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INTRODUCTION

West Kalimantan has the largest bauxite mine 
in Indonesia, accounting for 66.77%, or 840 mil-
lion tons of the total national reserve. The Tayan 
subdistrict in Sanggau Regency is one of the loca-
tions with the largest bauxite reserve (Ministry of 
EMR, 2016). Aluminum is produced using baux-
ite ore as the primary raw material. The refining 
process of bauxite ore into alumina involves the 
Bayer method (Al-Sakkari et al., 2022; Mukiza et 
al., 2019; Salim et al., 2023), sintering (Agrawal 

and Dhawan, 2021; Amer, 2013), and a combi-
nation of both processes (Dubovikov and Jaske-
lainen, 2016).

Bauxite ore processing industry generates a 
fine, reddish-brown sludge residue (Manfroi et 
al., 2014; Shin et al., 2014). This sludge, locally 
named red mud, is termed as BOPW in this ar-
ticle. The high Fe2O3 content causes the BOPW 
to have reddish color (Carneiro et al., 2018; IAI, 
2015; Lingxiang et al., 2021; Lyu et al., 2021). 
The various bauxite sources influence the chemi-
cal composition of the BOPW, particularly in 
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the levels of Al2O3, SiO2, Fe2O3, TiO2, and Na2O 
(Nikbin et al., 2018). The Bayer process domi-
nates the global alumina extraction method, ac-
counting for approximately 90% of production 
(Gertsen, 2024; Lu et al., 2017; Tabereaux and 
Peterson, 2014). BOPW from the Bayer process 
has a higher iron content than that of sintering 
(Liu et al., 2014). Global annual generation of 
BOPW is estimated at 120 million tons (Power 
et al., 2011). About 1.5 to 1.6 tons of BOPW was 
generated as a byproduct for every ton of alumina 
production (Kaya and Soyer-Uzun, 2016).

BOPW exhibits high alkalinity, typically 
ranging from pH 10.5 to 12.5 (Shi et al., 2020; 
Wang et al., 2021; Wang et al., 2018). This is 
caused by the use of large amounts of caustic 
soda during the Bayer process (Shin et al., 2014). 
The high alkaline property makes the BOPW be 
classified as hazardous waste of corrosive cat-
egory (Archambo and Kawatra, 2021; Zhang et 
al., 2018; Zhang et al., 2021). The high sodium 
and alkalinity contents in BOPW can potential-
ly cause adverse environmental impacts to the 
environment (Díaz et al., 2015; Nikbin et al., 
2018) and ecosystem damage if directly exposed 
(Stenchly et al., 2017; Winkler, 2014). It was also 
reported that the essential nature of BOPW could 
inhibit plant growth (Samal, 2021).

Environmental concerns which relate to 
improper bauxite mining waste handling has 
emerged recently in West Kalimantan. Public 
complaints arose from communities residing 
near bauxite mining operations. The BOPW was 
linked to the damage to tengkawang (Shorea 
stenoptera) and durian (Durio kutajensis) plan-
tations in Melinau Regency (Anonymous, 2024) 
In a more recent incident, residents of Simpang 
Hilir Regency raised concerns about the water 
pollution of the Empawang River, a vital water 
source used by the community for bathing, sani-
tation, and washing. Additionally, local fishermen 
have reported the decline and death of fish popu-
lation in this river (Anonymous, 2023). These 
cases highlight the potential environmental dam-
age by the BOPW, as demonstrated by incidents 
worldwide. A leak at a BOPW storage facility in 
Hungary contaminated 1.000 hectares of land in 
2010 (Gruiz et al., 2012; Mayes et al., 2011). In 
2018 floods at a BOPW storage facility in Brazil 
caused soil contamination, which polluted water 
supplies with high levels of lead and aluminum 
(Alves, 2018). The BOPW has generally been dis-
posed of in stockpiles (Balomenos et al., 2018). 

Managing BOPW in stockpiles requires approxi-
mately 2% of the cost of alumina production 
(Wang et al., 2019). However, the BOPW has the 
potentials to be used as a source of iron for steel 
industry (Maihatchi et al., 2020), as raw material 
for cement and concrete production (Hou et al., 
2021; Viyasun et al., 2021), for land reclamation 
in heavy metal-polluted areas (Hua et al., 2017; 
Lockwood et al., 2014; Zhou et al., 2017), as an 
adsorbent for heavy metal ions (Chen et al., 2019; 
Du et al., 2019; López-García et al., 2017; Pepper 
et al., 2018), and as a liner for acid mine drainage 
(Duchesne and Doye, 2005).

