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INTRODUCTION

Soil organic carbon exhibits high spatial vari-
ability, making accurate estimates challenging 
(Arrouays et al., 2003). Precise SOC quantifica-
tion is essential for identifying carbon sequestra-
tion potential. Traditional laboratory methods, 
while accurate, are costly and time-consuming 
(Bernoux et al., 2002). Visible and near-infrared 
(Vis-NIR) spectroscopy presents a promising al-
ternative for rapid, non-destructive estimation of 
SOC. This method analyzes the spectral reflec-
tance of soil samples within the visible (350–700 
nm) and near-infrared (700–2500 nm) regions, 
enabling efficient SOC assessment across various 
soil types and conditions, researchers can identify 
specific wavelengths correlated with SOC con-
tent. Studies have demonstrated strong correla-
tions between specific spectral regions and SOC. 

For instance, the 700–800 nm region is linked to 
organic carbon (Wight et al., 2016), while wave-
lengths such as 490, 671, 785, 1090, 1420, 1860, 
and 2420 nm are associated with soil organic mat-
ter (SOM) (Ostovari et al., 2018). By leveraging 
these spectral signatures, Vis-NIR spectroscopy 
has the potential to revolutionize soil carbon 
monitoring and management.

Spectroscopy offers a cost-effective alterna-
tive to traditional methods like Walkley-Black, 
reducing costs by up to 90% through minimized 
sample handling and reagent use (Jackson et al., 
2005; Marmette et al., 2018; Huang et al., 2011; 
Ji et al., 2016; Rossel et al., 2016). To effectively 
predict SOC using Vis-NIR, robust models are es-
sential, often derived from extensive soil sample 
analysis using standard methods. Partial Least 
Squares Regression (PLSR) is a widely used 
technique (Wold et al., 2001); however, other 
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modeling approaches, including support vector 
machines (SVM), random forests (RF), multi-
variate adaptive regression splines (MARS), and 
classification and regression trees (CART), have 
also shown potential (He et al., 2007; Baldock et 
al., 2013; Minu and Shetty, 2018). Despite their 
promise, the generalizability of these models to 
new and geographically distinct regions remains 
an area of active investigation.

A rapid and non-destructive method for esti-
mating SOC is Vis-NIR spectroscopy. However, 
the efficiency and accuracy of this technique are 
influenced by the type of device used to collect 
spectral information. Devices like trays and cap-
sules require meticulous sample preparation, in-
cluding filling, compacting, and cleaning, which 
can be time-consuming and prone to contamina-
tion. In contrast, contact probes simplify sample 
handling by directly measuring the spectral sig-
nal from the sample container. However, they 
may introduce errors due to inconsistent light in-
cidence angles resulting from operator handling. 
The Muglight device, originally designed for raw 
material analysis, minimizes measurement er-
rors caused by diffuse radiation. Nevertheless, it 
requires significantly more time for sample han-
dling compared to contact probes. This study aims 
to compare the performance of models developed 
using data from different devices (trays, capsules, 
contact probes, and Muglight) to estimate SOC 
across diverse soil types and land uses.

MATERIALS AND METHODS

Location features

This study was conducted in Córdoba, 
Spain, at two Dehesa farms. Both farms share a 
common soil type: Eutric Cambisol. While both 
are primarily used for livestock grazing, they 
differ in specific land use practices. The first 
farm is dedicated solely to sheep grazing, with 

occasional cultivation of vetch and oat mixtures 
on certain fields. The remaining areas are main-
tained as permanent pasture. In contrast, the 
second farm supports a more diverse livestock 
operation, including sheep, cattle, and pigs. Ad-
ditionally, it has fewer cultivated fields, with the 
majority of the land designated as permanent 
pasture. A nearby abandoned field was included 
in the sampling area.

Soil samples

In March 2017, 266 soil samples were col-
lected from the first farm. Sampling targeted ar-
eas beneath and outside tree canopies in both per-
manent pasture and corn-soybean rotation fields, 
at depths ranging from 0 to 60 cm. These samples 
were used to calibrate Vis-NIR models.

A total of 180 soil samples, at five different 
depths, were collected from the second farm in De-
cember 2017. Samples were obtained from fields 
subjected to high and moderate grazing intensities, 
as well as from an abandoned field. This dataset 
was utilized to validate the calibrated models’ pre-
dictive ability on novel, unseen samples.

Soil carbon laboratory analysis

Soil samples from both farms were dried at 
40 °C, sieved to 2 mm, and thoroughly homog-
enized. SOC concentrations were measured using 
the method described by Walkley (1947). The re-
sults of these analyses are described in Table 1.

