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INTRODUCTION

Water contamination refers to the introduction 
of unwanted substances into a water body, which 
significantly impacts its quality and leads to det-
rimental consequences for the environment and 
human well-being. Current water resources have 
been affected by several variables including cli-
mate change, population expansion, heightened 
human activity, agricultural practices, and indus-
trial operations. The provision of drinking water 
is a significant concern, particularly in developing 
nations [Hoslett et al., 2018; El-Alfy et al., 2019]. 
An essential factor in assessing the development 
level of a country is the accessibility of potable 

water for both household and industrial use [Majdi 
et al., 2019; 4. García-Avila et al., 2021].

The water from the Lematang River serves as 
a primary source of raw water to meet the clean 
water needs of the residents of Muara Enim Re-
gency, located in South Sumatra, Indonesia. Raw 
water contains various metal ions dissolved from 
soil and rocks, including iron (Fe), manganese 
(Mn), copper (Cu), and zinc (Zn), which may 
come from natural processes or human activi-
ties. However, the most important metal ions to 
remove from raw water are Fe and Mn. These 
two metals, when present in high concentrations, 
can cause water quality issues, such as a metal-
lic taste, unpleasant odor, and discoloration of 
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the water to brown or black. High levels of to-
tal suspended solids (TSS), turbidity, Fe, and Mn 
pose challenges when using raw water for drink-
ing. These parameter levels frequently exceed the 
threshold, particularly during the wet season due 
to colloidal particles in the size range of 1 nm 
to 1 µm. Meanwhile, efficient removal of high-
turbidity water by sedimentation or filtration has 
limitations [Chiavola et al., 2023].

Drinking water industries have employed 
aluminium sulphate (alum) treatment on raw wa-
ter to decrease these characteristics. Alum is the 
primary chemical coagulant widely employed 
in water treatment to reduce turbidity and color. 
However, its use leads to the formation of alum 
residues and the generation of sludge [Koul et 
al., 2022; Ameh et al., 2024]. The presence of 
excessive alum in drinking water can have det-
rimental impacts on human health, particularly 
when it accumulates over an extended period. 
Water treatment supposedly aims to produce 
clear, safe, colorless and odorless water, which 
is used to meet the clean water needs of the com-
munity. The adsorption technology is noted for 
its affordability, ease of use, high performance, 
efficiency, stability, and effective regeneration in 
the removal of water pollutants [Abdelhamid et 
al., 2020; Qasem et al., 2021].

Activated carbon is a promising adsorbent for 
the detection and removal of contaminants from 
river water. Activated carbon possesses significant 
pore structures and a defined surface area [Njewa 
et al., 2022]. Activated carbon can be produced 
from a range of carbon-rich materials, including 
palm shells [Kittappaa et al., 2020], agricultural 
waste [Mollaei et al., 2024], walnut shells [Shabir 
et al., 2024], coconut shells [Saad, 2024], and 
bamboo stems [Bakara et al., 2024]. Coal is a po-
tential raw material for activated carbon. Lower-
grade coal is frequently less appealing to power 
plant because of its poor calorific value and el-
evated concentration of impurities such as water, 
oxygen, and ash [Altintig et al., 2022; Musa et al., 
2024]. However, through appropriate processing 
methods, low-grade coal can be transformed into 
activated carbon. Coal-based activated carbon is 
more affordable, readily available, and has supe-
rior surface characteristics [Shaida et al., 2022]. 
Indonesia has a large coal supply, with the major-
ity of production concentrated in South Sumatra, 
where the research was conducted.