Indonesia faces a big challenge in munici-
pal solid waste (MSW) management, with open 
dumping as the predominant method. Approxi-
mately 60% of landfills in Indonesia were still 
operated using the this method in 2021 (KLHK, 
2021). Many landfills operation with this system 
was due to difficulties in obtaining cover soil 
(Kurniasari et al., 2014). Open dump landfill op-
eration can cause soil and groundwater contami-
nation (IEPA, 2024; Zhang et al., 2023). The envi-
ronmental impact of landfills can be mitigated by 
implementing appropriate barrier layers, known 
as liners (Nath et al., 2023; Wan et al., 2023). 
Typical landfill liners include clay, geosynthetic 
clay liners (GCL), and composite layers. The later 
comprises compacted clay liners (CCL) and GCL 
(Emmanuel et al., 2020; Shu et al., 2019). The use 
of clay and artificial liners has several drawbacks, 
which particularly related to economics consid-
eration and availability. Clay, a valuable resource 
with limited availability in Indonesia, has become 
a big challenge in landfill construction and opera-
tion despite its varying costs. Application of clay 
liners shows the widest cost range (US$32.000–
162.000 per hectare). In contrast, synthetic alter-
natives like geomembranes (US$24.000–35.000 
per hectare) and geocomposites (US$33.000–
44.000 per hectare) offer narrower cost ranges. 
The integration of these liner systems substantial-
ly increases the total landfill construction costs to 
US$300.000–800.000 per hectare, depending on 
the combination of technologies employed. The 
significant cost variations in landfill cover con-
struction necessitate careful material selection 
and design strategies to balance environmental 
sustainability with economic feasibility (Rubinos 
and Spagnoli, 2018). Therefore, a liner made from 
mine waste, including the BOPW, is an alterna-
tive substitute to clay (Rubinos et al., 2015). One 
of landfill liner requirements is having (K) of less 
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than 1 × 10-7 cm/s (USEPA, 1992b). Low K value 
can be achieved when sufficient fine particles fill 
the soil pores, and the absence of large particles 
hinders the process of compacting the soil into a 
dense mass (Benson and Othman, 1993).

Global industrial utilization of aluminium 
process waste remains limited, estimated at ap-
proximately 3% of annual generation (Evans, 
2016). In Indonesia, large amounts of BOPW 
have not been used and are mostly haphazardly 
dumped. Therefore, BOPW quantity minimiza-
tion is essential (Archambo & Kawatra, 2021). 
The BOPW can potentially be used as a primary 
MSW landfill liner material due to its fine par-
ticle size (average particle size < 10 μm) (Rubi-
nos and Barral, 2013) and high content of Si and 
Al (Maritsa et al., 2016). While previous stud-
ies investigated the potential of stored BOPW 
aslandfill liner material (Fan et al., 2023; Kara 
et al., 2017; Rubinos and Spagnoli, 2018), this 
research was focused on the use of fresh BOPW 
from the Bayer process. Stored and fresh BOPW 
were reported to have different physical-chemical 
characteristics (Liu et al., 2007). Fresh BOPW, 
with its distinct chemical composition compared 
to stored BOPW, such as higher sodium content, 
may offer advantages in mitigating shrinkage is-
sues commonly associated with BOPW layers. 
For this reason, this study, which aims to explore 
the characteristics and potential use of BOPW 
from West Kalimantan for landfill liner material, 
as a novel investigation. 

At least there are 4 adjacent regencies to the 
bauxite mining in Tayan district, which urgently 
need cover material for landfill operation. These 
regencies, namely Sanggau, Kubu Raya, Sekadau, 
and Ketapang, still use open dump MSW landfill 
(Figure 1) method due to the inavailability of clay 
cover material. The current volume of dumped 
BOPW in the study area is approximately 396,600 
m3. For this reason, this research. Results of this 
research are expected to provide a solution for 
BOPW management in the mining industry and a 
new alternative substitute for landfill liner. 

MATERIALS AND METHODS

Sampling locations

The BOPW samples were obtained from the 
Indonesia Chemical Alumina mining company, 
which generated about 0.6 million metric tons of 
BOPW annually in Tayan Hilir District. The sam-
pling site was located at coordinates 0°03'40.9"S 
and 110°08'38.4"E (Figure 2). 

