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INTRODUCTION

Anthropogenic pollution inputs, including 
home sewage and industry pollutants, are closely 
linked to heavy metals (Yang et al., 2020). Indus-
trial, residential, and agricultural effluents are the 
primary human sources of heavy metal pollution 
in aquatic bodies (Kolarova dan Napiórkowski, 
2021). The environment is producing excessive 
amounts of heavy metals due to the rapid develop-
ment of the manufacturing and agricultural indus-
tries, as well as population growth (Okereafor et 
al., 2020; Gavhane et al., 2021; Leung et al., 2021; 
Ali et al., 2022; Asih et al., 2023). Heavy metal pol-
lution in the marine environment originates from 
local industrial discharges and domestic activities 

through surface runoff carried by rivers to the sea 
(Huang et al., 2020; Mehr et al., 2020; Sun et al., 
2020; Madzlan et al., 2023), as well as agricultural 
waste (Lv et al., 2021). These four metals nickel 
(Ni), copper (Cu), lead (Pb), and zinc (Zn) are 
frequently detected as contaminants in the marine 
environment. They are frequently the result of hu-
man activity, such as industrial processes and nau-
tical operations (Bhuyan et al., 2023). The primary 
elements Ni, Cu, Zn, Cd, and Pb imply industrial 
sources (Ye et al., 2020). Anthropogenic sources 
are mostly responsible for the enrichment of Cd, 
Cu, Zn, Pb, and Ni (Kahal et al., 2020; Uddin et 
al., 2020; Mehr et al., 2020; Tian et al., 2020). Con-
tents of Cu, Pb, and Zn as a result of human activ-
ity (Cai et al., 2021).
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In addition to anthropogenic sources, heavy 
metals are also derived from geological pro-
cesses such as Ni (Yang et al., 2020; Leung et 
al., 2021), Ni is derived from crustal material or 
natural weathering in the sea (Yang et al., 2020) 
which is associated with mixed lithogenic factor 
sources and sand intrusion (Kumar et al., 2020). 
Depending on the local geology and geomorphol-
ogy, heavy metal zinc can come from a variety of 
geogenic sources (Asih et al., 2023). The natu-
ral sources of Zn are mostly mica clay minerals 
(Zhuang dan Zhou, 2021) and the availability 
of Cu is attributed to weathering from interme-
diate mafic rocks (El-sorogy et al., 2020), and 
mica clay minerals (Zhuang dan Zhou, 2021). 
According to Cao et al., (2020), the weathering 
of pre-cambrian bedrock as well as tertiary and 
quaternary rocks along the coastal area are the 
sources of Cd, Cu, and Zn. Statement (Youssef 
et al., 2020) the amount of terrigenous mate-
rial, primarily from bedrock, is reflected in the 
composition of heavy metals Pb and Cd in sedi-
ments. Arienzo et al., (2020) and Yang, T. et al., 
(2020) to the existence of underwater hydrother-
mal springs results in fluids that contain heavy 
and possibly harmful metals including Cu, Pb, 
and Cd. This alters the chemistry of coastal ma-
rine waters and increases pollution.

Heavy metal pollution is a global problem with 
implications for ecosystem functioning (Okerea-
for et al., 2020; Nyarko et al., 2023). High levels 
of heavy metals at a site reflect ecological threats 
(Boboria et al., 2021; Halawani et al., 2022). A 
considerable and open ecological risk is the poten-
tial threat of Ni, Cu, Cd, Pb and Zn heavy metal 
contamination (Aljahdali and Alhassan, 2020; 
Hong et al., 2020). Due to increased toxicity and 
bioaccumulation in marine organisms, increased 
sediment heavy metal content will put marine life 
at greater risk. This could have detrimental effects 
on biogeochemical cycles and jeopardize biodiver-
sity survival (Aljahdali and Alhassan, 2020; Kibria 
et al., 2021). Heavy metals pose a severe toxicity 
risk (Huang et al., 2020; Chen et al., 2022) because 
they collect more in sediments than in the water 
column after migrating to the sea (Liu et al., 2021), 
so the influence of sediments on biological qual-
ity is much greater than that of water (Fan et al., 
2020). Many benthic creatures, including crabs 
and other crustaceans, echinoderms, bivalves, 
polychaete worms, and turbellaria, call sediments 
home (Hasimuna et al., 2021). Organisms will eat 
up heavy metals deposited in sediments (Haddout 