The application of activated carbon as an 
adsorbent is subject to several constraints, 

particularly during separation. Magnetic acti-
vated carbon, a modification of porous carbon 
with magnetic materials, is recognized as a 
highly promising separation process [Cazetta et 
al., 2016]. The approach offers a significant ben-
efit because the resulting composite has a robust 
structure, allowing for straightforward separa-
tion of both composite and the adsorbed pollut-
ants using a simple external magnet. Further-
more, it is capable of being recycled and reused 
[Liu et al., 2017; Fourotan et al., 2019]. Several 
researchers have synthesized magnetic activated 
carbon for specific applications, such as ceftri-
axone adsorption using activated carbon-Fe3O4 
[Badi et al., 2018], Methyl red dye adsorption 
using activated carbon-MnFe2O4 [Riyanti et al., 
2018], H2S removal using ZnFe2O4/activated 
carbon [Yang et al., 2020], and ciprofloxacin 
adsorption using activated carbon-MgFe2O4 
[Huynh et al., 2023].

This study aimed to synthesize activated car-
bon from coal and modify it with nickel ferrite 
(NiFe2O4). Subsequently, the activated carbon/Ni-
Fe2O4 composite was utilized to decrease the Fe, 
Mn, and turbidity levels in water from the Lema-
tang River. KOH is used as an activator in the pro-
duction of activated carbon from coal. KOH plays 
a role in suppressing tar formation, speeds up the 
removal of non-carbon elements, and increases the 
rate of pyrolysis reactions. This process leads in the 
production of numerous pores and pore volumes, 
which eventually increases surface area [Jawad 
and Abdulhameed., 2020; Mi et al., 2024]. NiFe2O4 
is characterized by its excellent chemical stability, 
strong coercivity, moderate saturation magnetiza-
tion, high electrical resistivity, and abundant natu-
ral availability [Chetia et al., 2024; Mousa et al., 
2021]. NiFe₂O₄ possesses magnetic properties that 
enable the composite to be more easily separated 
from the liquid medium by applying an external 
magnetic field once the adsorption process is fin-
ished [Hariani et al., 2022]. The combination of the 
adsorptive properties of activated carbon and the 
magnetic properties of NiFe₂O₄ makes this com-
posite highly efficient in water purification. 

MATERIAL AND METHODS

Materials

The chemicals used in this study were nick-
el (II) chloride hexahydrate (>98%), iron (III) 
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chloride hexahydrate (>99%), potassium hydrox-
ide, iron (III) standard solution 1000 ppm, Manga-
nese (II) standard solution 1000 ppm, and sodium 
hydroxide purchased from Merck, Germany and 
deionized water was used as a solvent. Coal from 
the coal mine in Tanjung Enim regency, whereas 
raw water was taken from the Lematang River, 
Muara Enim regency, South Sumatra, Indonesia.

Activated carbon preparation 

Activated carbon was synthesized using the 
procedures outlined by Liu et al. [2024] and Mi 
et al. [2024]. After removing impurities, the coal 
was oven-dried for 24 h at 105 °C. Subsequently, 
the coal was ground to a particle size of 140 mesh. 
A total of 50 g of coal powder was then immersed 
in a 1 M KOH solution at a weight ratio of 1:2. 
The coal, saturated with the KOH solution for 1 
h, was then heated in an oven for 24 h at 105 °C. 
Subsequently, the sample was subjected to car-
bonation at a temperature of 600 °C with a flow 
rate of 5 °C/min, using N2 gas for 2 h. The sample 
was rinsed with deionized water until it reached a 
neutral pH. The activated carbon was subsequent-
ly desiccated at a temperature of 105 °C for a 2 
h and ultimately sealed in a glass receptacle. The 
moisture and ash content of the activated carbon 
were analyzed according to the Indonesian Na-
tional Standard [SNI 06-3730-1995].

