments, gravel and sand sandwiched between 
clay layers, are of Pleistocene age, formed after 
the last glacial maximum when the sea level rose 
from 120 below the present level and the sea-
shore retreated from a position about 50 km off-
shore outside the present coastline [Kumanova et 
al., 2014]. The clay cover is likely to have been 
formed during the rapid seawater regression later 
in the Holocene [Kumanova, et al., 2014].

The Quaternary sediments consist of discon-
tinuous gravel-sand intercalations with silt-clay 
layers. Gravel crops out at the rivers outlet in the 
plain, but among them the most widespread riv-
erbed gravel outcrop is that of River Mat, which 
extends over an area of several kilometers. Only 
isolated gravel patches occur along the courses of 
the Droja, Zeza, and Terkuza rivers. 

However, gravel sediments are widely distrib-
uted at depth in the whole valley, indicating two 
evident increasing tendencies of their thickness 
[Tartari and Dakoli, 2001] from southeast to north-
west and from east to west. The aquifer changes 
from one layer to multilayer due to the imperme-
able clay intercalations within the gravel section, 
following the above-mentioned directions. The al-
luvial aquifer system is unconfined in the south-
eastern (Tirana) region and changes gradually ver-
sus semiconfined conditions in the central (Rinas-
Fushe Kruja) region up to a complete confined 
aquifer in the northwestern (Fushe Kuqe) area. 
Following the above direction, the aquifer trans-
missivity increases from about 100 m2/d to more 
than 8000 m2/d [Eftimi et al., 2006]. The main 
groundwater direction in the southern and central 
part of the basin is from southeast to northwest, 
whereas a second important groundwater move-
ment, in the northern part of the basin, is from the 
east river outlets to the Adriatic Sea in the west.
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HYDROGEOCHEMISTRY

The groundwater indicates variable geochem-
ical composition due to variable hydrogeological 
conditions along the aquifer extension, and influ-
ence of seawater intrusion in the coastal parts of 
the aquifer [Cenameri and Beqiraj, 2018, Eftimi et 
al., 2006; Beqiraj et al., (2002); Tartari and Dako-
li, 2001]. Beqiraj et al. (2002) identified six main 
hydrochemical groundwater types, the distribu-
tion of which in the aquifer is closely related to 
its hydrogeological conditions. The Ca-HCO3 and 
Ca–Mg–HCO3 types are typical for the southern 
and eastern recharge areas where phreatic condi-
tions dominate, followed westward by a mixed 
zone under semiconfined and confined conditions 
where Mg-Ca-HCO3, Na-Mg-HCO3-Cl, and Na-
Cl-HCO3 types are present. Finally, the Na–Cl 
groundwater characterizes the completely under 
confined conditions coastal areas of the aquifer. 
The chloride content in the groundwater of the 
southern – central areas of the basin is generally 
less than 20 mg/l, which is compatible with its 
content in the rivers crossing this area such as 
Lana (10 mg/l), Tirana (11.1 mg/l), Terkuza (16 
mg/l) and Zeza (12 mg/l) [Eftimi et al., 2006]. 
There is an apparent increase, from east to west, 
of the chloride content in the groundwater of the 
northern aquifer extension, which becomes faster 
in its coastal area where values over 500 mg/l Cl- 
are met [Cenameri and Beqiraj 2016].

METHODOLOGY

Water sampling and testing

In the period 2016–2018, 67 groundwater 
samples were collected, mostly from private 
wells and only a few from municipal wells. In 
addition, four samples were taken from the sur-
face (3 from rivers Mat, Fan and Droja and one 
from a Laç karst spring) water. The sampling lo-
cation was recorded by a portable GPS device tip 
Garmin - GPSMAP 62 series. The sampled wells 
are distributed over the whole aquifer extension 
area (Figure 1). The SEBA Liquid Sampler KLL-
S was used for groundwater sampling from the 
wells. The temperature, pH and conductivity 
were measured on site. The pH and temperature 
were measured using a Hanna Testo 205 pH me-
ter, having accuracy of ±0.02 pH/±0.4 °C and 
resolution of 0.01 pH/0.1°C. Conductivity was 

measured with a Hanan HI 99300, which, within 
the range 0–3999μS/cm, has accuracy of ±2% 
and resolution of 1μS/cm.