Sample collection and preparation

About 150 kg fresh BOPW samples were 
collected using a shovel. The samples were ho-
mogenized using the shovel prior to analysis. 
Subsequently, the BOPW was dried in an oven at 
110 °C for 24 hours and then crushed. The result-
ing samples were sieved using a 200-mesh screen 

Figure 1. Locations of BOPW stockpile, MSW landfills, and the adjacent regencies requiring landfill liner
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for thermogravimetric analysis (TGA), X-ray dif-
fraction (XRD), and toxicity characteristic leach-
ing procedure (TCLP) analyses. The samples that 
passed through a 325-mesh screen was specifi-
cally used for XRD analysis.

Characterization of materials 

Physical properties

The water content of the BOPW samples was 
determined according to ASTM D 2216-10, a 
standard test method for laboratory determination 
of water content of soil and rock. The moisture 
content was calculated using Equation 1.
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Determination of soil specific gravity (Gs) 
was conducted following the standard test meth-
od for specific gravity of soil solids using a wa-
ter pycnometer (ASTM D854-58 ). The specific 
gravity was calculated using Equation 2.
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where: W1 is weight of pycnometer and dry 
BOPW, W2 is weight of water, BOPW, and 
W3 is weight of pycnometer and distilled 
water, and W4 is dry weight of BOPW (W1 
– the weight of empty pycnometer). 

Particle size analysis of the BOPW was 
performed following standard test methods for 
particle-size distribution of soils using sieve 
analysis (ASTM D6913-04) and standard test 
method for amount of material in soil finer than 

the No. 200 (75-µm) Sieve (ASTM D1140-
14). Hydrometer analysis was conducted ac-
cording to Standard test methods for particle-
size distribution of fine-grained soils using the 
sedimentation analysis (ASTM D7928-16).

Chemical properties

The pH of the sample material was measured 
by mixing 1 g of sample with 5 mL of deionized 
water in a vial. The resulting mixture was agitated 
at 650 rpm in a shaker for 10 mins. The pH was 
then determined using a pH meter (Eutech pH 
150). Chemical composition of the BOPW was 
determined using X-ray fluorescence (XRF) in-
strument. Mineral concentrations were expressed 
as % weights of Fe₂O₃, Al₂O₃, SiO₂, Na₂O, TiO₂, 
CaO, SO₃, K₂O, MgO, P₂O₅, MnO₂, and Cr₂O₃.

Crystal structure and mineral content

The mineralogical and crystal structure 
analyses of the BOPW sample were performed 
using XRD with K-alpha radiation (λ = 1.5406 
Å). The XRD data, collected over a 2 θ range of 
10° to 90°, were processed using Match software 
(versions 2 and 3) and the international centre 
for diffraction data (ICDD) database to identify 
mineral phases and their relative percentages.

Thermal analysis

The TGA was performed for characterizing 
the behavior change of the BOPW sample during 
heating and decomposition. The material mass 
was measured under controlled conditions during 
heating or cooling processes (Yao et al., 2022). 
The standard test for TGA analysis was based on 

Figure 2. Sampling location
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ASTM E1131-20 concerning standard test meth-
od for composition analysis by thermogravim-
etry. Sample heating process used Mettler Toledo 
TGA-DSC instrumentation and Huber CC 415 
for cooling. Precisely 9.0405 mg sample was used 
for this analysis. The sample was heated from 25 
°C to 1000 °C at a constant heating rate of 10 °C /
min, which was maintained under a constant oxy-
gen flow of 100 mL/min during the test.

Toxicity test

The TCLP test which determined whether a 
waste material is hazardous or not was applied us-
ing EPA Method 1311 (USEPA, 1992a). The results 
were compared to the regulatory quality standards 
according to Government Regulation of the 
Republic of Indonesia No. 22 Year 2021 concerning 
Environmental Protection and Management.

Geotechnical and hydraulic properties

Geotechnical characterization of the BOPW 
sample was conducted to assess its suitability as 
liner material. It included Atterberg limit tests 
comprising liquid limit (LL), plastic limit (PL), 
and (PI), compaction, and consolidation tests. 
Atterberg limits were determined according 
to ASTM D4318-17. Compaction tests were 
performed according to the Proctor method as 
specified by ASTM D698, while consolidation 
tests followed ASTM D2435. Consolidation 
data were used to establish the void ratio-log 
pressure relationship and calculate consolidation 
parameters. Consolidation parameters, including 
compression coefficient (Cc), (Cs), and coeffi-
cient of consolidation (Cv), were determined us-
ing the approach outlined in Equation 3–4.
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where: De represented the change in void ratio 
between initial and final states, and s 
denoted the applied pressure in kg/cm².