The synthesis of activated carbon/NiFe2O4 
composite

The synthesis of an activated carbon/NiFe2O4 
composite was conducted using the coprecipi-
tation technique as described by Bernaoui et al. 
[2022] and Kazi et al. [2023]. An equal mass of 4 
g of activated carbon, 5.41 g of FeCl3.6H2O and 
2.38 g of NiCl2.6H2O (with a molar ratio of Fe3+ 
and Ni2+ of 2:1) were combined in 25 mL of deion-
ized water. The solution was stirred and gradually 
immersed in a 2 M NaOH solution until it reached 
a pH of approximately 10, under the influence of 
N2 gas. The composite material was rinsed with 
deionized water until it reached a neutral pH and 
then dried at 105 °C for an additional 3 h. Finally, 
calcination was conducted at 450 °C for 3 h.

Characterization of materials

Activated carbon and activated carbon/Ni-
Fe2O4 composites were characterized by X-ray 

diffractometry (XRD Rigaku Miniflex 300 Ja-
pan), Cu Ka radiation, wavelength λ=1,541.862 
Å, in the range of 2θ = 10-90°. The Brunauer-
Emmett-Teller (BET) measurement was per-
formed to assess the surface area of the samples, 
utilizing a Micromeritics volumetric instrument 
(NOVA Touch 4LX) with an N2 adsorption/de-
sorption isotherm system. scanning electron mi-
croscopy – energy dispersive X-ray (SEM-EDX 
JEOL JSM-6510LA) was employed to investi-
gate the surface morphology and elements of the 
samples. The examination of magnetic charac-
teristics aimed to determine the magnetic prop-
erties of the materials using a vibrating sample 
magnetometer (VSM-7307). The identification 
of functional groups was achieved by Fourier 
transform infrared spectroscopy employing KBr 
pellets in the wave number range of 400–4000 
cm-1 (Perkin Elmer FTIR-1650).

Characterization of raw water

Water samples were collected at the inlet of 
the Lematang River before entering the raw water 
reservoir (Figure 1). Prior to usage, the sample 
bottles underwent cleaned and sterilized. The wa-
ter samples were collected in polyethylene plastic 
bottles and kept in an ice box at a temperature of 
4 °C during collection and transport. The initial 
measurements were total Fe and Mn concentra-
tions, pH, chemical oxygen demand (COD), tur-
bidity, and total suspended solid (TSS). The anal-
ysis adhered to the requirements set by APHA/
AWWA/WEF [2017].

Adsorption

Activated carbon and activated carbon/Ni-
Fe2O4 composites were employed for the reduc-
tion of Fe, Mn, and turbidity in samples of raw wa-
ter. The aforementioned parameter is considered 
to establish the optimal removal conditions. The 
adsorption procedure was conducted using batch 
adsorption, with the following variables: dosage 
ranging from 0.2 to 0.7 g/L, contact time ranging 
from 30 to 150 min, and stirring speed between 
100 and 400 rpm. The percentage efficiency was 
calculated using the following formula:

	 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  (𝐶𝐶0− 𝐶𝐶𝑡𝑡)
𝐶𝐶0

  100                          (1)           
 
 
𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  1
𝑏𝑏·𝑄𝑄𝑚𝑚

− 𝐶𝐶𝑒𝑒
𝑄𝑄𝑚𝑚

                    (2) 
 
𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞𝑒𝑒 =  𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝑓𝑓  +  1

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑒𝑒                     (3) 
 

	 (1)

where: Co and Ct are initial concentration and 
concentration at any given time.
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RESULTS AND DISCUSSION

Characterization of activated carbon and 
activated carbon/NiFe2O4 composite

Table 1 shows the results of the analysis of 
moisture and ash content in activated carbon. 
The moisture and ash content of activated car-
bon comply with the provisions of the Indone-
sian National Standard (SNI No. 06-3730-1995) 
for activated carbon. Increased moisture leads to 
the saturation of activated carbon pores by water, 
therefore limiting the accessible area for adsorb-
ing pollutant molecules. Ash content refers to the 
proportion of inorganic substances (non-carbon 
particles) present in activated carbon. Ash may be 
derived from either minerals or contaminants. An 
elevated ash level can disrupt the adsorption pro-
cess and induce undesired reactions.