Sample proccessing and spectroscopic analysis

Soil samples were oven-dried at 40 °C for 48 
hours, sieved to 2 mm using a mechanical sieve 
shaker, and thoroughly homogenized. Spectral 
measurements (350–2500 nm) were acquired us-
ing a portable LabSpec 5000 spectrometer (ASD 
Inc., Boulder, CO, USA) equipped with a high-in-
tensity halogen light source. For the first farm, both 

Table 1. Descriptive statistics of SOC Cconcentration
Farm 1 n SOC (%) Std. Dev. CV Minimum Maximum Median

Total set 266 0.72 0.70 96.53 0.00 3.90 0.43

Calibration 216 0.72 0.71 98.85 0.00 3.90 0.43

Validation 50 0.73 0.64 87.10 0.02 2.21 0.49

Farm 2 n SOC (%) Std. Dev. CV Minimum Maximum Median

Total set 180 0.96 0.49 51.50 0.19 2.56 0.89
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high intensity Muglight and contact probe mea-
surements were collected in triplicate and quadru-
plicate, respectively. White reference scans were 
taken between each sample. The second farm’s 
samples were exclusively measured with the Con-
tact Probe using the same protocol (Figure 1).

Spectral data correction and predictive models

Raw spectral data were preprocessed using 
WinISI IV (version 4.6.8) to improve signal-to-
noise ratios and remove spectral noise. The spec-
tral range was reduced to 570–2450 nm to elimi-
nate edge effects (Barnes et al., 1989). Standard 
normal variate (SNV) and SNV with detrend-
ing (SNV&D) were applied to enhance spectral 
quality (Wold et al., 2001). Partial least squares 
regression (PLSR) and modified partial least 
squares regression (PLSR-modified) were used 
to develop calibration models relating spectral 
data to soil organic carbon (SOC) concentrations 
(Martens et al., 1989; Terra et al., 2015).

Model assessment

The optimal model (PLSR or PLSR-modified 
with different spectral preprocessing techniques) 
was selected based on statistical metrics obtained 
from calibration and cross-validation processes 
(Huang et al., 2011; St. Luce et al., 2017). The 
standard SEC, calculated as the square root of the 
sum of squared residuals divided by the degrees of 
freedom (n-p), was a key metric. Cross-validation 
involved a four-fold random partitioning of the 
calibration dataset. Four models were developed, 
each using three-fourths of the data for training 

and the remaining one-fourth for validation. The 
average R² and SEC values from these four itera-
tions, denoted as 1-VR and SECV, respectively, 
were used to assess the model’s predictive ability 
on independent datasets.

The SEC was calculated using Equation 1, 
where yii and yi are the measured and predicted 
values of sample i, respectively, n is the number 
of samples, and p is the number of PLSR vari-
ables used by the model.
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To assess model performance, the range er-
ror ratio (RER) and the ratio of performance to 
deviation (RPD), two commonly used metrics in 
spectral data analysis, were calculated as defined 
in Equations 2 and 3.
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Model performance was evaluated using the 
range error ratio (RER) and the ratio of perfor-
mance to deviation (RPD) (Roberts et al., 2004; 
Pinheiro et al., 2017). RER values exceeding 20 
and RPD values greater than 2.5 indicate excel-
lent model performance. External validation was 
conducted on a 20% subset of the first farm’s soil 
samples. The root mean square error (RMSE), 
calculated as the square root of the sum of 
squared residuals divided by the number of sam-
ples (Equation 4), was used to assess the model’s 
predictive accuracy. Additionally, RER and RPD 
were calculated for the validation set. Finally, the 
SOC content of the second farm’s soil samples 
was predicted using their spectra and the selected 

Figure 1. Instruments employed in this study included: a) LabSpec 5000 spectrometer (Analytical Spectral 
Devices, Inc., Boulder, CO, USA), b) contact-probe sensor, c) Muglight sensor
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best model. RMSE was employed to evaluate the 
model’s performance on this independent dataset.
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RESULTS

Soil spectral reflectance variability with depth

Reflectance spectra were analyzed within the 
570–2450 nm range. In general, the contact-probe 
device yielded lower reflectance values compared 
to the Muglight, likely due to the Muglight’s larg-
er lighting window diameter (Figure 2a). How-
ever, both devices produced spectra with similar 
overall shapes, differing primarily in the magni-
tude of reflectance (Figure 2b).