Polyethylene bottles, sealed with double cap, 
with a volume of 1.5 L, preliminarily acidified with 
nitric acid diluted to 1:1, were used. Bottles were 
rinsed 2–3 times with the sampling water before 
sampling. Chemical analysis was performed in 
Chemical Laboratory of the Albanian Geological 
Survey. Ca2+ and Mg2+, hardness, and HCO3

- were 
analyzed via titration; Cl- and SO4

2- by photometry; 
pH and electric conductivity by electrochemistry; 
Na+, and K+ were analyzed in AAS “PERKIN EL-
MER” in both flame technic 400 AANALYST and 
900 AA model with graphite furnace.

Organizing data for multivariate 
statistical analysis

Multivariate statistical techniques serve as 
commonly approach when it comes to groundwa-
ter classification. These techniques enable group-
ing of groundwater samples and calculation of 
correlations between chemical parameters and 
groundwater samples [Cloutier, et al., 2008]. In 
this study, two multivariate methods were uti-
lized taking advantage of the possibilities that R 
software provides [Ihaka et al., 1996]: Principal 
Component Analysis (PCA) and Hierarchical 
Cluster Analysis (HCA). Principal component 
analysis (PCA) is a popular strategy for reducing 
dimensions of dataset, thus increasing the inter-
pretability with minimal information loss. The 
way PCA operates is by generating new uncor-
related variables that enable the maximization of 
variance [Jolliffe and Cadima, 2016; Zainol et al., 
2021; Nakagawa, 2021; Zhang et al., 2021]. Ba-
sically, the problem of defining the new dataset 
dimensions is reduced in a matrix decomposition, 
with eigenvalues/vectors interpretation described 
in many works [Beattie et al., 2021; Torokhti and 
Friedland, 2009; Gewers, 2021]. HCA is a com-
mon approach to solve the problem of reducing 
the dimensions of the data set [Mushtaq, N. et al., 
2020; Ebrahimi et al., 2021; Xu et al. 2021]. The 
approach is based on iteratively splitting data in 
smaller groups (clusters) based upon their simi-
larity. In essence, the HCA method yields a hi-
erarchical representation, where clusters of lower 
level are created by the division of clusters in the 
next upper level. The HCA method stops when 
each cluster from the lowest level accommodate 
an isolated feature [Xu et al., 2020]
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The collected data were organized in a dataset 
consisting of 71 groundwater samples and 11 pa-
rameters, which include pH, K+, Na+, Ca2+, Mg2+, 
HCO3

-, Cl-, SO4
2-, NO3

-, Total Hardness (TH) and 
Total Dissolved Solids (TDS). In the dataset, there 
were 15 samples that have missing values of NO3

- 
and the sample P22 which has missing values for 
Na+ and Cl-. Various statistical techniques and 
geochemical relationships can be utilized to es-
timate the missing values [Jack et al., 2002]. Be-
cause the missing data samples wells are spread 
out over the study area, the missing NO3

- values 
were estimated by averaging the values of near-
est sampling wells. Because the water of the well 
P22 is typically brackish and with known salin-
ity (TDS = 10815.93 mg/l), chloride content was 
calculated using Vernier equation: salinity (ppt) 
= 0.0018066 × Cl– (mg/L), while the Na+ content 
was estimated from the electro-neutrality of the 
water. At the end, a dataset of 71 samples and 11 
parameters was used for the multivariate statis-
tical analysis. Before proceeding with PCA and 
HCA methods, an in-depth treatment of dataset 
was applied, to ensure that it was suitable for mul-
tivariate statistical analyses. Firstly, the hardness 
values were converted from German degrees to 
mg/l, satisfying a request of multivariate (PCA 
and HCA) analysis that all variables to be report-
ed in the same concentration unit [Rock, 1988].