Figure 2 displays the XRD patterns of activat-
ed carbon and the activated carbon/NiFe2O4 com-
posite. Two distinct diffraction peaks of activated 
carbon, associated with the Miller indices (002) 
and (100), are detected at around 22° and 44°, 
respectively. The peaks observed are associated 

with the amorphous structure of the disordered 
aromatic groups [Frohlich et al., 2019; Bakara et 
al., 2024]. The diffraction patterns of the activat-
ed carbon/NiFe2O4 composite shows peaks at 2θ 
= 30.11°, 35.01°, 36.12°, 43.11°, 54.01°, 57.08°, 
and 63.12° which corresponds to the crystal plane 
of (220), (311), (222), (400), (422), (511), and 
(440). These crystal planes can be classified as 
inverse spinel NiFe2O4 with face-centered cubic 
(FCC) structural arrangement [JCPDS Card No. 
10-0325]. Due to the more crystalline structure of 
NiFe2O4 compared to activated carbon, the XRD 
patterns of the activated carbon/NiFe2O4 compos-
ite do not exhibit the amorphous characteristics. 
It is consistent with the findings of Azzam et al. 
[2023], on which the biochar/NiFe2O4 composite 
exhibits a single peak corresponding to NiFe2O4. 
The absence of foreign peaks indicates that the 
structure is a homogeneous single phase.

The porosity characteristics of activated car-
bon and activated carbon/NiFe2O4 composites 
were determined by examining the N2 adsorption-
desorption isotherms and BET surfaces shown 
in Figure 3. IUPAC categorizes it as a type IV 

Figure 1. (a) Sampling location map, and (b) inlet of the Lematang River into the raw water reservoir

Table 1. Moisture and ash content of activated carbon
Parameters Percentage (%) SNI (%)

Moisture 8.22 Max. 15

Ash content 1.90 Max. 10
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Figure 2. XRD spectra of (a) activated carbon and (b) 
activated carbon/NiFe2O4 composite

Figure 3. N2 adsorption-desorption isotherms of (a) 
activated carbon and (b) activated carbon/NiFe2O4 

composite

isotherm that falls within the P/P0 range of 0.5–
1.0, suggesting the presence of many mesopo-
rous structures [Sun et al., 2023]. The activated 
carbon/NiFe2O4 composite has a surface area of 
293.992 m2/g larger than the activated carbon 
(Table 2). The results of a similar study by other 
researchers showed that activated carbon derived 
from Sargassum oligocystum biomass and walnut 
shells exhibited a smaller surface area compared 

to activated carbon-Fe₃O₄ composites [Foroutan 
et al., 2019; Tahmasebpour and Peighambar-
doust, 2024]. Fe₃O₄ can either enlarge the existing 
pores in the activated carbon or generate new mi-
crostructures, which has the potential to increase 
the overall surface area due to the formation of 
smaller and additional pores.

Figure 4 displays an SEM image of activated 
carbon and the activated carbon/NiFe2O4 compos-
ite. The activated carbon surface appears to have 
pores, albeit not uniformly distributed. Mean-
while, the activated carbon/NiFe2O4 composite 
surface indicates that a portion of the NiFe2O4 is 
dispersed on the activated carbon surface. EDX 
analysis suggests that the primary element of 
activated carbon is C (93.89%), with O (6.11%) 
accounting for the remaining quantity. Fe and Ni 
in the activated carbon/NiFe2O4 composite show 
that the synthesis went well (Table 3).

Figure 5 depicts a curve of magnetization ver-
sus applied magnetic field for activated carbon/
NiFe2O4 composites. The composites demonstrate 
superparamagnetic characteristics, as evidenced 
by a saturation magnetization value of 21.13 
emu/g. This magnetic characteristic enhances the 
efficiency of separation following the adsorption 
process. This study reports a saturation magneti-
zation that surpasses 16.21 emu/g of activated car-
bon derived from hazelnut shells, produced by hy-
drothermal impregnation with NiFe2O2 [Livani et 
al., 2018]. Meanwhile, the saturation magnetiza-
tion value of NiFe2O4 is 32.9 emu/g [Abbas et al., 
2023]. The addition of activated carbon reduces 
the concentration of magnetic components in the 
composite, so the magnetic intensity decreases.