et al., 2021). Heavy metals are among the often 
discovered components of pollutants. A thorough 
index must be used to classify pollution levels that 
are directly linked to future management choices 
in order to determine the condition of heavy metals 
and their distribution in coastal sediments (Hala-
wani et al., 2022). Similarly, Maspari Island may 
eventually be developed as a tourist destination. 
Because of the distance to the site and the pau-
city of research publications on heavy metals on 
Maspari Island, the island has not been used to its 
full potential. Because there is currently very little 
information available concerning heavy metals in 
the research area, the purpose of this study is to 
ascertain the concentration of lead, copper, cadmi-
um, zinc, and nickel in the sediments of Maspari 
Island, South Sumatra. In order for the findings 
of this study to predict future ecosystem pollution 
from heavy metals, information on the five types 
of heavy metals in the study area can be used as 
preliminary data to predict the level of pollution by 
heavy metals Pb, Cu, Cd, Zn, and Ni.

MATERIALS AND METHOD

Study area and sampling

The mangrove and coral reef habitats of Mar-
pari Island, Tulung Selapan, Ogan Komering Ilir, 
South Sumatra, were sampled in February 2023. 
The research area was split up into 8 stations 
(Figure 1 and Table 1), which were distributed 
around Maspari Island and were meant to repre-
sent the region where the concentrations of the 
heavy metals Pb, Cu, Cd, Zn, and Ni in sediments 
were to be measured. The study was carried out at 
the South Sumatra Province’s Environment and 
Land Agency’s Environmental Laboratory. Using 
a 500 g Ekman grab, sediment samples were col-
lected, placed in plastic clips, and labeled with a 
marker. Samples were delivered to the lab for ex-
amination after being kept in a coolbox. 

Data processing

Samples of sediment collected from the field 
were weighed using analytical scales and up to 3 
g dry weight was added to a 100 mL Erlenmeyer. 
Following the addition of 25 mL of distilled water 
and a thorough stirring of 10 mL of concentrated 
HNO3, the mixture was covered with a watch glass. 
In addition, the sample was heated on a hot plate 
set at 105 °C until the volume reached around 10 
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milliliters. After that, it was taken out and allowed 
to cool. The next step is to add 3 mL of aqua regia 
and 5 mL of pure HNO3. Once more, the sample is 
heated until clear sample solution appears and white 
smoke appears. The heating process lasts for about 
thirty minutes. Following a 0.45 µm filter paper fil-
ter, the sample solution was transferred into a 100 mL 
volumetric flask, distilled water was added up to the 
limit mark, and the sample was homogenized. This 
work step is in accordance with the Indonesian Na-
tional Standard. With wavelength provisions for Pb 
283.3 nm (Salimi et al., 2020), Cu 324.8 nm (Bhuy-
an et al., 2023), Cd 228.8 nm (Salimi et al., 2020), 

Zn 213.9 nm (Bhuyan et al., 2023), and Ni 232.0 
nm (Bhuyan et al., 2023), samples were tested for 
heavy metal levels using AAS (atomic absorption 
spectroscopy) (Shimadzu AA-7000).

DATA ANALYSIS

Quality standards

Following investigation, the quantities of heavy 
metals in the sediments were compared to Table 
2’s quality standard values (ANZECC dan ARM-
CANZ, 2000). Microsoft Excel was used to com-
pare heavy metal concentrations and evaluate the 
ecological concerns associated with heavy metals.