Analysis of the 216 soil samples scanned 
with both sensors revealed distinct spectral pat-
terns. The upper soil layers (0–2, 2–5, 5–10, 
and 10–20 cm), which had higher SOC con-
tent, exhibited greater reflectance, whereas the 
deeper layers (40–60, 60–80, and 80–100 cm) 
with lower SOC content showed reduced re-
flectance (Figure 3). A closer examination of 
the first sample group, focusing on layers with 
similar clay content (0–2, 2–5, 5–10, and 10–20 
cm), provided further insights into the relation-
ship between SOC and spectral response, which 
revealed a clear stratification in soil profile car-
bon content, which was reflected in the spec-
tral data (Figure 3a). Reflectance was lowest in 
shallow samples with high carbon content and 
increased with depth where carbon content was 
lower. In contrast, samples without the canopy 
influence showed higher reflectance in deeper 

layers, indicating lower organic carbon content 
(Figure 3b). Samples under adult tree cano-
pies exhibited similar organic carbon contents 
across depths, leading to consistent spectral 
lines, while samples outside canopy influence 
displayed spectral variations and lower carbon 
stratification (Figure 3c).

Figure 4 shows the first derivative reflectance 
spectra of soil at various depths, as recorded by 
both sensors. The spectra exhibit similar first de-
rivative patterns across devices, with prominent 
absorption features around 1400 nm, 1900 nm, 
and 2200 nm, which are indicative of soil organic 
matter content.

Calibration and prediction of SOC

Calibration with both sensors yielded favor-
able results, aligning well with the observed 
ranges of soil carbon percentages. Regardless 
of the device used for spectral acquisition, all 
models performed well, with the PLSR-modi-
fied model demonstrating superior performance 
in predicting organic carbon values. Notably, 
spectral preprocessing contributed to enhanced 
calibration models, as evidenced by R2, SEC, 
1-VR, SEVC, RDP and RER (quality indica-
tors), displaying excellence in both calibration 
and validation (Table 2). Predictions of SOC 
proved to be excellent for both devices, with the 
Muglight sensor achieving an R2 of 0.90 and 
the Contact-Probe sensor obtaining an R2 of 
0.892. Figure 5 illustrates the striking similarity 
in predictions between the two devices. Howev-
er, results from farm 2 revealed a slightly lower 
SOC prediction with an R2 value of 0.656 com-
pared to that of the first farm (see Figure 6).

Figure 2. Average spectral curves of soil samples from Farm 1, measured with Muglight (continuous line) and 
contact probe (segmented line) sensors: a) total soil depth, b) comparison of 0–2 cm and 60–80 cm depths. 
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Figure 3. Soil reflectance spectra from Farm 1. The specific locations include: a) Pasture area beneath the canopy 
of a young Holm oak tree, b) Pasture area outside the canopy of a young Holm oak tree, c) Pasture-crop area 

beneath the canopy of a mature Holm oak tree, d) Pasture-crop area outside the canopy of a mature Holm oak tree

Figure 4. Average first-derivative spectra of soil samples from different depths: (left) Muglight sensor, 
(right) contact probe sensor

DISCUSSION

Remarkably, reflectance peaks and curve 
shapes remained consistent across both devices, 
aligning with findings from Guillén et al. (2013). 

These results suggest that the contact-probe device 
can provide comparable reflectance measurements 
to those obtained in our study. Previous research has 
consistently demonstrated a negative correlation 
between carbon content and reflectance (Guillén 
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Figure 5. Correlation between measured and predicted SOC: (left) contact probe sensor, (right) Muglight sensor

Table 2. Calibration model performance for contact probe and Muglight sensors. Performance metrics of the 
calibration models, including the coefficient of determination (R²), root mean square error (RMSE), ratio of 
performance to deviation (RPD), range error ratio (RER), and cross-validation (1-VR)

Sensor Regression Spectral 
preprocesing n Mean Range Std. SEC R2 SEVC 1-VR RPD RER

Contact-
probe

PLSR - 
modified SNV 1,4,4,1 200 0.642 0.00–3.90 0.616 0.110 0.968 0.124 0.959 5.0 31.37

Muglight PLSR - 
modified SNV&D 1,10,5,1 198 0.589 0.00–2.46 0.509 0.089 0.969 0.112 0.952 4.5 21.88

Figure 6. Correlation between measured and predicted SOC using the contact probe sensor. The samples were 
collected from fields with different grazing intensities: without grazing (W), moderate (M) and high (H)

et al., 2013; Omran et al., 2017; Xu et al., 2018; 
Kusumo et al., 2018). Additionally, soil mineral-
ogy, particularly clay content, can significantly in-
fluence reflectance curves, with higher clay content 

leading to lower reflectance (Stenberg et al., 2010; 
Siirt et al., 2016; Kusumo et al., 2018; Omran et al., 
2017). However, factors such as soil management 
practices and tree presence can alter organic carbon 
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content and, consequently, affect spectral curve be-
havior. In our study, variations in spectral curves 
were primarily attributed to differences in clay, silt, 
and sand content rather than organic carbon varia-
tions. For example, the spectral curve for the 20–40 
cm soil sample, which lies between deeper and 
shallower samples, reflects the higher clay content 
observed in deeper sections of the soil profile.