Batch equilibrium studies

Fe, Mn, and turbidity levels are used as pa-
rameters to examine the optimal conditions for 
treating raw water. Analysis of raw water reveals 
that the concentrations of Fe, Mn, and turbidity 
are 5.68 mg/L, 3.29 mg/L, and 51.6 NTU, re-
spectively. To reduce the previously discussed 
parameter, a series of adsorption experiments 
are conducted involving three variables: dosage, 

Table 2. The pore structure of activated carbon and activated carbon/NiFe2O4 composite
Characteristics Activated carbon Activated carbon/NiFe2O4 composite

BET surface area (m2/g) 265.443 293.992

Average pore diameter (nm) 3.697 3.673

Pore volume (cm3/g) 0.217 0.266
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contact time, and stirring speed. The adsorbent 
dosage used varies within 0.2–0.7 g/L. The data 
presented in Figure 6a demonstrates that as the 
dosage increases, the number of adsorption sites 
on the adsorbent surface also increases, therefore 
enabling a greater amount of pollutants to be ab-
sorbed. Additional dosages do not corresponding-
ly improve the rate of elimination, which suggests 
a saturation point for the adsorption [Badawi et 
al., 2024]. Activated carbon and activated carbon/
NiFe2O4 composites overall exhibit a compara-
ble tendency to reduce Fe and Mn. The increase 
with the increasing dosage of the adsorbent and 
subsequently plateau after the optimal dosage is 
reached. However, the activated carbon/NiFe2O4 
composite appears more effective than activated 
carbon alone. The maximum removal achieved 
by the activated carbon/NiFe2O4 composite is 

0.4 g/L, while using activated carbon results in a 
higher dosage of 0.5 g/L. 

Figure 6b shows how contact time affects the 
ability of activated carbon and activated carbon/
NiFe2O4 composites to reduce Fe, Mn and tur-
bidity. The contact time ranges from 30 to 150 
min. The optimal contact time required to achieve 
equilibrium in activated carbon is greater than in 
activated carbon/NiFe2O4 composite. The acti-
vated carbon/NiFe2O4 composite achieved equi-
librium within 60 min, with removal efficiencies 
of 87.12% for Fe, 94.85% for Mn, and 77.52% for 
turbidity, respectively. Meanwhile, the optimal 
contact time for activated carbon was 120 min 
with lower removal percentages. The combina-
tion of activated carbon and NiFe2O4 not only en-
hances the separation process but also augments 
the adsorption capacity. Another investigation 

Figure 4. SEM image of (a) activated carbon, (b) activated carbon/NiFe2O4 composite, 
and (c) mapping activated carbon/NiFe2O4 composite

Table 3. Elemental of activated carbon and activated carbon/NiFe2O4 composite
Element (%) Activated carbon Activated carbon/NiFe2O4 composite

C 93.89 61.06

O 6.11 25.97

Fe – 8.82

Ni – 4.15
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demonstrated that the adsorption of Cd using ac-
tivated carbon/Fe3O4 was superior to solely acti-
vated carbon [Vaithianathan et al., 2023].

