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INTRODUCTION

Numerous dietary guidelines for maintaining 
human health and preventing disease have em-
phasized eating a diet high in fresh vegetables and 
low in simple carbohydrates, sodium, and satu-
rated fats. As a result, the demand for fresh vege-
tables has significantly increased, driving up their 
global production. Nowadays, global vegetable 
production mainly depends on chemical fertiliz-
ers to provide plant nutrients, particularly in low-
fertility soil. However, long-term and excessive 
use of chemical fertilizers has been shown to de-
plete soil (Qaswar et al., 2020), raising concerns 

regarding sustainable agriculture techniques. In 
response to these concerns, biofertilizer applica-
tions are gaining popularity as a viable alternative 
to reduce the use of chemical fertilizers. Biofertil-
izers, which contain beneficial bacteria, improve 
soil fertility and encourage sustainable farming 
by including beneficial bacteria that support plant 
development and health.

On the basis of its beneficial features, Bacil-
lus is widely utilized as a biofertilizer for vari-
ous  food crops. Species of the genus Bacillus 
are well-known beneficial soil bacteria present 
in relatively high populations in soil (Liu et al., 
2022). Bacillus are widely distributed in soil and 
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have been identified for their ability to produce 
endospores, which allow them to survive under 
stressful conditions. They are essential in nutri-
ent cycling and are used in various industrial ap-
plications (Sulistiyani et al., 2021). The benefits 
of Bacillus are improving soil quality, support-
ing agricultural productivity, and promoting soil 
health (Radhakrishnan and Lee, 2016). More-
over, Bacillus can produce phytohormones (gib-
berellin, zeatin, and kinetin), improve nutrient 
availability, protect against plant diseases, and 
engage in biochemical activities that promote 
plant growth (Bandopadhyay, 2020; Masood et 
al., 2020; Poveda and González-Andrés, 2021). 
Therefore, Bacillus is a crucial bioactive ingredi-
ent used in biofertilizer formulation.

Gram-positive Bacillus enable to form dormant 
endospores that preserve material genetics under 
extreme conditions during its life cycle; it is cru-
cial in the formulation of biofertilizers due to the 
endospore’s resistance to drought stress (Chaud-
hary et al., 2022). Researchers report that Bacillus 
decomposes organic matter and converts organic 
compounds in the soil into available nutrients for 
plants, such as nitrogen and phosphorus (Rawat et 
al., 2021; Sun et al., 2020). The ability of bacillus 
to fix the nitrogen (N) and to solubilize the unavail-
able phosphorus (P) are the keys to increasing the 
N and P availability in soil (Silva et al., 2023). It 
has been reported elsewhere that Bacillus produc-
es phytohormones that are crucial to plant growth 
(Soni and Keharia, 2021). Recent research demon-
strated that Bacillus produces exopolysaccharides 
(EPS) that have a role in improving soil porosity 
(Bhagat et al., 2021). Therefore, the multifunction 
of Bacillus benefits plant growth and soil quality.

The high microbiological quality of com-
mercial biofertilizer formulations, in terms of 
viability or microbial count and their plant-
promoting ability, is required. An initial step in 
developing a biofertilizer is isolating the target 
bacteria from the rhizosphere, the soil region 
adjacent to plant roots, which hosts a denser 
microbial community than bulk soil (Tahir et 
al., 2013). The prolific vegetable fields are the 
source of the isolating for this study. The isola-
tion and identification of Bacillus species from 
the rhizosphere of vegetable plants are neces-
sary to develop biofertilizers for agriculture and 
soil research. Higher microbial communities and 
denser microbial populations inhabit the rhizo-
sphere than bulk soil, including Bacillus bacteria 
(Ling et al., 2022). Bacillus inoculation benefits 

