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INTRODUCTION

In recent years, the development of wood 
furniture has gained significant attention due 
to the increasing demand for traditional wood-
based products (Laksham and Hitish, 2023). 
This trend has intensified deforestation, leading 
to reduced wood availability and rising costs. To 
address this issue, it is imperative to explore al-
ternative materials that can substitute wood. Fi-
berboard emerges as a promising alternative, as 
it can be manufactured from a variety of natural 
fibers and composite materials (Hasanah et al., 

2024; Astari et al., 2024). Composite fiberboards 
are well-suited as wood substitutes because they 
are made from lignocellulosic materials like 
sawdust or natural fibers (Hasanah et al., 2023; 
Hasanah et al, 2024). These materials, often de-
rived as waste from agriculture, plantations, and 
forestry, are abundant and cost-effective. Com-
posite boards are reliable due to their good me-
chanical strength, ease of processing, and lower 
cost compared to wood (Hongxia Pu et al., 2022). 
Compared to wood, composite fiberboards offer 
several advantages, including being free from 
knots, splits, and cracks, with customizable size 
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and density that make them easy to work with. 
Additionally, they exhibit isotropic properties 
and can be tailored for specific qualities (Cintu-
ra et al., 2024). According to Cruz et al. (2023), 
composite fiberboards are classified into three 
groups based on density: low density (≤ 0.4 g/
cm³), medium density (0.4–0.8 g/cm³), and high 
density (≥ 0.8 g/cm³).

Several natural fibers have been studied as 
potential materials, including corn cob (Astari 
et al., 2024), areca husk fibers (Neelappa et al., 
2024), sugarcane bagasse (da Silva Almeida et 
al., 2024), and palm fiber (Siddiqui et al., 2024). 
Among these, palm frond fiber (PFF) stands out 
as an interesting material due to its abundance as 
a by-product of oil palm harvesting, with waste 
production reaching up to 10 tons per hectare per 
year. Despite this large volume, the utilization of 
palm fronds remains underexplored (Georgiou et 
al., 2023). Typically, palm fronds are either piled 
near trees, used as livestock feed, or burned to 
produce potassium fertilizer. Notably, the ligno-
cellulose content in PFFs is significantly higher 
than that in empty palm fruit bunches or other 
plants (Madusari et al., 2023).

Previous studies have shown that the physi-
cal properties of palm fiber polymer composites 
improve as the amount of palm fiber increases. 
After 168 hours of soaking in cold water, these 
properties reached acceptable levels, with wa-
ter absorption at 30% and thickness swelling at 
0.9% (Hasanah et al., 2024; Chkala et al., 2024). 
Similarly, a study on fiberboard made from corn 
stalks (Zea mays L.) and citric acid reported ex-
cellent density, achieving 0.7 g/cm³ (Astari et al., 
2024). Despite the significant potential of palm 
fiberboard, its mechanical strength, particularly 
in terms of tensile and compressive resistance, 
remains lower than that of traditional wood mate-
rials or other composites. This limitation restricts 
its use in applications requiring high structural 
strength (Khan et al., 2024). To overcome this is-
sue, incorporating a filler into the fiber composite 
is necessary (Cai et al., 2024). 

FCS are another waste material that can 
serve as a bio-composite filler. These shells are 
available in large quantities and, if unprocessed, 
can contribute to environmental pollution. As 
global population increases, especially from 
consumption-based sources, the volume of this 
waste continues to grow. Utilizing FCS not only 
reduces the environmental burden by repurpos-
ing a waste material but also helps minimize 

landfill waste and pollution. Additionally, this 
practice aligns with the growing need for sus-
tainable materials in the manufacturing industry. 
FCS contains 66.70% CaO and 22.28% MgO, 
making them an excellent filler material for 
strengthening composite boards (N. Wang et al., 
2021). Previous research has demonstrated that 
incorporating 5% crab shell powder into a hybrid 
composite increased tensile, flexural, and impact 
strengths by 21%, 52%, and 50%, respectively. 
Furthermore, the hardness of the hybrid com-
posite improved by 33% (Kocharla et al., 2024). 
Another study found that fiberboard bonded 
with a citric acid/shrimp shell adhesive exhib-
ited dry and wet shear strengths of 2.1 MPa and 
1.1 MPa, respectively, exceeding the China Na-
tional Standard (GB/T 9846-2015, ≥ 0.7 MPa). 
The adhesion mechanism involved mechanical 
interlocks and cross-linking between the citric 
acid/chitosan in the adhesive and components 
within the cell wall (Cai et al., 2024).

In addition to matrix and filler, adhesive ma-
terial such as polyester resin are essential for 
producing bio-composites. Polyester resin, a 
low-viscosity liquid that cures room temperature 
with a catalyst, is not only affordable but also pos-
sesses advantageous properties such as stiffness, 
brittleness, good weather resistance, moisture 
resistance, transparency, and resistance to acids, 
except oxidizing acids (Prabhuram et al., 2023). 
These properties make it suitable for use in com-
posite materials. Furthermore, PFFs, FCS, and 
polyester offer additional benefits, including low 
cost, low density, renewability, and biodegrad-
ability, which make them attractive as reinforcing 
agents in fiberboard composites.