Figure 6c illustrates the impact of varying 
stirring speeds on the removal efficiency of ac-
tivated carbon and the activated carbon/NiFe2O4 
composite in reducing Fe, Mn, and turbidity. The 
stirring speed varies between 100 and 400 rpm. 
The findings suggest that reduced stirring speed 
corresponds to less effective elimination of pollut-
ants, owing to inadequate dispersion for the thor-
ough mixing of the adsorbent and contaminants 
[Badawi et al., 2024]. Increased stirring speed re-
sult in enhanced mass transfer from the solution 
to the surface of the adsorbent. The reason is that 
stirring improves external diffusion, specifically 
the transport of molecules from the liquid phase to 
the adsorbent’s surface, which facilitates a greater 
number of dissolved molecules to reach the acti-
vated carbon or composite surface. The optimal 
stirring speed was achieved with an activated car-
bon/NiFe2O4 composite at 250 rpm, compared to 
300 rpm when using activated carbon. Addition-
ally, the activated carbon/NiFe2O4 composite con-
sistently showed superior performance in remov-
ing Fe, Mn, and turbidity compared to activated 
carbon alone at similar stirring speeds.

The findings of the study suggest that the ac-
tivated carbon/NiFe2O4 composite exhibits supe-
rior efficacy in pollutant reduction. The combined 
use of activated carbon and NiFe2O4 leads to an 
increased quantity of active sites, exhibited by en-
hanced physical and chemical characteristics. The 
activated carbon/NiFe₂O₄ composite possesses 
a larger surface area compared to pure activated 

Figure 5. VSM curve of activated carbon/NiFe2O4 
composite

Figure 6. Effect of (a) dosage, (b) contact time, 
and (c) stirring speed of activated carbon (AC) and 

activated carbon/NiFe2O4 composite for removal Fe, 
Mn and turbidity

carbon. The magnetic properties of NiFe₂O₄ help 
attract Fe ions through magnetic interactions, im-
proving the binding of Fe ions on the composite 
surface more effectively than pure activated car-
bon, which relies solely on its physical adsorption 
properties. The optimal condition of activated car-
bon/NiFe2O4 composite was reached at a dosage 
of 0.4 g, a contact time of 60 min, and a stirring 
speed of 250 rpm. Meanwhile, activated carbon 
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reached its optimum condition at a dosage of 0.5 
g, contact time of 120 min, and stirring speed of 
300 rpm. Table 4 provides the measurements of Fe, 
Mn, turbidity, TSS, COD, and pH in raw water pri-
or to and following the application of the activated 
carbon/NiFe2O4 composite. All parameters in raw 
water exceed the established quality criteria. Fol-
lowing the application of the activated carbon/Ni-
Fe2O4 composite, there is a reduction in these val-
ues and satisfying the clean water criteria for sani-
tation purposes. According to the Regulation of the 
Minister of Health of Indonesia No. 32 of 2017 for 
Hygiene and Sanitation, the Environmental Health 
quality standards for water sources are as follows: 
maximum turbidity level of 25 NTU, TSS limit of 
1000 mg/L, pH range of 6.5–8.5, Fe and Mn limits 
of 1.0 mg/L and 0.5 mg/L, respectively.

The activated carbon/NiFe₂O₄ composite 
shows better performance in enhancing water 
quality compared to previous studies. The modi-
fied nano-banana peel powder achieved reduc-
tions in turbidity (83%), TSS (73.8%), and COD 

(31.7%) in river water from Valli Aaru, India 
[Dharsana and Prakash, 2023]. Activated carbon 
from sawdust was used to enhance wastewater 
quality, resulting in a pH change from 7.7 to 7.10 
and a reduction in TSS from 232 mg/L to 15.7 
mg/L (93.23%) [Oladimeji et al., 2021]. Moringa 
oleifera seed powder was utilized for treating do-
mestic wastewater in Zomba, Malawi, reducing 
turbidity from 287 NTU to 38.8 NTU (86.48%) 
and increasing the pH from 4.3 to 7.1 [Vunain et 
al., 2019]. Manganese green sand used in acid 
mine water treatment can reduce Fe and Mn by 
69.94% and 70.61%, respectively [Kusdarini et 
al., 2023). Figure 7 illustrates the color difference 
in raw water before and after the addition of the 
activated carbon/NiFe₂O₄ composite, where the 
originally cloudy raw water becomes noticeably 
clearer following the adsorption process. 