The swelling index was determined from the 
unloading portion of the consolidation test data. 
The time to achieve 90% consolidation (t90) was 
obtained from the Taylor's time-fitting method 

applied to the consolidation curve, where H 
represented half the initial sample height.

Following proctor compaction, the hydraulic 
conductivity of the compacted BOPW was 
measured at the optimum moisture content 
using a rigid-wall falling-head permeameter. 
Distilled water was used as the permeant fluid. 
The hydraulic conductivity value was calculated 
using Equation 6 presented by Das et al. (1995).
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where: a represented the cross-sectional area 
of the vertical pipe (cm2), L denoted the 
specimen height (cm), and A denoted the 
cross-sectional area of the BOPW (cm2). h1 
indicated the initial head (cm), h2 represented 
the head at time t (s), and k represented the 
hydraulic conductivity (cm/s).

RESULTS AND DISCUSSION

Physical properties 

Moisture

The average moisture content of the BOPW 
material was 20.35% (Table 1). This value was 
lower than the previously reported ranges of 28% 
to 35.21% (Chen et al., 2023; Deelwal et al., 
2014; Panda et al., 2017; Salih et al., 2020). This 
was likely due to the dewatering stage of the fresh 
BOPW prior to disposal. The process, which gen-
erally used a filter press equipment, could effec-
tively reduced the moisture content in the BOPW 
to less than 35% (Hanumantha and Reddy, 2017)

Liner materials, even within the same classi-
fication, often exhibited significant variability in 
their initial moisture content, a factor which can 
profoundly impact their in-situ performance. Ini-
tial water content varied for each soil type. Clay 
soils generally exhibited moisture levels between 
22.7% and 32.3% (Hamdi and Srasra, 2013; 
Wang et al., 2024). Silt soils fall within a range 
of 14% to 22.49% (Cheng et al., 2022; Du et al., 
2023; Ma et al., 2023). In contrast to other mate-
rials, bentonite had a wider water content range, 
between 10.6% and 40% (El-Shamy et al., 2015; 
Muhmed et al., 2022; Zhang et al., 2022). Con-
versely, residual soil had a range of water content 
between 20.68 to 48.08% (Wibawa et al., 2018).

Water content affected the effectiveness of 
materials in the field of geotechnical engineering, 
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especially during the use of liners (Rowe, 2005). 
High water content can had a negative impact on 
liner performance. This was because water filled 
the pore space, which causes effective stress be-
tween soil particles, thereby increasing the per-
meability value of the material (Li et al., 2022). 
Additionally, fluctuations in water content caused 
significant volume changes that have an impacted 
on cracking and reduced the service life of the liner 
(Surbakti, 2021; Wulandari and Tjandra, 2019).

The low water content of the BOPW indi-
cated its potential as a promising liner material. 
The water content of the BOPW was lower when 
compared to conventional liners that were com-
monly used. This allowed the BOPW to have a 
permeability value that was not much different 
from conventional liners. In addition, the BOPW 
also had the potential to have resistance to volume 
changes that can cause cracks.Variations in differ-
ent water content values affected the physical and 
mechanical properties of materials such as shear 
strength, density and ability to absorb water. All 
three were properties that affected the effective-
ness and long-term durability of the liner mate-
rial. However, material with a high water content 
did not mean that it could not be used as a liner, 
this material can still be used if it went through 
a series of processing steps such as drying (Du 
et al., 2024; John et al., 2023; Salih et al., 2020).

Particle size

The results of the hydrometer analysis and par-
ticle size distribution test showed that the BOPW 
consisted of 29.98% clay, 52.13% silt and 17.89% 

sand (Figure 3). Not less than 82.11% of the mate-
rial passed the 200 mesh (0.075 mm) sieve, which 
was consistent with the research conducted by 
Chen et al., 2023 who reported a 55% pass rate of 
BOPW. Figure 4 (a-f) illustrates the BOPW par-
ticles retained on sieves #10, #20, #40, #100 and 
#200 and the fraction passing sieve #200. Perme-
ability is the ability of a material to drain water. 
The permeability value is significantly influenced 
by the grain size of the material (Marschalko et al., 
2021). The size of the material particles is directly 
proportional to their permeability value. This is 
because, when the particle size decreases, the pore 
space of the material shrinks and the flow path 
becomes more tortuous, resulting in decreased 
permeability (Lu et al., 2024; Marschalko et al., 
2021; Zhang et al., 2020). The BOPW, dominated 
by clay and silt, indicates a low permeability val-
ue. This showed that the BOPW can be used for 
geotechnical applications.