DESCRIPTIVE STATISTICS

Descriptive statistics of geochemical param-
eters are displayed in Table 1, where it is notice-
able that the standard deviation values are higher 
than mean and mean larger than median for most 

elements. Combined with skewness values box-
plots for each variable of the dataset plotted using 
R library tidyverse (Wickham et al., 2019), it is an 
indicator of positive skewness and large variable 
outliers, which is a generally characteristic for 
distribution of geochemical data [Rock, 1988].

Normal distribution

Before performing the PCA procedure, it 
is a good practice to check first whether or not 
all variables follow normal distribution. In fact, 
most of the variables seem to have right-skewed 
distributions, a commonly observed characteris-
tic in geochemical populations [Grunsky, 2010]. 
Reimann and Filzmoser [2000] also showed that 
in regional geochemical datasets, it is practically 
impossible to meet normal distribution. 

Outliers

Most of variables seem to have right-skwed 
distribution, commonly observed characteristic in 
geochemical populations [Grunsky, 2010], which is 
often caused by outliers [Reimann and Filzmoser]. 
The outliers that were detected using box plot in-
ner fence rule [Reimann et al, 2005], should be re-
moved prior to entering a multivariate analysis, but 
since their removal would lead to a substantial re-
duction of data rows, the authors preferred to keep 
all data for our analysis, as proposed by [Grünfeld, 
2005; Pison, 2003].

Data transformation

To reduce skewness of data, inverse hyper-
bolic sine function was applied. The authors 

Table 1. Descriptive statistics of the chemical parameters for 71 water samples (TH = Total Hardness)

Parameters Units Minimum Maximum Median Average Standard 
deviation Skewness

pH 6.26 8.95 7.52 7.63 0.59 0.09

K+ mg/l 0.53 75.1 2.30 4.61 9.56 6.28

Na+ mg/l 4.51 2641.61 34.00 135.88 342.12 5.97

Ca2+ mg/l 7.58 460.92 62.80 73.71 65.68 2.98

Mg2+ mg/l 6.75 644.48 26.10 39.00 76.57 7.33

HCO3
- mg/l 24.4 1265.75 330.00 326.63 175.58 2.11

Cl- mg/l 4.9 6008.85 24.85 191.22 738.16 7.27

SO4
2- mg/l 3.5 1502.8 51.20 89.04 203.73 6.06

NO3
- mg/l 0.1 182.4 3.72 9.15 22.58 6.72

TH mg/l 52.24 3786.59 347.99 443.17 492.25 4.87

TDS mg/l 117.99 10815.93 550.24 827.51 1325.87 6.40
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proceeded with Arsinh function, instead of com-
monly used logarithmic transformation, in order 
to achieve better treatment of small and large 
values. Another reason for not choosing logarith-
mic approach is because this transformation does 
not take in consideration compositional nature of 
the geochemical dataset [Filzmoser, 2009]. Data 
transformation was made possible using best 
Normalize library [Peterson, 2020]. After the data 
transformation, the skewness was reduced and the 
variables follow a normal or nearly normal distri-
bution (frequency diagrams not shown), thus be-
ing suitable for further multivariate analyses. 

Correlation

Estimation of correlation coefficients can 
raise problems when it comes to geochemical 
datasets. [Gardner and Neufeld, 2013]. One of 
the most discussed problems for long time is the 
problem of spurious correlation [Buccianti, 2014; 
Aitchison, 1982]. Nevertheless, correlation analy-
sis remains relevant when it comes to exploration 
of geochemical data due to its simplicity and con-
sistency. The authors preferred to go with non-
parametric Spearman correlation matrix because 
of the data limitations to be used for Pearson’s r 
calculation [Cooksey, 2015]. Table 2, plotted us-
ing GGally library [Schloerke et al., 2020], illus-
trates Spearman coefficients calculated on dataset 
values. Na+ and Cl− have strong correlation with 
each other and both have moderate positive cor-
relations with TDS, indicating saline water. Ca2+ 
and Mg2+ show a moderate relation, but high posi-
tive correlations with TH, as it might be expected. 
The high correlation of Ca2+ and low correlation 

of Mg2+ with HCO3
- is an indication of dissolu-

tion and cation exchange processes, respectively. 
The low negative correlation between Ca2+ and 
Na+ confirms that the cation exchange mostly in-
fluenced the relations of these individual cations. 