Index of geoaccumulation (Igeo)

The Igeo is used to classify and identify envi-
ronmental controls imposed by anthropogenic ac-
tivities (Okonkwo et al., 2023). The determination 
of the geoaccumulation index value and its criteria 
refer to (Muller, 1969) as follows:

	 Igeo = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2 ( 𝐶𝐶𝐶𝐶
1.5 𝐵𝐵𝐵𝐵) (1) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝐶𝐶𝐶𝐶1 ×  𝐶𝐶𝐶𝐶2 ×  𝐶𝐶𝐶𝐶3 × … . .×  𝐶𝐶𝐶𝐶𝐶𝐶]1 𝑛𝑛⁄  (3) 
 

	 (1)

Table 1. Coordinates of the research station
Station Longitude Latitude

1 106°12’ 53.98” BT 3°12’57.25” LS

2 106°12’55.78” BT 3°13’09.71” LS

3 106°13’02.36” BT 3°13’14.86” LS

4 106°13’15.58” BT 3°13’07.18” LS

5 106°12’48.99” BT 3°12’54.31” LS

6 106°12’53.14” BT 3°13’12.44” LS

7 106°13’0.67” BT 3°13’17.28” LS

8 106°13’16.99” BT 3°13’06.83” LS

Figure 1. Research location on Maspari Island, South Sumatra (Google earth software, 2024)

Table 2. Heavy metal quality standards in sediment
Pb Cu Cd Zn Ni

50 mg/kg 65 mg/kg 1.5 mg/kg 200 mg/kg 21 mg/kg
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where:	 Igeo – geoaccumulation index; Cx – heavy 
metal concentration in sediment sample; 
1.5 = constant; Bn – normal concentration 
of heavy metal in nature (background).

Igeo value criteria, namely Igeo < 0 – not pol-
luted; 0 < Igeo < – mildly polluted; 1 < Igeo < 2 –
moderately polluted; 2 < Igeo < 3 – moderately pol-
luted; 3 < Igeo < 4 – severely polluted; 4 < Igeo < 5 
– extremely severely polluted; Igeo > 5 – extremely 
severely polluted.

Contamination factor (Cf)

Cf is a quantitative evaluation of the level and 
source of contaminants (Okonkwo et al., 2023). Cf 
is the ratio of the measured concentration over the 
background value (Arikibe dan Prasad, 2020). The 
determination of the contamination factor value and 
its criteria refers to (Hakanson, 1980) as follows.

	

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2 ( 𝐶𝐶𝐶𝐶
1.5 𝐵𝐵𝐵𝐵) (1) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝐶𝐶𝐶𝐶1 ×  𝐶𝐶𝐶𝐶2 ×  𝐶𝐶𝐶𝐶3 × … . .×  𝐶𝐶𝐶𝐶𝐶𝐶]1 𝑛𝑛⁄  (3) 
 

	 (2)

where:	Cf – contamination factor; Cx – heavy 
metal concentration in sediment; Bn – 
normal concentration of heavy metals in 
nature (background).

Criteria for contamination factors, namely 
Cf < 1 – low contamination level; 1 < Cf < 3 – 
medium contamination level; 3 < Cf < 6 – mod-
erate contamination level; Cf > 6 – very high 
contamination level.

Pollution load index

Pollution load index (PLI) offers a straightfor-
ward but subjective way to assess whether a loca-
tion is suitable for human well-being (Okonkwo 
et al., 2023). An indicator of the total toxicity 
level of heavy metals in a given sample is the PLI 
value, which shows how many times the metal 
content in the sediment surpasses the typical 
background concentration (Madzlan et al., 2023). 
The PLI value and its criteria refer to (Hakanson, 
1980) as follows:

	

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙2 ( 𝐶𝐶𝐶𝐶
1.5 𝐵𝐵𝐵𝐵) (1) 

𝐶𝐶𝐶𝐶 =  𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵 (2) 

𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝐶𝐶𝐶𝐶1 ×  𝐶𝐶𝐶𝐶2 ×  𝐶𝐶𝐶𝐶3 × … . .×  𝐶𝐶𝐶𝐶𝐶𝐶]1 𝑛𝑛⁄  (3) 
 

	(3)

where:	PLI – pollution load index; Cf – heavy 
metal contamination factor; n – amount 
of heavy metals.

PLI criteria, namely PLI < 0 – not polluted; PLI 
0–2 – not polluted to lightly polluted; PLI 2–4 – 
moderately polluted; PLI 4–6 – severely polluted; 

PLI 6–8 – very severely polluted; PLI 8–10 – ex-
tremely severely polluted.