the plants, including nutrient availability and 
disease protection, their isolation and applica-
tion in biofertilizers are prominent for vegetable 
cultivation. Studies demonstrate the efficacy 
of Bacillus in enhancing vegetable growth and 
disease resistance. Ortega-García et al. (2021) 
found that inoculating asparagus plants with B. 
amyloliquefaciens significantly increased the 
fresh weight, root weight, and crown size of 
plants. Similarly, the application of B. cereus 
and B. thuringiensis on chili plants improved 
pepper growth in seedbeds and pots and protect-
ed against the bacterial pathogen Xanthomonas 
euvesicatoria (Hernández-Huerta et al., 2023). 
Furthermore, inoculation of B. subtilis on cab-
bage plants increased plant height, root number, 
crop weight, yield per plot, and potential yield 
per hectare (Suwarto and Hilmi, 2023). These 
studies underscore the potential of Bacillus spe-
cies as effective biofertilizers that can enhance 
growth and yield while providing disease resis-
tance in various vegetable crops.

A better understanding of the function of Ba-
cillus bacteria in the rhizosphere of vegetables 
may help design more effective biofertilizers. This 
research aimed to isolate Bacillus from the rhizo-
sphere of vegetables grown in Andisol in Indone-
sia and determine its plant-growth-related charac-
teristics. The findings of this study will contribute 
to ongoing research and assist farmers in expand-
ing the usage of biofertilizers based on Bacillus.

MATERIAL AND METHOD

The Bacillus were isolated from the rhizo-
spheres of tomato, lettuce, pak choy, broccoli, 
and strawberries grown in the tropical mountains 
in the Lembang District, West Bandung Regency, 
Indonesia (Figure 1a). The altitude of the study 
area is 1.242 m above the sea level, with annual 
temperature and humidity of 18 and 91%, respec-
tively. Rhizosphere soil was collected by carefully 
removing the soil around the roots by gentle shak-
ing to expose the soil firmly attached to the roots. 
Then, the rhizosphere soil was taken by using a 
small brush (Figure 1b). The geographical posi-
tion of sampling locations is indicated in Table 1.

Isolation of Bacillus

Bacillus were isolated by using the serial 
dilution plat method on tryptic soy agar (TSA) 
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medium containing casein peptone 15 g L-1, soya 
peptone 5 g L-1, natrium chloride 5 g L-1, agar-agar 
15 g L-1, and 1 L distilled water. All soil samples 
were diluted to 10-7 in 0.85% sodium chloride so-
lution. A total of 1 mL of all soil suspension was 
grown in TSA using pour method; the cultures 
were incubated at 37 °C for 24 h. The colonies 
were screened for the morphology of a typical 
Bacillus colony, which is rough, opaque, fuzzy 
white, or slightly yellow with jagged edges (Bai 
et al., 2013; Ming et al., 2008). This study found 
bacterial colonies with a circular or irregular form 
and crateriform elevation with undulate margins. 
Thirteen Bacillus isolates were obtained. Pure 
cultures of all isolates were maintained on tryp-
tic soy broth (TSB) slants at 4 °C for 24 hours 
before staining and biochemical characterization. 
All suspected Bacillus colonies were then sub-
jected to Gram, Endospore, Capsule, and Acid-
fast Staining, according to Bisen (2014).

Biochemical characterization of Bacillus

Each Bacillus pure culture loop was inocu-
lated unto TSB at room temperature 25–27 °C for 
18 h with 115 rpm shaking. Biochemical charac-
teristics included motility in semi-solid nutrient 

agar (NA), catalase and oxidase in NA, starch 
hydrolysis in starch agar plate, nitrate reduc-
tion in nitrate medium, and Voges-Proskauer and 
methyl red tests on GPB broth medium (Zerin, 
2020). Salinity resistance testing was conducted 
using 3.4% NaCl, four times the concentration of 
physiological NaCl (Hindersah et al., 2019). The 
ability of Bacillus to ferment sugar was indicated 
by a change in the suspension color from red to 
yellow, which indicated the pH reduction and the 
presence of gas in the Durham tube.