Before stepping to multivariate analysis of 
the dataset the authors needed to check if the da-
taset met statistical requirements [Hair, 2019]. 
First, Kaiser-Meyer-Olkin (KMO) was check as a 
measure of overall adequacy. A minimal value of 
0.5 (Bad) is required as a rule of thumb to consid-
er items tolerable for performing factor analysis 
[Hadi et al., 2016]. For the parameter’s dataset, 
KMO calculated using psych library [Revelle, 
2021] has a value of 0.63, which means the corre-
lation can be considered acceptable for proceed-
ing multivariate analysis.

The next step was to check communality mean-
ing the amount of variance shared among dataset 
parameters. Communalities take the values between 
0 and 1. The values nearer to 1 imply variance is 
being represented by the factor. It is recommended 
that the items with cutoff value less than 0.5 should 
be removed prior starting with multivariate analy-
sis methods [Hair, 2019; Hogarty et al., 2005; Ya-
nai and Ichikawa, 1990]. Table 3 demonstrates that 
communalities for each parameter are reasonable 
for the multivariate analysis approach.

RESULTS AND DISCUSSION

Principal component analysis

After the preparatory stage, principal com-
ponent analysis (PCA) was applied in the trans-
formed geochemical dataset, aiming to reduce 

Table 2. Spearman correlation coefficient between the major variables of groundwater composition
Variable pH K+ Na+ Ca2+ Mg2+ HCO3

- Cl- SO4
2- NO3

- TH TDS

pH 1.000 -0.016 0.164 -.642** -.238* -.639** 0.095 -.253* -.778** -.406** -.373**

K+ -0.016 1.000 .615** -0.105 -0.037 -0.030 .559** 0.192 0.120 0.006 .300*

Na+ 0.164 .615** 1.000 -0.177 0.073 -0.020 .838** .398** 0.018 0.006 .563**

Ca2+ -.642** -0.105 -0.177 1.000 .563** .701** 0.050 .342** .514** .845** .529**

Mg2+ -.238* -0.037 0.073 .563** 1.000 .331** 0.124 .433** 0.194 .755** .433**

HCO3
- -.639** -0.030 -0.020 .701** .331** 1.000 0.029 .307** .497** .585** .509**

Cl- 0.095 .559** .838** 0.050 0.124 0.029 1.000 .435** 0.082 0.201 .611**

SO4
2- -.253* 0.192 .398** .342** .433** .307** .435** 1.000 .280* .435** .590**

NO3
- -.778** 0.120 0.018 .514** 0.194 .497** 0.082 .280* 1.000 .329** .408**

TH -.406** 0.006 0.006 .845** .755** .585** 0.201 .435** .329** 1.000 .479**

TDS -.373** .300* .563** .529** .433** .509** .611** .590** .408** .479** 1.000

* p-value < 0.05; **p-value < 0.01.
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the dimensions. The reasons for using PCA over 
many factor analysis methods when it comes to 
geochemical data are explained in [Reimann, et 
al., 2022]. The PCA method consists in transform-
ing original dataset to a new set of non-correlated 
parameters, which preserve the most variance 
of original intercorrelated parameters. As a rule, 
new created components are ordered in such way 
that the precedent component responds for more 
variance comparing to the component next in or-
der [Reimann, et al., 2022]. In many studies, the 
components taken into consideration using eigen-
values criterion, would explain at least one vari-
able’s variability, if corresponding eigenvalue is 
greater than or equal to 1 [Reimann, et al., 2022; 
Basilevsky, 1994]. In the considered case, based 
on scree plot results (Figure 2) and individual 
characteristics of some of the sampling sites, it 
was concluded to take into consideration the first 

four principal components, thus placing a cut-off 
threshold for explained variance over 80%.