RESULTS

Environmental conditions

Maspari Island is one of the outermost islands 
in South Sumatra Province, Indonesia and is a 
habitat for various types of biota because there 
is a mangrove ecosystem. In addition, this area in 
the future also has the potential for tourism activi-
ties because of its natural beauty which has sandy 
and rocky beaches can be seen in Figure 2.

Heavy metal concentration

Figure 3 shows the concentration of the 
heavy metals Pb, Cu, Cd, Zn, and Ni at each 
location. Pb concentrations in the sediments of 
Maspari Island range from 0.0142 mg/kg at sta-
tion 1 to 0.1022 mg/kg at station 5, with the low-
est concentrations found at that location. Maspari 
Island’s sediments had the lowest concentration of 
the heavy metal Cu, 0.0054 mg/kg, at station 2, and 
the highest concentration, 0.0652 mg/kg, at station 
3. The concentration of the heavy metal Cd in the 
sediments of Maspari Island was found to be low-
est at station 3 (0.0032 mg/kg) and greatest at sta-
tion 8 (0.3211 mg/kg). Zn, a heavy metal, has the 
lowest concentration in the sediments of Maspari 
Island at station 4, measuring 0.1058 mg/kg, and 
the highest concentration at station 5, measuring 
1.0252 mg/kg. Station 4 has the lowest concentra-
tion of Ni heavy metal in the sediment of Maspari 
Island, at 0.0016 mg/kg, while station 2 has the 
greatest concentration, at 0.0432 mg/kg. The qual-
ity standard values of Pb, Cu, Cd, Zn, and Ni were 
50 mg/kg, 65 mg/kg, 1.5 mg/kg, 200 mg/kg, and 
21 mg/kg, respectively. Overall, the accumulation 
levels of these heavy metals in the sediments of 
Maspari Island Waters did not surpass the environ-
mental safety criteria established by (ANZECC 
dan ARMCANZ, 2000). Because the research site 
is an outer island region of South Sumatra Prov-
ince and fairly remote from the pollution source, 
the heavy metal concentrations are minimal.

Zn, Ni, Pb, and Cr heavy metal concentrations 
in the Modaomen estuary’s surface sediments rose 
sharply in 2015 as compared to 2003, but Cu and 
Cd concentrations fell. Cu concentration barely 
changed in 2021, whereas Zn and Cd dropped while 
Pb, Ni, and Cr rose. Both natural and man-made 
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Figure 2. Maspari Island neighbourhood

agricultural sources had an impact on sediment 
heavy metal levels in 2003. In addition to natural 
sources, human-related industrial, traffic, and agri-
cultural activities had an impact on sediment heavy 
metal levels between 2015 and 2021. The notable 
successes of environmental restoration and protec-
tion in cities upstream of the Modaomen estuary 
throughout the sampling period were the cause of 
the fluctuations in Cd and Zn (He et al., 2024). Ac-
cording to enrichment factor (EF) values > 7 for Cu, 
anthropogenic activities caused moderate to severe 
contamination in western Matsushima Bay in every 
sampling year between 2012 and 2016 (Ota et al., 
2021). The geographically and temporally distinct 
buildup of heavy metals in areas with varying indus-
tries is demonstrated by another study on the EF val-
ues of heavy metals in sediment cores from China’s 
peripheral waters. The temporal variability of heavy 

metal pollution over the last century roughly cor-
responds to China’s economic development stage. 
The majority of China’s coastal seas have seen a 
decrease in offshore sediment pollution since the 
2000s. The evolution and source-sink dynamics of 
heavy metals in offshore sediments, as well as the 
anthropogenic consequences over time, are of refer-
ence significance (Yang et al., 2021).