Pathogenicity determination

Pathogenic tests are essential to ensure that 
the selected Bacillus strains are not pathogenic to 
plants. The test was conducted on tobacco leaves 
using the method described by Lelliot and Stead 
(1987). Each inoculum was injected with 1 mL 
using a sterile syringe with a needle into the lower 
surface of the healthy tobacco leaf, specifically 
into the mesophyll tissue between the leaf veins. 
A positive reaction was indicated by a change 
in the color of the inoculated leaf tissue, turning 
from green to brown due to necrosis, which is the 
drying out of the tissue.

Figure 1. (a) Soil sampling area in Lembang for isolating the Bacillus, (b) the rhizosphere of lettuce

Table 1. Geographical position of sampling point
Sample code Vegetable crops Geographical position

A Tomato 6.80042° S, 107.64986° E

B Lettuce 6.82042° S, 107.61616° E

C Pak choy 6.82030° S, 107.61622° E

D Broccoli 6.82038° S, 107.61610° E

E Strawberries 6.79973° S, 107.56812° E
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Determination of metabolite production 

Organic acid analysis

Organic acid was measured using high-
performance liquid chromatography (HPLC) 
at specified time points using the series Waters 
e2695 HPLC system. The Bacillus suspension 
was prepared by inoculating a loopful of Bacil-
lus pure culture to 100 mL TSB and incubated 
for 14 h at 30 °C. Afterwards, 2 ml suspension 
was poured into a microcentrifuge bottle and then 
centrifuged at 10,000 rpm at 4 °C for 10 minutes. 
The supernatant was collected and filtered using 
a filter syringe and injected into the HPLC with 
column C18 with a wavelength of 210 nm; the 
mobile phase solution was KH2PO4 (0.76%) with 
pH 4. The organic acid standards include lactate, 
malate, oxalate, citrate, and tartrate. The concen-
trations of organic acid for the calibration curve 
are 5, 10, 15, and 20 ppm. The results of these 
standards are analyzed based on the retention 
time observed in the standard curve using HPLC.

Exopolysaccharides analysis

Firstly, 20 mL of Bacillus liquid culture was 
centrifuged at 9000 rpm at 4 °C for 20 min. The 
supernatant and 2 volumes of cold acetone were 
collected and left overnight at 4 °C before cen-
trifugation at 9000 rpm at 4 °C for 20 minutes. 
The supernatant was removed, and EPS on the 
bottom of the tube was collected onto the What-
man No.1 filter paper. The dry weight of EPS was 
determined using gravimetric method at 35 °C for 
30 minutes. The dry weight of EPS is the different 
weight of filter paper with EPS and without EPS 
(Hindersah and Sudirja, 2010).

Phosphatase analysis

Phosphatase enzymes were analyzed using a 
spectrophotometer. Samples of bacterial isolates 
were diluted using physiological NaCl to 10-4, 
then 4 mL buffer phosphate and 1 mL of p-nitro-
phenylphosphatase were added as well as mixed 

homogenized by vortex, and incubated for 1 hour 
at 37 °C. After incubation, 1 mL of 0.5 M CaCl2 
and 4 mL of 0.5 M NaOH were added. Then, the 
solution was diluted 10 times with distilled wa-
ter, shaken, and filtered by Whatman No.1. After 
that, the analysis used a spectrophotometer with 
a wavelength of 400 nm (Schinner et al., 1996).

Bacterial identification based on 16S rRNA 
analysis

Analysis of 16S rRNA for selected isolates 
was conducted at the Laboratory of the Indone-
sia Centre for Biodiversity and Biotechnology 
in Bogor, West Java. DNA isolation from bacte-
rial colonies and PCR amplification were carried 
out simultaneously using a direct PCR Kit (KOD 
FX Neo, Toyobo) following the Kit protocol, the 
PCR machine used was a personal master cycler 
brand Eppendorf using universal primers Primer 
F: 16F27 / Sequence: AGA GTT TGA TCM TGC 
CTC AG and Primer R: 16R 1492 / Sequence: 
TAC GGY TAC CTT GTT ACG ACT T. The raw 
data from the sequencing is then edited using the 
BioEdit program. The sequence data has been ed-
ited further in Blast with genomic data that has 
been registered with NCBI/National Centre for 
Biotechnology Information (http://www.ncbi.
nlm.nih.gov/BLAST) to determine the taxon/spe-
cies that has the largest homology/similarity and 
is molecularly closest. 