Varimax orthogonal rotation [Allen, 2017] 
was selected as a preferred method to obtain 
maximal variance out of first four principal com-
ponents, when working with geochemical datas-
ets [Reimann, et al., 2022]. For each component, 
eigenvalue and variance are shown in Table 4:

Table 5 shows loadings for the first four com-
ponents, which account for 85.35% of the total 
variance (Table 4). The first two components (PC1 
and PC2) explain 66.09% of the variance, bring-
ing up the majority of the variance of the dataset. 
The two other extracted components (PC3 and 
PC4) are less important. Component PC1 explains 
the greatest (40.35%) amount of the overall vari-
ance, and is labeled by very high positive loadings 
of TH, Ca2+, Mg2+ and moderate to high loadings 
of HCO3

- and TDS (Table 5), suggesting the dis-
solution processes of carbonate rocks prevailed in 
the aquifer recharge area. This factor highlights 
the contribution of Ca2+, Mg2+ and HCO3

- to TH 
and as such it has been identified as the temporary 
hardness of the groundwater. Component PC2 ex-
plains 25.74% amount of the overall variance and 
is labeled by very high positive loadings in Na+, 
K+ and Cl- and moderate to high loadings of TDS 
(Table 5). This factor indicates that the highest 
values of TDS in groundwater are closely related 
to elevated concentrations of Na+ and Cl-; thus, it 
accounts for the spatial salinity of the groundwater 
affected by seawater intrusion [Cenameri, et al., 
2016] and/or by diffusion from intercalated clay 
layers [Jack et al., 2013]. Components PC3 and 
PC4 are characterized by high positive loadings of 

Table 3. Variable communalities
Variable Initial Extraction

pH 1.000 0.874

K+ 1.000 0.622

Na+ 1.000 0.929

Ca2+ 1.000 0.940

Mg2+ 1.000 0.822

HCO3
- 1.000 0.587

Cl- 1.000 0.832

SO4
2- 1.000 0.462

NO3
- 1.000 0.822

TH 1.000 0.902

TDS 1.000 0.902

Figure 2. Scree plot
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NO3
- and SO4

2-, respectively, and together account 
for 19.26% of the overall variance.

Hierarchical cluster analysis

The next step of the research was estimating 
the similarity between samples, using the Hierar-
chical Cluster Analysis (HCA) method [Everitt, 
1974; Rousseeuw, 1990; Hastie, 2009]. The den-
drogram in Figure 3 demonstrates the clustering 
based on the factor scores, produced previously 
with Principal Component Analysis. To calculate 
the dissimilarity between the variables, average 
linkage was used based on Euclidean distance 
[Xu, N. et al., 2021, Romesburg, 2004], while the 
distance between clusters was estimated by us-
ing the ‘Ward.D2’ method, which uses squares of 
dissimilarities before clustering [Legendre, 2014; 
Cavanaugh, 2018]. Ward’s method performed bet-
ter in building more or less homogenous clusters 
that are geochemically distinct from each other, 
against to other methods. In the dendrogram of 

the considered hydrochemical data, four distinct 
clusters are evidenced. The cluster C1 (excluding 
sample P22, which is not in coastal zone) has high 
salinity (average TDS = 1871.66 ± 672.70 mg/l) 
and is hydrochemically dominated by the Na-Cl 
water type, which is typical for the groundwater 
of aquifer coastal area. The cluster C2 is the larg-
est, including 42 samples (or 59%) located in the 
south, southeast and east area of the aquifer exten-
sion. The groundwaters of this cluster have moder-
ate salinity (average TDS = 549.86 ± 187.41 mg/l) 
and are mostly hard to very hard (average TH = 
24.93 ± 11.92 ⁰dH). This group is mainly domi-
nated by Ca-Mg-HCO3 water type. The cluster C3 
includes the samples located in the north-eastern 
extreme area of the aquifer, along the south side 
of the Mat River flow. The groundwater in this 
cluster has low content of both Cl- (12.01 ± 5.39 
mg/l) and TDS (253.70 ± 32.27 mg/l), mostly be-
longing to Mg-Ca-HCO3 and Mg-Ca-HCO3-SO4. 
The cluster C4 includes the samples located be-
tween cluster C1 in the west and clusters C2 and 