The BOPW sample fell into the silty clay 
loam category according to the USDA soil texture 
classification system. This fine-grained soil typi-
cally exhibited cohesive properties (Hanumantha 
and Reddy, 2017; Kumar et al., 2023; Panda et al., 
2017). The BOPW composition, characterized by 
a high proportion of both silt and clay, was ex-
pected to exhibit a fine texture, moderate water 
retention capacity, and a potential for drainage 
contingent upon the precise silt-clay ratio (Mon-
telli et al., 2017; Zhang et al., 2021).

Despite its fine-grained texture, the BOPW 
exhibited a specific gravity of 2.77, which was 
notably higher than typically observed in clay 

Figure 3. Distribution of particle sizes in BOPW
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soils. This value fell within the range of 2.7–3.45, 
as reported for similar materials (Chen et al., 
2023; Kumar et al., 2023; Li et al., 2023). The 
presence of Fe oxides, particularly hematite and 
magnetite, within the BOPW matrix was likely 
responsible for this elevated specific gravity, as 
suggested by previous researchers (Hanumantha 
and Reddy, 2017; Salih et al., 2020).

Chemical properties 

pH value

The measured pH of BOPW was 11.93, con-
sistent with previous reports indicated a pH range 
of 11–12 for similar materials (Khaerunisa et al., 
2015; Santi, 2018). This value was significantly 

higher than typical pH ranges observed in various 
soil types. Clay soils typically exhibited pH values 
between 4.5 and 7.5 (Bessaim et al., 2018; Mo-
meni et al., 2022), while silt soils tended to have 
a neutral to slightly acidic pH, generally ranging 
from 6 to 7 (Al-Jabban et al., 2017). Residual soils 
demonstrated a wider range of pH values, influ-
enced by the parent material and mineral composi-
tion (Foss and Segovia, 2020; Simon et al., 2021).

The pH value of a material could significantly 
influence its surface chemistry and, consequently, 
its interaction with polar molecules such as water. 
Materials that exhibited high pH values typically 
possessed a strong cation exchange capacity, sug-
gesting that the BOPW, with its high pH, could 
potentially function as an adsorbent (Gray et al., 
2016). The pH level significantly impacted the 
adsorption process. At low pH, the abundance of 
H3O

+ ions lead to competition between these ions 
and heavy metal cations for adsorption sites on 
the negatively charged surface. Conversely, under 
high pH conditions, the reduced concentration of 
H3O

+ ions facilitated the predominance of heavy 
metal ions in the adsorption process, primarily 
driven by electrostatic interactions (Al-Jabban et 
al., 2017). It is important to note that acidic soil pH 
can lead to increased soil permeability (Momeni et 
al., 2022), which may have implications for the 
material's performance as a liner or adsorbent.

Table 1. Physical Properties of BOPW
Parameter Value (%)

Gs 2.77

Water content 20.35

Maximum water content (Wc) 21.9

Size range (mm)

0.001–0.0040 29.98

0.0041–0.075 52.13

0.076–2.0 17.89

2.1–4.76 0

Figure 4. Photomicrographs of BOPW: (a) retained on sieve 10 mesh, (b) retained on sieve 20 mesh, (c) retained 
on sieve 40 mesh, (d) retained on sieve 100 mesh, (e) retained on sieve 200 mesh, (f) passed through a 200 mesh 

sieve, at 50 x magnifications



362

Journal of Ecological Engineering 2025, 26(1), 355–372

Chemical composition

Results of XRF analysis revealed that the 
chemical composition of the primary component 
in BOPW dominated by Al2O3, SiO2, Fe2O3, and 
Na2O (Table 2). Microscopic imaging at 50x 
magnification showed white grains, indicative 
of excess sodium, while black grains were iden-
tified as metallic iron (Figure 4). The dominant 
reddish color of the BOPW indicated a high iron 
content. The chemical composition of the studied 
BOPW aligned with that reported for BOPW in 
China (Du et al., 2019; Hu et al., 2019; Lima et 
al., 2017). The high Na2O content, a basic oxide, 
in the BOPW studied suggested a higher pH value 
compared to clay (Zhang et al., 2018).