RESULTS 

Twenty-two isolates were obtained from the 
rhizosphere of tomatoes, lettuce, pak choy, broc-
coli, and strawberries (Table 2). Each isolate was 
re-cultured in tryptic soy plate agar and given an 
initial code according to its plant origin. On the 
basis of their cell purity, 13 pure cultures were ob-
tained, which were subjected to cell-morphology 
characterization.

Table 2. The number of Bacillus isolated from the rhizosphere of vegetable plants in Lembang
Code Rhizosphere Number of isolates Isolates code

A Tomato 4 A2, A4

B Lettuce 5 B1, B1-4, B1-8

C Pak choy 5 C4, C5

D Broccoli 4 D1, D2, D6

E Strawberry 4 E2, E3, E6
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Cell-morphology characteristics of Bacillus

Thirteen pure colonies were subjected to Gram, 
endospore, capsule, and acid-fast staining. Only 
one Gram-negative isolate formed the capsule, 
and one Gram-positive isolate was acid-resistant. 
Confirmation through Gram staining showed that 
the nine isolates are Gram-positive and rod-shaped 
(Table 3), which fit the morphological characteris-
tics of the genus Bacillus. Thus, the nine isolates 
have proceeded to the biochemical test. 

Biochemical characteristics of Bacillus 

Generally, the biochemical characteristics of 
Bacillus are positive in motility, catalase, starch hy-
drolase, nitrate reduction, Voges-Proskauer, Meth-
yl red, and NaCl reaction as well as negative in the 
indole test (Holt et al., 1994; Lay, 1994; Logan et 
al., 2009). The results of the biochemical tests pre-
sented in Table 4 show the diverse characteristics 
of presumed Bacillus isolates. However, all isolates 
were motile and positive in catalase tests.  Most 
isolates are also positive in oxidase, starch hydro-
lysis, and nitrate reduction tests, although there are 
variations in some isolates. The Voges-Proskauer 
test and growth at 3.4% NaCl demonstrated differ-
ent results between isolates. The indole test of all 
isolates was negative. A comparison of biochemi-
cal profiles showed that B1 and D1 isolates had the 
highest similarity (100%) with reference Bacillus 
isolates, while D2 and E2 showed 88.8% similari-
ty. Although there are variations in some biochemi-
cal tests, the isolates showed typical characteristics 
of the genus Bacillus. 

Table 5 presents the results of the Methyl Red 
test, which shows the variation in sugar fermenta-
tion ability in Bacillus B1, D1, D2, and E2 iso-
lates. B1 isolation can ferment sucrose, while D1, 
D2, and E2 isolation can only ferment glucose. 
None of the isolates can ferment maltose, man-
nitol, or lactose. These results indicate a different 
specificity in utilizing carbon sources by each iso-
late, which changed the color of methyl red to or-
ange/yellow. Glucose was the most common car-
bon source used by Bacillus isolates in this study. 
These differences in fermentation profiles can be 
the basis for differentiating different Bacillus spe-
cies (Marista et al., 2013). The B1, D1, D2, and 
E2 isolates (Figures 2 and 3) were selected based 
on similarities to Bacillus and further subjected to 
analysis of plant-growth-related function.

The four isolates, B1, D1, D2, and E2 were 
Gram-positive bacteria, indicating the presence 
of a thick cell wall capable of maintaining the 
violet-iodine crystal complex.  The shape of the 
cells seen in these four isolates aligns with the 
morphology of the genus Bacillus. The results of 
this Gram staining provide visual confirmation of 
biochemical data showing that the four isolates 
have characteristics consistent with the genus Ba-
cillus (Figure 2). 