Adsorption isotherm

The Langmuir and Freundlich isotherms are 
mathematical models used to describe the adsorp-
tion process. The Langmuir isotherm assumes 
that adsorption occurs on a homogeneous surface 
with a limited number of adsorption sites while 
the Freundlich isotherm describes adsorption on 
a heterogeneous surface [Detho et al., 2021]. The 
linearity of the Langmuir and Freundlich iso-
therm equation is expressed as follows:

	

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  (𝐶𝐶0− 𝐶𝐶𝑡𝑡)
𝐶𝐶0

  100                          (1)           
 
 
𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  1
𝑏𝑏·𝑄𝑄𝑚𝑚

− 𝐶𝐶𝑒𝑒
𝑄𝑄𝑚𝑚

                    (2) 
 
𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞𝑒𝑒 =  𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝑓𝑓  +  1

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑒𝑒                     (3) 
 

	 (2)

	

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (%) =  (𝐶𝐶0− 𝐶𝐶𝑡𝑡)
𝐶𝐶0

  100                          (1)           
 
 
𝐶𝐶𝑒𝑒
𝑞𝑞𝑒𝑒

=  1
𝑏𝑏·𝑄𝑄𝑚𝑚

− 𝐶𝐶𝑒𝑒
𝑄𝑄𝑚𝑚

                    (2) 
 
𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞𝑒𝑒 =  𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝑓𝑓  +  1

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑒𝑒                     (3) 
 

	 (3)

where: qe represents the amount of adsorbate per 
gram of adsorbent at equilibrium (mg/g), 
Qm denotes the maximum adsorption ca-
pacity (mg/g), and Ce indicates the con-
centration of adsorbate at equilibrium 
(mg/L). The parameter n reflects the 

Table 4. The physicochemical characteristics of the raw water before and after treatment using activated carbon/
NiFe2O4 composite

Parameters Before After Removal (%) Quality standards

Fe (mg/L) 5.68 0.22 96.12 Max. 1.0

Mn (mg/L) 3.29 0.04 98.78 Max. 0.5

Turbidity (NTU) 51.60 6.70 87.02 Max. 25

TSS (mg/L) 3.230 210 93.49 Max. 1000

COD (mg/L) 356 145 59.27 –

pH 5.38 7.66 – 6.5-8.5

Figure 7. Raw water before and after treatment using 
activated carbon/NiFe2O4 composite
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adsorption intensity, while and b​ and Kf 
are constants specific to the Langmuir and 
Freundlich models, respectively.

Table 5 provides the adsorption isotherm pa-
rameters of an activated carbon/NiFe2O4​ composite 
for Fe, Mn, and turbidity. The Langmuir isotherm 
better represents the adsorption model, as indicated 
by the R2 value being closer to 1 compared to the 
Freundlich isotherm. A similar pattern is observed 
in the adsorption of Pb, Cd, and Ni from Jakarta 
River water using iron oxide [Ameh et al., 2024]. 
The Langmuir isotherm effectively describes mon-
olayer adsorption on a homogeneous surface.

Reusability of activated carbon/NiFe2O4 
composite

The study of the reusability of activated car-
bon/NiFe2O4 composite is a very important aspect 
because the efficiency of using adsorbents has 
an impact on reducing costs significantly. Reus-
ability was carried out to evaluate the stability 
of activated carbon/NiFe2O4 composite to reduce 
Fe, Mn and turbidity in five cycle. This process is 
carried out by separating the activated carbon/Ni-
Fe2O4 composite from the solution after use using 
an external magnet, then soaking it in 0.1 M HCl 
for 30 min. The precipitate was separated from the 
solution, washed with ethanol and distilled water 
and finally dried using an oven at a temperature of 
80 °C for 10 h. Figure 8 demonstrates the strong 
recyclability of the activated carbon/NiFe₂O₄ 
composite, with Fe, Mn, and turbidity removal ef-
ficiencies of 93.22%, 95.25%, and 82.15% even 
after 5 cycles. In addition, the magnetic properties 
of a material minimize the risk of damage to the 
material surface thereby increasing adsorption ef-
ficiency [Kalidason and Kuroiwa, 2022].