The absorption feature within the range of 
350–1.000 nm is likely attributed to Fe oxides, 
specifically hematite and goethite, while wave-
lengths between 1.000 and 2.500 nm are influ-
enced by clay minerals and organic matter (Ros-
sel et al., 2010). First-derivative reflectance spec-
tra (Figure 4) revealed distinct absorption peaks 
at 1400, 1900, and 2200 nm, associated with 
C-H, O-H, and C-O combinations, respectively. 
These findings align with previous research link-
ing soil carbon content and mineralogy (Omran 
et al., 2017; Xu et al., 2018; Douglas et al., 2018; 
Chen et al., 2016; Kusumo et al., 2018; Chen et 
al., 2019). Additionally, a minor absorption peak 
around 2200 nm was associated with the Al-
OH absorption band of clay minerals (Clark et 
al., 1990). However, while slight spectral shape 
differences were observed across the range, soil 
composition, particularly texture, played a sig-
nificant role in influencing spectral variability 
and potentially masked expected trends. For in-
stance, higher carbon content samples were not 
consistently associated with lower reflectance 
throughout the entire sample set, likely due to the 
impact of soil texture.

Various models calibrated for different soil 
types have demonstrated R² values ranging from 
0.75 to 0.99 (Douglas et al., 2018; Kusumo et al., 
2018a; Kusumo et al., 2018b; St. Luce et al., 2017; 
Hosseini et al., 2017; Minu and Shetty, 2018). Pin-
heiro et al. (2017) achieved similar results with 
R² = 0.85 and RPD = 2.58 using 200 calibration 
samples. Our results, obtained using two sensors 
(contact-probe: R² = 0.89, RMSE = 0.244, RPD = 
2.484; Muglight: R² = 0.90, RMSE = 0.222, RPD = 
3.12), fall within the higher range of performance, 
indicating the successful application of the PLSR-
modified model, as noted by Gandariasbeitia et al. 
(2017) and Guillén et al. (2013).

While PLSR prediction models can be effec-
tively calibrated for various soil types, predicting 
carbon content in the second farm, which had the 
same soil type but different management practic-
es (intensive, moderate, and no grazing), yielded 
poor results. This aligns with previous findings 

(Guillén et al., 2013; Makovníková et al., 2017; 
O’Rourke et al., 2011). Although soil cover man-
agement did not significantly affect spectral prop-
erties in our study, incorporating soil spectral sig-
natures from diverse management types could en-
hance model robustness and applicability across 
various scenarios.

Our results highlight the significant influence 
of soil mineralogical composition on reflectance 
spectra, which can significantly impact model 
performance, especially in low-carbon soils. 
This can lead to inconsistencies in predictions. 
Additionally, temporal fluctuations in soil mois-
ture can compromise the predictive capabilities 
of Vis-NIR spectroscopy models for estimating 
SOC (McGuirk & Cairns, 2024). Soil moisture 
significantly influences soil reflectance, particu-
larly in the Vis-NIR range, due to water’s distinct 
absorption features. Higher moisture content can 
attenuate reflectance and distort spectral proper-
ties, potentially masking or interfering with the 
spectral signatures associated with organic car-
bon (Hong et al., 2017).

Consequently, temporal fluctuations in soil 
moisture can alter reflectance data, potentially 
leading the model to misinterpret these variations, 
thereby diminishing predictive accuracy (Cao et 
al., 2020). To mitigate this, models frequently use 
preprocessing techniques to normalize or cor-
rect for moisture variation. Additionally, special-
ized algorithms may be employed to differentiate 
spectral features associated with SOC from those 
linked to water content. Integrating moisture cor-
rections or incorporating moisture as a covariate 
within the model could enhance robustness across 
varying moisture conditions.

CONCLUSIONS

The equations generated results with excel-
lence indices, signifying the adeptness of both types 
of equipment in accurately predicting organic car-
bon concentration. Particularly noteworthy was the 
precise prediction achieved with the contact-probe, 
which not only delivered accurate results but also 
expedited the spectrum recording process. How-
ever, to further bolster the accuracy and robustness 
of these predictive models, it’s imperative to con-
sider incorporating samples from analogous soils 
sourced from diverse geographical regions into the 
calibration dataset. By accounting for the variabil-
ity inherent in soil types across different areas, we 
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can refine and enhance the predictive capabilities 
of these models. Moreover, it’s crucial to recog-
nize that while organic matter content undoubtedly 
plays a role in shaping soil sample spectra, our 
findings underscore the greater potential impact of 
soil mineralogy on spectral variations. This insight 
underscores the need for a nuanced understanding 
of the factors influencing soil spectral properties to 
optimize the efficacy of predictive modeling in soil 
science applications.
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