The Bacillus colonies maintained in the TSA 
slant during 48 h showed a very distinctive mor-
phology based on the characteristics of the genus 
Bacillus. The colonies formed are white to yellow-
ish, a common feature of Bacillus. The texture of the 
colony looks rough, and the edges are jagged, which 
characterizes an uneven morphology (Figure 3). 

Table 3. The cell morphological characteristics of Bacillus isolates
No Isolates Shape Gram Endospora Capsule Acid resistant

1 A2 Rod - + + -

2 A4 Cylinder - + - -

3 B1* Rod + + - -

4 B1-4 Rod + + - -

5 B1-8 Rod + + - -

6 C4 Rod - + - -

7 C5 Rod - + - -

8 D1 Rod + + - -

9 D2* Rod + + - -

10 D6 Rod + + - -

11 E2* Rod + + - -

12 E3 Rod + + - +

13 E6 Rod + + - -

Note: * Isolates with cell morphology fit with Bacillus properties.
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Table 4. Biochemical characteristics of isolates for the determination of Bacillus genus

Isolate Motility Catalase Oxidase Starch 
hydrolysis

Nitrate 
Reduction VP** Indole 

test
NaCl 3.4 

%
Red 

methyl
Similarities

(%)
B1* + + + + + + - + + 9/9 (100)

B1-4 - + - + + - - + - 5/9 (55.5)

B1-8 - + + + + - - + - 6/9 (66.6)

D1* + + + + + + - + + 9/9 (100)

D2* + + + + + + - - + 8/9 (88.8)

D6 + + + + + + - - - 7/9 (77.7)

E2* + + + - + + - + + 8/9 (88.8)

E3 + + + - - + - - + 6/9 (66.6)

E6 + + + + - - - - - 4/9 (44.4)

Note: *isolates with cell morphology fit with Bacillus properties; **VP Voges-Proskauer

Figure 2. Gram-positive Bacillus isolated from the rhizosphere of vegetable (a) B1, (b) D1, (c) D2, (d) E2

Figure 3. The colony of Bacillus B1, D1, D2, and E2 
in TSA slant

Pathogenicity

Tobacco leaves were tested with five selected 
bacillus isolates, bacillus B1, D1, D2, E2, and 
A2, as a comparison for the four selected isolates. 
On the basis of the test results, the four selected 

isolates did not show necrosis in the leaf tissue. 
Isolate A2 is the control Bacillus that caused the 
presence of brown spots and induced necrosis on 
the tobacco leaf tissue (Figure 4). 

The A2 isolate induced necrosis on the tissue 
of the first leaf. However, the remaining four iso-
lates did not exhibit any necrotic symptoms. These 
findings indicate that the four bacillus strains 
pose no phytopathogenic risk and thus have the 
potential to be developed as a biofertilizer.

Production of plant-growth related 
metabolites

Table 6 shows that all Bacillus produced lac-
tic, malic, oxalic, citric, and tartaric acid. How-
ever, the concentration of organic acids in their 
liquid culture differed (Table 6). Bacillus B1 
produced only approximately 8% and 10% less 
of malic acid and oxalic acid, respectively, com-
pared to another isolate. Meanwhile, the liquid 
culture of Bacillus D2 contained the highest con-
centration of citric acid but the lowest lactic and 
tartaric acid. The highest tartaric acid content was 
found in the liquid culture of E2. 

All Bacillus cultures contained EPS and 
phosphatase in different concentrations. Bacillus 
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B1 produced approximately 50% more EPS than 
other isolates, but the culture of Bacillus D2 con-
tained a higher phosphatase content (Table 7). 
Bacillus E2 only produced 0.05 mg/L phospha-
tase, the lowest among other isolates. 

Bacterial characteristics based on 16S rRNA 
analysis

The results of the 16S rRNA analysis veri-
fied that all isolates belong to the genus bacil-
lus (Table 8). The Bacillus isolates B1 has 100% 
homology with Bacillus safenesis strain MDL5, 
while the homology of Bacillus D1 with Bacil-
lus safensis strain MDL5, was 99.93%. Bacillus 
D2 and E2 have less than 100% homology with 
Bacillus altitudinis strain RPW2 and Bacillus sp. 
strain SZ057, respectively. 