FTIR spectra 

This study employed FTIR spectroscopy to 
analyze the alterations in functional groups of the 
activated carbon/NiFe2O4 composite following 
its application in raw water treatment. Figure 8 
presents three FTIR spectra: activated carbon, ac-
tivated carbon/NiFe2O4 composite, and activated 
carbon/NiFe2O4 composite post-adsorption. The 
OH functional group is evident in all three spec-
tra, observed as a broad absorption peak at wave 
numbers approximately 3300–3400 cm-1. The 
peak corresponds to the stretching vibration of 
water molecules adsorbed on carbon, carboxyl, or 
hydroxyl surfaces. The wave number at 1600 cm-1 
is associated with the bending vibration of water 
molecules or the asymmetric stretching vibration 
of the C=O group in carboxylate compounds. The 
wide peak observed at 1020 cm-1 corresponds to 
the C-O stretching vibration of the activated car-
bon framework [Badawi et al., 2024; Atiyah et 
al., 2024]. The FTIR spectrum between 400 and 

Table 5. Adsorption isotherm parameters for removal Fe, Mn and turbidity

Adsorption isotherm 
parameters

Adsorbate

Fe Mn Turbidity

Langmuir

R2 0.9976 0.9969 0.9971

b (L/mg) 0.376 0.337 0.277

Qm (mg/g) 58.82 52.910 47.39

Freundlich

R2 0.9831 0.9876 0.9775

Kf (g/mg.min) 14.45 11.96 9.70

n 1.518 1.389 1.006

Figure 8. Reusability of activated carbon/NiFe2O4 
composite
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700 cm-1 is attributed to the stretching vibration of 
metal-oxygen bonds [Hazarika et al., 2018]. The 
wave number of 599 cm-1 in the activated carbon/
NiFe2O4 composite indicates a tetrahedral charac-
teristic of NiFe2O4, specifically the Fe-O group. 
The FTIR spectrum of the post-use activated 
carbon/NiFe2O4 composite shows a variation in 
spectral intensity sharpness, this suggests a bond 
exists between the metal ion and the adsorbent 
[Kasirajan et al., 2022]. It can be seen that the ab-
sorption band of the Fe-O bond in the composite 
weakens after the adsorption process occurs.

CONCLUSIONS

This study investigates the application of acti-
vated carbon/NiFe2O4 composite in the treatment 
of raw water, aiming to serve as a resource for 
clean water supply within the community. Acti-
vated carbon is produced from coal and subse-
quently modified with NiFe2O4 through the co-
precipitation method. The moisture and ash con-
tent of activated carbon comply with the quality 
standards established by the Indonesian National 
Standard. The activated carbon/NiFe2O4 compos-
ite demonstrates superior performance relative to 
activated carbon and exhibits magnetic proper-
ties, enabling separation from the solution using 
a magnet. The optimal treatment was achieved at 
a dosage of 0.4 g, a contact time of 60 min, and 
a stirring speed of 250 rpm. Under these condi-
tions, the removal efficiencies attained were as 
follows: Fe at 96.12%, Mn at 98.78%, turbidity 

at 87.02%, TSS at 93.49%, and COD at 59.27%. 
Additionally, the pH value improved from 5.38 to 
7.66. The treatment of raw water from Lematang 
River with an activated carbon/NiFe2O4 compos-
ite achieves compliance with sanitation water 
quality standards. The activated carbon/NiFe2O4 
composite demonstrates high stability, with less 
than 5% decrease in removal efficiency observed 
after five cycles. This research establishes a foun-
dation for future clean water supply treatment in 
developing nations.
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