Four stages – pre-1950, 1950–1976, 1976–
2000, and post-2000 – can be distinguished in 
the distribution of heavy metals in sediment 
cores. These stages correspond to changes in the 
Pearl River Delta’s environment and anthropo-
genic activity throughout the previous century. 
Over time, anthropogenic metals (Zn and Pb) 
gradually increased their contribution to sedi-
ments. However, since 2010, the concentrations, 
enrichment factors, and fluxes of heavy metals 

a)

b)
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Figure 3. Heavy metal concentrations in Maspari Island sediments (A) Pb, (B) Cu, (C) Cd, (D) Zn, and (E) Ni
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in sediments have all shown a decreased trend, 
suggesting that the stringent emission reduction 
regulations put in place over the past ten years 
have reduced the input of metal pollutants (Shi 
et al., 2022). Laguna Mar Menor is a significant 
economic engine since it combines biological 
production with excellent environmental qual-
ity. However, its ecological integrity is in dan-
ger due to the impact of human activities. The 
mining activity, which has been documented 
since the Roman era approximately 3500 years 
ago and peaked in the 20th century, is the oldest 
environmental impact. It supplied heavy metals 
to the lagoon sediments for nearly 30 centuries. 
Hydrographic and biogeochemical processes, 
the solubility of different elements, and coastal 
works in harbors and on beaches will determine 
the recent evolution of heavy metal concentra-
tions and their spatial redistribution after direct 
discharges to the lagoon ceased in the 1950s 
(Pérez-Ruzafa et al., 2023). It is known from the 
previously mentioned research that heavy met-
als will give rise to temporal and spatial trends 
that occur, so preliminary data is needed to an-
ticipate heavy metal pollution through regular 
monitoring on Maspari Island.

Human activities that alter the environment 
are the cause of the buildup of heavy metals 
in marine sediments (Yang et al., 2021; Shi et 
al., 2022; Pérez-Ruzafa et al., 2023; He et al., 
2024). These results may serve as references 
for the prevention, control, and management 
of heavy metal contamination in the research 
area and other river-dominated estuaries, as hu-
mans continue to have an impact on river inputs 
worldwide (He et al., 2024). Because of their 

bioaccumulation, non-biodegradability, toxic-
ity, and persistence, heavy metal contamination 
of marine sediments has caused worry world-
wide and affected human health (Ota et al., 2021; 
Kumar et al., 2022). To choose the best reme-
diation strategies for managing heavy metals in 
sediments, one must have a basic understanding 
of the sources of heavy metals, their chemistry, 
and the possible threats they bring to the envi-
ronment and to people. Governments and non-
governmental organizations should start public 
awareness campaigns to curb activities that lead 
to sediment contamination in order to restore 
the ecological stability and economic viability 
of sediments and soils (Kumar et al., 2022). The 
true dangers of human intervention in regions 
susceptible to heavy metal contamination can 
only be evaluated and appropriate preventive 
or remedial measures may be implemented with 
understanding of these processes (Pérez-Ruzafa 
et al., 2023). In the future, strict regulations to 
reduce heavy metal pollution will still be re-
quired (Yang et al., 2021; Pérez-Ruzafa et al., 
2023). The study of heavy metal data in Mas-
pari Island an initial step to anticipate pollution, 
considering that the current heavy metal value 
of Maspari Island is relatively small compared 
to other island heavy metal data contained in 
Table 3. This is because Maspari Island has not 
been inhabited by residents or become a tourism 
object considering that transportation access 
takes about 8 hours from Palembang as the city 
centre of South Sumatra Province to Maspari 
Island via land and water access. However, in 
the future Maspari Island is expected to become 
a tourist attraction of South Sumatra Province 

Cont. Figure 3. Heavy metal concentrations in Maspari Island sediments (A) Pb, (B) Cu, (C) Cd, (D) Zn, and (E) Ni
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because it can help the community’s economy 
and regional income. Even the government has 
promoted Maspari Island information through 
online news dissemination.