The BOPW composition shared similarities 
with mineral composition of clay, which was 
typically dominated by SiO2 (46.40–85.51%) and 
Al2O3 (2.96–39.63%) (Onyelowe et al., 2023; 
Purbasari and Samadhi, 2021) and Al2O3 (2.96–
39.63%) (Dewi et al., 2018, 2020). In contrast, 
residual soil was generally dominated by iron with 
a range of 52–75% (Silva et al., 2018); whereas 
Na-bentonite clay tended to have a higher silica 
content compared to its aluminum content (Ku-
mar and Lingfa, 2020).

Crystal structure and mineral content

Results of XRD analysis showed quartz, mag-
netite, hematite, and lime as the primary mineral 

constituents of the investigated BOPW (Figure 
5). Notably, gibbsite and boehmite, commonly 
found in other BOPW sources, were absent, in-
dicating a distinct mineralogical composition (Li 
et al., 2023; Ramdhani et al., 2023; Wu and Liu, 
2012). The high iron contents in BOPW were 
found in the form of hematite (Fe2O3) and mag-
netite (Fe3O4) (Liu et al., 2023; Sun et al., 2019). 
The high presence of silica was originated from 
its removal from bauxite ore during the Bayer 
process (Tabereaux and Peterson, 2014). Wu and 
Liu (2012) suggested that materials containing 
quartz could be used as adsorbents.

Thermal stability and decomposition

The TGA analysis showed that exothermic 
process occured at temperatures > 700 °C over 
a period ranging from 69 to 96 min, peaking at 
716 °C (Figure 6). Pre-dehydroxylation and 
hydroxylation processes occured during the 
endothermic phase (Saukani et al., 2020; Waluyo 
et al., 2022). The endothermic process occured at 
temperatures < 700 °C over a period ranging from 
0 to 68 min, peaking at 265 °C. This process took 
place within the temperature range of 300–700 
°C. Organic materials underwent decomposition 
within the 200–600 °C temperature range (Wang 
et al., 2020). The percentage of material mass lost 
during combustion up to 1000 °C is 15.2%, which 
indicated that inorganic compounds dominate the 

Table 2. Chemical composition of BOPW

Material
Parameters (% wt)

Al2O3 SiO2 Fe2O3 CaO Na2O TiO2 MgO K2O SO3 P2O5 MnO2 Cr2O3 LOI

BOPW 18.9 18.78 29.81 1.45 17.89 1.76 0.14 0.14 0.42 0.13 0.06 0.05 10.23

Figure 5. XRD analysis result of the BOPW



363

Journal of Ecological Engineering 2025, 26(1), 355–372

BOPW material. Inorganic materials generally 
exhibit high surface area criteria, small pore sizes, 
and good hydrothermal stability, which made 
them a favorable choice for effective adsorption 
processes (Yeom and Kim, 2017; Zhang et al., 
2015). Additionally, materials with high adsorption 
capacity were suitable for use as liners as they 
can reduce fluid movement and adsorb pollutants 
(Lakshmikantha and Sivapullaiah, 2006). 

Toxicity

Results of TCLP analysis of the BOPW 
material revealed that concentrations of inorganic 
parameters and anions were below Indonesian 
regulatory standards (Table 3). As iron is not 
specifically included in Indonesia's TCLP cri-
teria, a conservative assessment was employed. 
This involved the use of drinking water quality 
standards for iron by multiplying a 100-fold 
safety factor as suggested by Intrakamhaeng et 
al. (2020). The results confirmed that heavy metal 
iron content was significantly lower than this limit.

Geotechnical and hydraulic properties

The Atterberg limit test results revealed that 
the BOPW has a liquid limit of 29.25%, a plastic 
limit of 22.09%, and a plasticity index of 7.16% 
(Table 4). Based on these values, the unified 
soil classification system (USCS) categorizes 
the BOPW as clay mineral (inorganic silt) with 

Figure 6. The TGA analysis curve of BOPW

Table 3. TCLP test results 

Parameter Test result 
(mg/L)

Quallity standards 
(mg/L)