Table 4. Eigenvalues and variances
Components Eigenvalue Variance percent Cumulative variance percent

PC1 4.43815310 40.3468463 40.34685

PC2 2.83187057 25.7442779 66.09112

PC3 1.42342415 12.9402196 79.03134

PC4 0.69516914 6.3197194 85.35106

PC5 0.59917261 5.4470238 90.79809

PC6 0.47086495 4.2805905 95.07868

PC7 0.18938914 1.7217195 96.80040

PC8 0.17399745 1.5817950 98.38219

PC9 0.11067478 1.0061344 99.38833

PC10 0.04300325 0.3909387 99.77927

PC11 0.02428084 0.2207349 100.00000

Table 5. PCA factor loadings of all variables
Variable PC1 PC2 PC3 PC4

pH -0.2288 0.1374 -0.8857 -0.1428

K+ -0.1131 0.8005 0.2122 0.03293

Na+ 0.05854 0.9077 -0.1635 0.2736

Ca2+ 0.872 -0.1076 0.4116 0.05086

Mg2+ 0.8565 0.295 -0.1156 0.006588

HCO3
- 0.6511 -0.01998 0.3069 0.3285

Cl- 0.2382 0.8752 -0.2153 0.05676

SO4
2- 0.1373 0.3121 0.1077 0.8883

NO3
- 0.1243 0.06295 0.9276 0.004445

TH 0.9342 0.1064 0.1445 0.04926

TDS 0.5579 0.6927 0.05385 0.33
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(southern, south-eastern and eastern zone (Figure 
1) and are characterized as chemically young (im-
mature) groundwaters [Allen and Kirste, 2012]. 
These samples have similar pH, total alkalinity, 
and major ion concentrations to the river waters 
that cross the aquifer plain from southeast-east to 
northwest-west. In fact, the river water points fall 
within the zone II of the Piper diagram, confirming 
that their riverbed water constitutes the main re-
charge source of the groundwater of the alluvial Ti-
rana – Fushe Kuqe aquifer. Carbonate dissolution 
should be the primary source of Ca2+ and HCO3

- in 
the groundwater of the recharge zone, while Mg2+ 
might be derived from both carbonate dissolution 
and weathering of silicate minerals. The saturation 
of groundwater with carbonates (calcite and dolo-
mite) is well demonstrated by dominantly positive 
values of Langelier Saturation Index. This group 
of samples also falls in the Recharge Water field of 
Chadha diagram (Figure 5). 

Group G3 consists of 13 groundwater samples 
(or 18%) that fall within the zone III of the Piper 
diagram (Figure 4), belonging to the Sodium Chlo-
ride (Na-Cl) water type. These waters are mainly 
sampled from the wells near the coastal area and 
are characterized as chemically evolved (mature) 
groundwater [Allen and Kirste, 2012]. A few wells 
(P22, P14, A25), located about 10 km to the east of 
coast line, south of River Droja, also fall within the 
zone III. This brackish groundwater should rather 
be relict sea water [Kumanova et al., 2014], trapped 

C3 in the east. The groundwater in this cluster is 
characterized by moderate values of Cl- and TDS 
(87.72 ± 31.60 mg/l and 445.69 ± 103.56 mg/l, 
respectively), but is typically soft (average TH = 
7.17 ± 2.97 ⁰dH) water. It belongs mainly to the 
Na-Mg-HCO3-Cl, Na-HCO3-Cl and Na-Cl-HCO3 
water types.

Geochemical interpretation and discussion

Several diagrams are in use in the wide re-
search literature of water chemistry which help to 
evidence the main hydrochemical water types and 
to highlight the dominated geochemical processes 
that control the composition of groundwater. In 
this paper, two most known (Piper and Chadha) 
diagrams were applied in combination with results 
of the multivariate statistical analysis. In the Piper 
Diagram (Figure 4), four different groups of sam-
ples were identified and summarized in Table 6. 