ECOLOGICAL RISK ASSESSMENT

Index of geoaccumulation (Igeo)

The geoaccumulation index was used to as-
sess the enrichment of heavy metals in sediments. 
The level of metal pollution in core sediments is 
indicated by Igeo values (Singh et al., 2020). Ac-
cording to the study data, all eight stations’ Index 
of Igeo values for the heavy metals Pb, Cu, Cd, Zn, 
and Ni were negative, or less than 0 (Table 4). In 

accordance with the Igeo criteria (Muller, 1969), an 
area is considered unpolluted if its Igeo value is 
less than 0. But according to the data, heavy metal 
Cd had the Igeo value that was closest to 0 at sta-
tion 8 (-2.8). According to Lv et al. (2021) there 
are two causes of Cd: natural and human. How-
ever, presumably as a result of human activity, the 
geoaccumulation index value of Cd in this study 
is larger than that of other metals. According to 
Cao et al. (2020), there is a significant chance that 
heavy metal Cd will accumulate as a result of ag-
ricultural land and fish farming pollution. Ogan 
Komering Ilir Regency is the site of this study. 
According to data from the Central Bureau of 
Statistics of Ogan Komering Ilir Complete Enu-
meration of the Agricultural Census in 2023, the 
region has plantation crops like coconut, robusta 

Table 3. Heavy metal concentration in Island Sediments

Location
Heavy metal concentration average (mg/kg)

Reference
Pb Cu Cd Zn Ni

Maspari Island 0.03 0.02 0.06 0.51 0.01 This study

Zhoushan Islands 33.93 67.84 0.20 107.76 (Zhai et al., 2021)

Big Giftun Island 0.62 0.13 1.17 0.08 0.69 (Abdelaal et al., 2024)

Abu Minqar Island 1.19 0.27 0.13 2.89 0.76 (Abdelaal et al., 2024)

Kavaratti Island 47.95 5.52 7.76 19.07 9.44 (Antony et al., 2022)

Saint Martin’s Island 5.88 3.76 27.17 29.6 (Bhuyan et al., 2023)

Hainan Island 26.82 14.97 70.50 25.26 (Cai et al., 2021)

Hainan Island 20.61 8.92 0.06 29.13 (Zhao et al., 2020)

Hainan Island 28.1 16.9 0.082 85.3 (Zhang et al., 2023)

Qizhou Island 21.02 11.31 0.091 55.38 21.55 (Fan, J. et al., 2024)

Western Miao Islands 15.68 16.62 0.13 50.83 23.20 (Wang et al., 2024)

Nijhum Dweep Island 5.63 36.97 0.29 20.65 9.26 (Rahman et al., 2022)

Upolu Island 7.4 29.0 0.13 98.5 161 (Jeong dan Ra, 2023)

Mallorca Island 10.10 1.16 0.50 8.87 1.69 (Ardila et al., 2023)

Ardley Island 1.47 163.24 1.04 130.23 (Lin et al., 2021)

Hare Island 0.02 (Arisekar et al., 2021)

Solomon Islands 153 274 30 (Boboria et al., 2021b)

Table 4. Heavy metal geoaccumulation index (Igeo) values of Maspari Island sediments
Station Pb Cu Cd Zn Ni

1 -12.4 -13.1 -9.0 -9.5 -13.7

2 -11.7 -14.1 -7.5 -9.1 -9.5

3 -12.0 -10.5 -9.5 -8.3 -13.9

4 -11.2 -13.4 -7.3 -11.5 -14.3

5 -9.5 -11.6 -5.1 -8.2 -11.3

6 -10.7 -13.7 -5.7 -9.1 -12.0

7 -11.7 -12.0 -7.1 -9.8 -12.8

8 -12.0 -10.8 -2.8 -10.9 -11.4
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coffee, cloves, tobacco, and kapok; horticulture, 
which includes vegetables; and food crop com-
modities, which include rice, corn, soybeans, pea-
nuts, green beans, cassava, and sweet potatoes. 
Due to the extensive use of pesticides and fertiliz-
ers, these agricultural practices are believed to be 
a source of heavy metals (Ustaoğlu et al., 2020). 
After being carried by the current from the agri-
cultural land, fertilizers will raise the amount of 
metals in the water (Boboria et al., 2021; Asih et 
al., 2023). Agricultural fertilizers and pesticides 
that are carried into the sea by surface runoff can 
also provide cadmium (Algül dan Beyhan, 2020; 
Zhuang dan Zhou, 2021; Asih et al., 2023). The 
extent of Cd contamination in coastal sediments 
is reflected in the distribution of Cd concentration 
(Al-mur, 2020; Bhuyan et al., 2023).