Arsenic < 0.003 0.5 **

Barium 0.21 35 **

Boron < 0.10 25 **

Cadmium < 0.06 0.15 **

Copper < 0.06 10 **

Total Cyanide < 0.03 3.5 **

Fluoride 1.8 75 **

Lead < 0.07 0.5 **

Mercury < 0.0003 0.05 **

Nitrate 4.0 2.500 **

Nitrite < 0.03 150 **

Selenium < 0.0003 0.5 **

Silver < 0.10 5 **

Zinc 0.13 50 **

Antimony < 0.10 1 **

Berilium < 0.0027 0.5 **

Molibdenum < 0.037 3.5 **

Nickel < 0.10 3.5 **

Chromium 
hexavalent 0.33 2.5 **

Chloride 20.8 12.500 **

Iron 0.29 20 *

Iodide < 0.04 5 **

Note: *Indonesian Regulatory Drinking Water Quality 
Standards, Ministry of Health Regulation No.2 
Years 2023 (This parameter is multiplied by 100), 
**Regulatory Standards for Toxicity Characteristics 
through the TCLP in Indonesia, Government 
Regulation No. 22 Years 2021.
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low plasticity. This classification aligns with 
previous research conducted in Spain (Rubinos 
et al., 2015). The calculated LL and PI values of 
BOPW exceed the minimum requirements (LL > 
20 and PI > 7) to achieve a hydraulic conductivity 
of 1×10⁻⁷ cm/s (Benson and Othman, 1993; Dan-
iel, 1993). While materials with PI > 30–40% 
generally exhibited higher shrinkage potential, 
and the BOPW with significantly lower PI value 
than 7%, indicated a lower shrinkage potential 
(Daniel, 1993). An activity ratio (PI/clay fraction) 
of 0.24, suggests that the BOPW can be classified 
as an inactive clay. This implied that the BOPW 
had a low tendency to swell or shrink (Skempton, 
1953). Despite its low activity, the BOPW still 
had potential for use as a liner, provided it had a 
hydraulic conductivity value less than 1×10⁻⁷ cm/s. 
(Rubinos and Spagnoli, 2018; Wang et al., 2020). 

The linear shrinkage of the BOPW was 
2.7%. This value fell within the criteria range 
of BOPW from bauxite refineries of 1.5% to 
4.2% (Rubinos et al., 2015; Wang and Liu, 
2012). Shrinkage and plasticity were directly 
related properties influenced by factors such 
as particle size distribution, mineralogical 
composition (including mineral type and 
crystallinity), and the type of exchangeable 
cations present. The relatively low shrinkage 
value of the BOPW was attributed to the high 
sodium content, as sodium was known to 
mitigate shrinkage by reducing the material's 
sensitivity to moisture changes (Rubinos and 
Spagnoli, 2018). This low shrinkage potential 
was beneficial as it reduced the likelihood of 
cracking within the material.

Standard proctor compaction testing of the 
BOPW yielded a characteristic curve mirrored 
the behavior of clayey soils, where dry density 
increased with moisture content to a maximum 
value, followed by a decrease with further water 

(Chaiyasat, 2019). A maximum dry unit weight 
 of 1.68 g/cm3 was achieved at an optimum (dץ)
water content (Wc) of 21.9%. Compacting 
the raw material at its optimum moisture 
content produced a highly homogeneous and 
dense material. Analysis at the maximum dry 
weight revealed a porosity (n) of 0.391 and 
an associated void ratio (e) of 0.64. These 
parameters were found to exert an indirect 
influence to better infiltration characteristics of 
the material.

The measured BOPW hydraulic conducti-
vity (K) was low 7.56 × 10⁻7 cm/s, which met 
the USEPA standards for liner applications of 1 
× 10⁻7 cm/s. The low hydraulic conductivity is 
influenced by the inherent properties and particle 
size distribution of the soil. However, the base 
layer of landfills might deform shear due to the 
MSW weight burden, which potentially caused 
cracks in the liner. The load had the potential to 
damage the underlying protective layer, allowing 
leachate from the MSW heap to contaminate gro-
undwater. The deformability of the landfill liner 
under MSW load was primarily governed by its 
compressibility. 

Consistency tests of the BOPW resulted in a 
compression coefficient (Cc) of 0.078, a swelling 
coefficient (Cs) of 0.033, an initial void ratio (e) 
of 0.64, and a coefficient of consolidation (Cv) 
of 2.27 × 10⁻6 m²/s. The Cc value suggested mo-
derate compressibility, implied that the liner will 
underwent a moderate degree of settlement under 
waste loading. This settlement can potentially en-
hance the liner’s density, further reduced its per-
meability over time. However, it was crucial to 
ensure that the settlement did not induce cracking 
or discontinuities within the liner, which could 
compromised its integrity.