DISCUSSION

One promising approach to utilizing plant 
growth-promoting rhizobacteria (PGPR) is to de-
velop an effective biofertilizer. Therefore, collect-
ing and identifying the PGPR prior to biofertilizer 
formulation is a necessity. Beneficial microbes 
in the rhizosphere, the region around plant roots, 
can promote plant growth and protect plants from 
pathogens (Ahmed et al., 2014). Various studies 
have shown that plants can selectively enrich ben-
eficial microbes in their rhizosphere, an evolution-
ary adaptation important for establishing terrestrial 
environments (Andreote et al., 2014). Rhizobac-
teria, which promote plant growth, can improve 
plant health through various mechanisms, such as 
nutrient mobilization, phytohormone production, 
and pathogen suppression (Spaepen et al., 2009). 

Table 5. Methyl Red Test for fermentation of various simple sugars by four isolates of Bacillus bacteria
Isolate/species Maltose Sucrose Glucose Mannitol Lactose

Bacillus B1 - + +++ - -

Bacillus D1 - - +++ - -

Bacillus D2 - - +++ - -

Bacillus E2 - - +++ - -

Figure 4. Bacterial pathogenicity test on tobacco leaves (a) A2 (control), (b) B1, (c) D1, (d) D2, (e) E2

Table 6. Organic acids were detected in liquid cultures of some isolates and species of Bacillus

Isolate/species
Organic acid (mg/L)*

Lactic Malic Oxalic Citrate Tartaric

Bacillus B1 33.66 3.84 13.94 5.16 38.36

Bacillus D1 31.51 38.54 135.76 41.09 21.17

Bacillus D2 14.15 39.24 134.31 183.55 14.83

Bacillus E2 37.89 39.39 132.64 17.53 71.97

Note: *Mean values are from two replications.
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The rhizosphere of vegetable crops grown in 
productive Andisols soils in mountainous regions 
is the niche of a wide variety of beneficial bacte-
ria, including the genus Bacillus, which is well-
known for its ability to promote plant growth 
and also produce antimicrobial compounds (del 
Barrio-Duque et al., 2019; Kesaulya et al., 2021). 
The bacillus were isolated from specific soil and 
niches; they can be used in other tropical area due 
to their adaptability and resilience under various 
soil conditions, including temperature extremes, 
pH variations, and nutrient availability (Rad-
hakrishnan et al., 2017). Bacillus are also able to 
produce bioactive compounds, such as phytohor-
mones and enzymes for enhancing plant growth 
in various agroecological zones (Hinsinger et 
al., 2009; Nwachukwu et al., 2021). Therefore, 
isolating and characterizing Bacillus from the 
rhizosphere of these vegetable can discover new 
strains with certain properties related to plant 
growth promotion.

Morphological and biochemical character-
ization were essential in identifying Bacillus. 
Bacillus is Gram-negative with a thick cell wall 
(Wyrick’ And and Rogers, 1973), and forms en-
dospores (Borriss, 2020). This dormant endo-
spore is resistant to heat conditions, nutritional 
deficiencies, ultraviolet radiation, or toxic chemi-
cals. The endospore-forming PGPR is an impor-
tant characteristic for withstanding high tempera-
tures and limited soil nutrient content in tropical 
agriculture. In this study, Bacillus bacteria do not 
exhibit acid-resistant properties, because they do 
not have a waxy layer of mycolic acid on their 
cell walls. The absence of this wax layer makes 

Bacillus unable to withstand the exposure to 
strong acids and special staining for resistant acid 
bacteria (Mukhtar et al., 2023).