In addition to agriculture, aquaculture is prac-
ticed (Cao et al., 2020; Asih et al., 2023). The 
coastal regions of Ogan Komering Ilir Regency 
are home to traditional and semi-traditional ponds 
that are used for the production of tiger shrimp 

and milkfish. Although it is still categorized as not 
contaminated or safe, this activity is also thought 
to be the reason why the Cd geoaccumulation in-
dex was identified at the research site in larger 
proportions than other metals. However, this state 
must be monitored because, even at very low con-
centrations, the heavy metal Cd can be extremely 
hazardous, accumulate in the human body, and 
alter critical metabolic processes if it continues 
to rise to contaminated standards (Thakare et al., 
2021). The survival of nearby biota, including 
fish, turtles, and bottom-dwelling biota, will be 
jeopardized if this occurs.

Contamination factor and pollution load 
index

The degree of metal pollution in sediments 
is determined by the pollution index (Cf and PLI) 
(Singh et al., 2020). The highest Cf value of heavy 
metal Cd at station 8 is 0.214, as shown in Figure 4. 
A low level of contamination is indicated by all 

Figure 4. Graph of Cf of Maspari Island Sediment

Figure 5. Graph of sediment pollution load index of Maspari Island
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heavy metal Cf values for Pb, Cu, Cd, Zn, and Ni 
being less than 1 (Hakanson, 1980). Station 1 has 
the lowest PLI value, 0.000003191, while station 
5 has the highest PLI value, 0.000051425 (Fig-
ure 5), which falls between unpolluted and mildly 
contaminated (Hakanson, 1980). Table 5 provides 
specific values for the PLI and Cf for the heavy 
metals Pb, Cu, Cd, and Zn.

Heavy metals can be found in sediments both 
as good reservoirs and carriers. Rock, organic mat-
ter, and minerals are all found in sediments, which 
are created by the deposition process. Before they 
build up and settle on the bottom, sediments are 
thought to serve as filters for a variety of metals 
that come from the land (Wardani et al., 2020). 
Many intricate processes, including adsorption, 
hydrolysis, and coprecipitation, are responsible for 
the majority of free metal ions’ incorporation into 
sediments (Behera et al., 2021). Coastal regions 
are thought to serve as locations where different 
pollutants produced by urban and commercial ac-
tivity can be sequestered (Halawani et al., 2022). 
The residences of the local populace are the di-
rect source of heavy metals found in wastewater 
(Ustaoğlu et al., 2020). In addition to housing and 
community facilities like marketplaces and fishing 
ports, the downstream region is crowded and has 
workshops that may release heavy metal pollution 
(Nasir et al., 2021). Estuarine areas are strongly 
impacted by human activity, as evidenced by the 
significantly greater levels of heavy metals in these 
areas compared to marine areas (Tian et al., 2020). 
According to this study, heavy metals do not di-
rectly originate from human activity. Low levels of 
heavy metal concentration were discovered in ma-
rine or coastal sediments by similar research (Ab-
basi dan Mirekhtiary, 2020; Ferrans et al., 2021; 
Harmesa dan Cordova, 2021; Lv et al., 2021).

CONCLUSIONS

The amounts of Pb, Cu, Cd, Zn, and Ni, among 
other heavy metals, were all within the quality 
limits at all eight locations. All eight stations’ Igeo 
values for the heavy metals Pb, Cu, Cd, Zn, and 
Ni are negative, meaning they are less than 0 and 
are classified as unpolluted. Heavy metal Cd of 
-2.8 at station 8 has the Igeo value that is closest 
to zero. For the heavy metals Pb, Cu, Cd, Zn, and 
Ni, all Cf values are less than 1, indicating low 
contamination. At station 5, the highest PLI score 
is 0.000051425, so it is classified as either mild-
ly or unpolluted. The range of concentrations of 
various heavy metals in the study area can serve 
as preliminary data that can be used to anticipate 
the level of pollution by heavy metals Pb, Cu, Cd, 
Zn, and Ni in the future.
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