The low swelling coefficient of 0.033 indi-
cates minimum expansion potential of the ma-
terial when subjected to unloading or wetting. 
This characteristic was advantageous in coating 
material applications as it minimized the risk 
of cracking or significant volume changes due 
to moisture fluctuations or loading. The avera-
ge consolidation coefficient (Cv) of 2.27 × 10⁻⁶ 
m²/s suggested a relatively slow consolidation 
rate. This slow consolidation rate was beneficial 
in landfill applications as it allows gradual adju-
stment to loads without the sudden cracking, al-
though it may require longer construction times 
to achieve optimal compaction. The initial void 
ratio of 0.64, which decreased with increasing 

Table 4. Geotechnical and hydraulic properties
Parameter Result Unit

LL 29.25 %

PL 22.09 %

PI 7.16 %

SL 2.70 %

dץ 1.68 g/cm3

n 0.39

e 0.64

K 7.56 x10-7 cm/s
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load, indicated the potential for further compac-
tion of the material under waste loads. This pro-
gressive compaction can enhanced the long-term 
effectiveness of the liner in preventing leachate 
seepage. The post-consolidation hydraulic con-
ductivity of the material at each loading stage 
was determined based on the consolidation co-
efficient and volume compressibility coefficient 
obtained from consolidation testing. Analysis 
results indicated an average hydraulic conduc-
tivity of 2.687 × 10⁻⁷ cm/s (Table 5).

This low permeability is a highly desirable 
characteristic for landfill liner application, 
which met the typical regulatory requirement of 
less than 1 × 10⁻7 cm/s. Such low permeability 
effectively minimized leachate infiltration 
into the underlying soil, thus protecting 
groundwater resources from contamination. 
The consistency of hydraulic conductivity test 
results between the falling head method and 
consolidation test strengthened the validity of 
this study's findings.

Despite the low hydraulic conductivity of the 
BOPW, leachate analysis revealed the release 
of sodium and iron, reaching concentrations 
of 266 mg/L and 0.27 mg/L, respectively. 
Although the iron concentration did not yet 
reached the safe threshold for drinking water 
(0.3 mg/L according to Indonesian standards), 
the elevated sodium concentration in the 
leachate, reaching 266 mg/L, necessitates 
further investigation, eventhough specific 
regulatory standards for sodium in surface 
water have yet to be established. High sodi-
um content can inhibit the performance of the 
leachate processing unit, so further research is 
needed. In addition to its potential as a land-
fill cover material, the BOPW is also able to 
absorb several heavy metals and dyes (Zhang 
et al., 2022). However, the effectiveness of its 
absorption is still unknown, so further research 

is needed. Apart from that, economic feasibil-
ity also needs to be considered in the future.

CONCLUSIONS

BOPW demonstrates significant potential as 
an alternative material for landfill liner. Based 
on its geotechnical and physicochemical charac-
teristics, BOPW exhibits a hydraulic conductiv-
ity value that meets the requirements for use as a 
landfill liner. This finding provides opportunities 
for the mining industry to implement circular 
economy and clean industry principles by in-
tegrating BOPW into waste management infra-
structure. Although this research yields prom-
ising results, the high sodium content requires 
attention. Given the significant sodium release 
observed in leachate analysis, and the lack of 
existing quality standards, comprehensive fur-
ther research is crucial. Further research should 
investigate three key aspects: namely the po-
tential impact of sodium release on wastewater 
treatment plant performance and the long-term 
performance of the BOPW liner. In addition, re-
search on its economic feasibility analysis is also 
needed. Despite facing challenges, the potential 
of BOPW as a substitute for clay liners remains 
promising. Its utilization supports the principles 
of clean industry by reducing reliance on natural 
clay and mitigating environmental impact.
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Table 5. Post-consolidation hydraulic conductivity values

No s (consolidation 
pressure) (kg/cm2)

Cv
(10-3cm2/s) e Mv (coefficient of volume 

compressibility) (cm2/kg)
K

(10-7cm/s)
Cvpairwaise average

(10-3cm2/s)
Kaverage

(10-7cm/s)
1 0.250 0.841 0.510

2.687

2 0.500 3.424 0.459 0.125 2.610 2.132

3 1.000 3.502 0.403 0.067 1.502 3.463

4 2.000 1.477 0.370 0.019 4.452 2.490

5 4.000 2.496 0.347 0.007 1.600 1.986

6 8.000 1.896 0.251 0.015 3.270 2.196
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