Group G1 consists of 3 groundwater (R9, P15, 
P18) samples (or 4%) that fall within zone I of Piper 
diagram (Figure 4) belonging to the Calcium Mag-
nesium-Sulfate (Ca-Mg-SO4) water type. These 
groundwater samples fall within the Reverse Ion 
Exchange field of Chadha diagram (Figure 5). In 
addition, 49 groundwater samples (or 69%), here-
in named group G2, fall within the zone II of the 
diagram belonging to the Calcium Magnesium Bi-
carbonate (Ca-Mg-HCO3) water type. They were 
sampled from the wells located in the recharge 

Figure 3. Sites clustered by HCA
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within alluvial sediments after the sea water re-
gression during Holocene or are likely derived by 
diffusion from intercalated clay layers [Jack et al., 
2013] saturated with sea water salts. The points of 
the above-mentioned 13 samples fall within the Sea 
Water field of the Chadha’s classification diagram 
(Figure 5). The groundwaters from coastal aqui-
fers having the chloride content over 100mg/l are 
considered as an indication of sea water intrusion 
[Eftimi, 2003; Lyles, 2000]. Group G4 consists of 
6 groundwater samples (or 8%) that fall within the 
zone IV of Piper diagram (Figure 4) belonging to 
Sodium Bicarbonate (Na- CO3

- water type. These 
waters are sampled from the wells in the center 
of the Fushe Kuqe area and are characterized as 
chemically more evolved groundwater [Allen and 
Kirste, 2012]. The groundwater shows an increase 
in Na+ and a respective decrease in Ca2+, which is 

considered as a consequence Ca2+ - Na+ ion ex-
change which is expressed by the change from Ca-
Mg-HCO3 to Na-HCO3 water type [Thorstenson et 
al., 1979; Henderson, 1985]. In fact, these ground-
water samples fall within the Basic Ion Exchange 
field of Chadha diagram (Figure 5) and represent 
the lower-chloride samples of the cluster 4.

Table 7, modified after [Cloutier, et al., 2008], 
indicates the relationships between clusters and 
principal components with hydrochemical groups 
by means of sample distribution among them. There 
is a good overlap between clusters and groups. Thus, 
the samples from clusters C1 and C2 mostly belong 
to the groups G3 and G2, respectively; all samples 
of C3 belong to G2, while in the case of cluster C4, 
1 sample belongs to G2, 5 samples to G3 and 6 sam-
ples to G4. Clusters C2 and C3 correspond to PC1, 
while clusters C1 and C4 to PC2. The division of 

Table 6. Classification of groundwater samples based on the piper diagram
Piper diagram zone Group of samples Groundwater hydrochemical types No. of samples %

I G1 Calcium Magnesium Sulphate 3 4

II G2 Calcium Magnesium Bicarbonate 49 69

III G3 Sodium Chloride 13 18

IV G4 Sodium Bicarbonate 6 8

Figure 4. Piper diagram showing the hydrochemical groundwater 
facies; river waters and clusters are also indicated
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group G2 in two clusters (C2 and C3) is a better ap-
proach with the hydrogeological context of the aqui-
fer. The samples of cluster C3 are located south of 
the River Mat and belong to the Mg-Ca-HCO3 water 
type, while the majority of C2 samples belong to the 
Ca-HCO3 and Ca-Mg-HCO3 types and spread out in 
the south and central parts of the aquifer. Cluster C3 
overlaps the highest hydraulic parameters zone (Hy-
draulic conductivity = 200–350m/day; transmissiv-
ity = 4000–8000m2/day) of aquifer (Milot-Fushe 
Kuqe) [Tartari and Dakoli, 2001; Eftimi, 2012]. The 
groundwater of C2 results from the dissolution of 
carbonates that outcrop on the mountains to the east 
of the aquifer, whereas the groundwater of C3 is 
mostly affected by the silicate weathering of north-
eastern ophiolites. The samples of cluster C1 repre-
sent the coastal subgroup of G3 where groundwater 

is significantly affected by sea water intrusion and 
belongs to Na-Cl and Na-Mg-Cl types. Moreover, 
5 samples of cluster C4, that are located to the east 
of samples of cluster C1, fall to G3 having lower 
content of Cl- than the C1 samples, but over 100 
mg/l, and belong to the Na-Cl-HCO3 and Na-Mg-
Cl-HCO3 types. The next 6 samples of C4 belong to 
G4, having the Cl content between 50–100 mg/l and 
belonging to the Na-HCO3-Cl and Na-Mg-HCO3-Cl 
types. Thus, cluster C4 defines a transitional zone 
between C1 (G3) to the west and C2 and C3 (G2) to 
the east, where decreasing seawater intrusion from 
west to east is confronted with saline flushing / cat-
ion exchange progressing from east to west. PC’s 
give a more simplified compositional classification 
of groundwater, where PC1 includes the C2 and C3 
samples, revealing the solution and/or weathering 