The biochemical properties of suspected bacil-
lus in this study agree with Bacillus in hot springs 
(Abdelkrim et al., 2021), which produce catalase 
and motile. The Bacillus sp. from strawberry rhizo-
sphere is also positive in the catalase, biochemical 
such as organic acid (lactic, malic, oxalic, citrate, 
tartaric), exopolysaccharides, and phosphatase en-
zymes, and then fermentation tests such as malt-
ose, sucrose, glucose, mannitol, and lactose (Putra 
et al., 2020). The selection of general biochemical 
characteristics with some of these tests can deter-
mine the characteristics of Bacillus isolates. In this 
study, the negative reaction of the indole test was 
shown by all isolates since bacillus does not have 
the tryptophanase enzyme (Lay, 1994). 

Determination of metabolites, such as or-
ganic acids, exopolysaccharides, and phospha-
tase enzymes in bacillus bacteria is an essential 
step in evaluating their potential as biofertilizers. 
Characterization of the ability of isolates to pro-
duce these metabolites is essential to understand-
ing the mechanism of increasing plant growth. 
The organic acids of Bacillus dissolve insoluble 
phosphate compounds and increase phosphorus 
availability in soil (Patel et al., 2008; Setiawati 
et al., 2022). The results agree with the ability of 
other Bacillus strains to synthesize organic acid. 
The B. altitudinis isolated from chickpeas pro-
duce oxalic acid of 120 mg/L (Kushwaha et al., 
2021), while Bacillus sp. isolated from corn pro-
duces lactic acid in the range of 48-932 mg/L and 
citric acid of 3.84 mg/L (Mumtaz et al., 2019). 

Table 7. Exopolysaccharides (EPS) and phosphatase enzymes in liquid cultures of four Bacillus isolates 
Isolate/species EPS (g/L)* Phosphatase (mg/L)*

Bacillus B1 8.66 0.27

Bacillus D1 4.16 0.24

Bacillus D2 4.50 0.49

Bacillus E2 4.50 0.05

Note: *Mean values are from two replications.

Table 8. Homology of isolates with Bacillus species based on partial sequence of 16S ribosomal RNA gene
Isolate Species and strains Homology

Bacillus B1 Bacillus safensis strain MDL5 Homology 99.72%. Query Cover 100%.

Bacillus D1 Bacillus safensis strain MDL5 Homology 99.93%. Query Cover 100%.

Bacillus D2 Bacillus altitudinis strain RPW2 Homology 99.64%. Query Cover 100%.

Bacillus E2 Bacillus sp. strain SZ057 Homology 99.86%. Query Cover 100%.
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The concentrations of lactic acid and citric acid 
reported in the study, were comparable to the re-
sults of the presented research (Table 6). Mean-
while, the enzyme phosphatase mineralizes or-
ganic phosphorus into an inorganic form that the 
roots can absorb (Tian et al., 2021). The exopoly-
saccharides produced are an extracellular matrix 
that protects bacterial cells and increases water 
and nutrient retention around the rhizosphere, 
indirectly supporting plant growth (Morcillo and 
Manzanera, 2021). 

On the basis of the results of this study, it can 
be concluded that four isolates, Bacillus B1, D1, 
D2, and E2, three species, B. safensis, B. altitu-
dinis, and Bacillus sp. have great potential to be 
developed as biofertilizers. These isolates do not 
show pathogenicity; Bacillus do have not strong 
virulence factors such as toxins or specialized 
surface structures that can exterminate host cells 
(Popoff, 2024). The four Bacillus species produce 
the metabolites related to the plant growth pro-
motion. The B. safensis isolate obtained in this 
study showed a significantly higher production 
of secondary metabolites, such as organic acids, 
exopolysaccharides, and phosphatase enzymes, 
which were significantly higher than bacillus 
sp. and B. altitudinis. These findings are in line 
with the research by Chebotar et al., (2024) and 
Mukhtar et al., (2023), which shows that the B. 
safensis isolate from tomato plants can produce 
organic acids, phosphatase enzymes, and exo-
polysaccharides. These metabolites increase plant 
growth and resistance to salinity stress and tem-
perature extremes. In comparison, the research by 
Zhao et al. (2022), reported that the B. altitudinis 
isolated from Lycium barbarum produced a vari-
ety of organic acids and phosphatase enzymes. In 
addition, the research by Sun et al., (2021) showed 
that the B. altitudinis isolated from Ginkgo biloba 
can produce exopolysaccharides that effectively 
inhibit the growth of plant pathogens, such as Al-
ternaria alternata in apple plants.