Figure 5. Chadha diagram demonstrating the hydrochemical classification of groundwater considering 
the dominant geochemical processes (the figurative points are the same as in the Piper diagram)

Table 7. Relationship between groundwater clusters, groups and principal components (modified after [Cloutier, 
et al., 2008]

Clusters
Groups Principal components

Total
G1 G2 G3 G4 PC1 PC2

 C1 1 0 8 0 0 9 9

C2 2 35 0 0 37 0 37

C3 0 13 0 0 13 0 13

C4 0 1 5 6 0 12 12

Total 3 49 13 6 50 21 71
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processes which dominate in the south-southeast 
and east-northeast recharge areas of the aquifer, 
while PC2 includes the C1 and C4 samples and is 
related with processes of seawater intrusion and 
cation exchange which are present along the coastal 
zone. This is better seen in the biplot score plot (Fig-
ure 6), where the first principal component (PC1) 
that includes the samples from the recharge zone, is 
characterized by high total hardness and high con-
centrations of Ca2+, Mg2+ and HCO3

-. The second 
principal component (PC2) includes the samples 
from the coastal area of the aquifer which are distin-
guished by high TDS content and high concentra-
tion of Cl- and Na+.

CONCLUSIONS 

The multivariate statistical methods of PCA 
and HCA were applied in close combination with 
conventional techniques of geochemistry for a bet-
ter understanding of the factors and processes that 
control groundwater geochemical composition. 
Piper and Chadha geochemical diagrams distin-
guished four compositional groundwater groups, 
among which group G1 consists of 3 groundwa-
ter samples belonging to the Ca-Mg-SO4 water 
type and falling within the Reverse Ion Exchange 
field of Chadha diagram; group G2 belongs to 
the Ca-Mg-HCO3 type and includes 49 samples 
from the recharge zone; group G3 consists of 13 

groundwater samples from the coastal area which 
belong to Na-Cl) water type; group G4 compris-
es 6 groundwater samples from the center of the 
Fushe Kuqe area showing the Na-HCO3 composi-
tion due to Basic Ion Exchange.

Component PC1 that explains 40.35% amount 
of the overall variance, is described by very high 
positive loadings of TH, Ca2+, and Mg2+, indicat-
ing the that dissolution of carbonate rocks was the 
main process in the aquifer recharge zone. Com-
ponent PC2, that explains 25.74% amount of the 
total variance, is described by very high positive 
loadings in Na+, K+, and Cl- and moderate to high 
loadings of TDS revealing the involvement of 
seawater intrusion and diffusion from clay layers.

HCA classified the 71 groundwater samples 
into four clusters (C1–C4). Cluster C1 is dominated 
by the Na-Cl water type and represents the coastal 
subgroup of G3 where groundwater is significant-
ly affected by sea water intrusion. Cluster C2 in-
cludes 42 samples of G2 from south, southeast and 
east recharge area having the Ca-Mg-HCO3 water 
type. The 7 samples of cluster C3 also belong to 
G2, but are located to the immediate south of River 
Mat bed which represents the highest hydraulic pa-
rameters zone from Milot to Fushe Kuqe, having 
the Mg-Ca-HCO3 water type. Finally, 5 samples of 
cluster C4 fall to G3, having the Cl- content higher 
than 100 mg/l, but lower than cluster C1, while 6 
other samples of C4 belong to G4, having the Cl- 
content between 50–100 mg/l.

Figure 6. Plots of PCA loadings scores for dataset of groundwater samples
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