Analysis of 16S rRNA revealed that bacterial 
communities in the rhizosphere of vegetable crops 
are very diverse (Hu et al., 2020). More than 100 
different species of bacteria were identified from 
soil samples. Bacillus is the most dominant phy-
lum of bacteria, followed by Pseudomonas and 
Rhizobium. The high bacterial diversity in the 
rhizosphere of vegetable crops is most likely due 
to various factors, including habitat diversity, re-
source abundance, and interactions between spe-
cies. While Bacillus isolates show great potential 

as plant growth-promoting agents, their introduc-
tion into agricultural systems requires careful 
consideration of possible ecological impacts. To 
date, the research on Bacillus-based biofertilizer 
used in long-term agriculture has not yet been 
found. Exogenous Bacillus strains may disrupt 
native microbial communities, leading to eco-
logical shifts. Therefore, long-term monitoring of 
microbial community dynamics after bacillus in-
oculation is essential to maintain ecological bal-
ance. Such monitoring is critical for the sustain-
able development of biofertilizers. The structure 
of bacterial communities in the rhizosphere of 
vegetable crops is influenced by factors such as 
soil pH, produced root exudate, and human activ-
ities. Isolation carried out from the rhizosphere of 
vegetable plants obtained four pure isolates that 
are known to be bacillus and have the ability to 
produce metabolites in the form of organic acids, 
exopolysaccharides, and phosphatase enzymes 
(Tables 5 and 6). All metabolites have direct or 
indirect role in the availability of nutrients and 
then plant growth, 

The findings of this study provide strong 
evidence that the Bacillus isolates from the rhi-
zosphere of highland vegetables have excellent 
potential as a plant growth-promoting agent. In-
troducing Bacillus-based biofertilizer offers a 
sustainable way to increase plant productivity and 
better soil management. With further research and 
field trials, Bacillus becomes important in sustain-
able agriculture strategies in Indonesia and other 
tropical regions. Future research should focus on 
formulating Bacillus-based biofertilizers follow-
ing with bioassay techniques to ensure their ef-
fectiveness under actual agricultural conditions 
and compare them with commercial biofertilizers 
regarding ease of application and improved yield. 
Further research should focus on stable, easy-
to-apply, and effective formulations of Bacillus 
biofertilizers to ensure widespread acceptance by 
farmers and their central role in sustainable agri-
culture strategies. 

CONCLUSIONS 

Microbes isolated from vegetable crops of 
tomatoes, lettuce, broccoli, pak choy, and straw-
berries obtained 13 isolates. The tests carried out 
for Bacillus isolate selection were gram staining, 
biochemical characteristics test, pathogenicity 
test, production of metabolites, and 16S rRNA 



118

Journal of Ecological Engineering 2025, 26(1), 109–120

analysis. After the test, four Bacillus isolates were 
obtained from the rhizosphere of lettuce, broccoli, 
and strawberry plants. On the basis of 16S rRNA, 
B1 is Bacillus safensis strain MDL5, D1 is Bacil-
lus safensis strain MDL5, D2 is Bacillus altitu-
dinis strain RPW2, and E2 is Bacillus sp. strain 
SZ057. All isolates produced metabolites in the 
form of organic acids, exopolysaccharides, and 
various phosphatase enzymes. It shows potential 
as a biofertilizer to enhance plant productivity 
and reduce the reliance on inorganic fertilizers. 

The findings of this study provide strong 
evidence that the Bacillus isolates from the rhi-
zosphere of highland vegetables have excellent 
potential as a plant growth-promoting agent. Im-
plementing bacillus as a biofertilizer can offer a 
sustainable solution for increasing plant produc-
tivity and better soil management. With further 
research and field trials, Bacillus can become 
significant in sustainable agriculture strategies in 
Indonesia and other regions.
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