Despite these advantages, there remains a 
need for sustainable and cost-effective alterna-
tives to traditional wood-based boards, which 
often face challenges such as high production 
costs, limited renewability, and environmental 
concerns. This study addresses this gap by inves-
tigating the feasibility of using PFFs, FCS, and 
polyester as raw materials for composite boards. 
Specifically, this research aims to explore how 
variations in composite loading affect the me-
chanical, physical, and microstructural proper-
ties of the boards. It provides a detailed analysis 
of compressive and flexural strength, water ab-
sorption, density, and porosity, alongside thermal 
and microstructural evaluations using differential 
scanning calorimetry (DSC) and scanning elec-
tron microscopy (SEM). 
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METHODS

Materials and instruments

The materials used include PFF and FCS pow-
der. The chemical materials include polyester res-
in adhesive (Sigma-Aldrich, USA), methyl ethyl 
ketone peroxides (Sigma-Aldrich, USA) as the 
catalyst, NaOH (analytical grade; Merck, Germa-
ny), and wax mirror glaze (TR Industries,USA). 
Additionally, several instruments were employed, 
including a compressive testing machine (Heico, 
India), a Universal Tensile Machine (UTM; GO-
TECH AI-7000M), a density meter (MH-300A), 
Differential Scanning Calorimetry (DSC; Linseis 
STA PT 1600), and a Scanning Electron Micro-
scope (SEM; JEOL-JSM-6510LV).

Sample preparation

The PFFs were first cleaned and soaked in a 
2% NaOH solution for 24 hours. After soaking 
overnight, the fibers were immersed in a 12% 
NaOH solution and heated at 130 °C for 120 min-
utes on a hotplate. The fibers were then washed 
with clean water, dried in the sun, and cut into 
0.5 cm lengths. The selected FCS were cleaned, 
washed with water, and dried in the sun. Once 
dried, the shells were crushed into powder and 
sieved using a 200-mesh sieve.

Composite board fabrication 

A total of 10 g of PFFs, FCS powder, and poly-
ester resin were measured according to specific com-
position ratios (%w:%w:%w): (55%:20%:25%), 
(45%:30%:25%), (35%:40%:25%), (25%:50%:25%), 
and (30%:60%:25%) using a digital balance (Hasa-
nah et al., 2024). The ratio was developed to 
evaluate how varying the amounts of PFF, FCS 
powder, and polyester resin affects the compos-
ite’s properties. PFF content was varied from 
25% to 55% to study its impact on strength. FCS 
powder content was adjusted from 20% to 60% to 
assess its role as a filler. Polyester resin was kept 
constant at 25% to maintain a consistent adhesive 
matrix. This approach helps identify the optimal 
balance for improved composite performance. 
The polyester resin was mixed with the catalyst in 
a 100:1 ratio (100 g of polyester resin and 1 g of 
catalyst). This mixture was then stirred until a ho-
mogeneous dough was formed. After mixing, the 
dough was placed into a mold, which was covered 

with an iron plate coated with aluminum foil and 
pressed using a hot press with a pressure of 30 
kg/m² for 20 minutes at 100 °C. Afterward, the 
sample was carefully removed from the mold and 
left to rest for about 3 hours to allow the adhesive 
to harden before it was fully removed. Finally, the 
sample was dried for 7 days to achieve uniform 
moisture content distribution and relieve any re-
sidual stress in the board caused by the pressing 
process. The biocomposite was then prepared for 
characterization (Choi et al., 2022).

Composite board evaluation 

The performance of the boards was assessed 
following the ASTM D 1037-93 standard pro-
cedures. Water absorption was evaluated using 
samples measuring 5×5 cm, which were im-
mersed in water at room temperature for 2 hours 
and 24 hours to analyze short- and long-term 
changes. The weight gain and thickness of the 
samples were recorded immediately after immer-
sion. Prior to testing, all samples were conditioned 
at 65% relative humidity and 20 °C for 7 days. 
Mechanical tests, including tensile, flexural, and 
compressive strength tests, were conducted using 
a UTM equipped with a 10 kN load cell with 0.2% 
accuracy. Rectangular strips measuring 50×190 
mm were used for the mechanical tests. Tensile 
strength tests were performed at a crosshead speed 
of 4 mm/min, while flexural strength tests were 
conducted at a crosshead speed of 2.9 mm/min 
with a 140 mm span (Nicolao et al., 2020). The 
density and porosity of the composites were ob-
tained by dividing the mass by the volume of the 
cylindrical samples. Three replicates were tested, 
and their averages were reported (Hasanah et al., 
2024; Raza et al., 2023; Gashawtena et al., 2024).

RESULTS AND DISCUSSION

Density

Density testing is a key physical property that 
measures the ratio of an object’s mass to its vol-
ume, or the mass of a substance per unit volume 
(Zhang et al., 2023). Figure 1 illustrates the rela-
tionship between the density of composite boards 
made from PFF and FCS using polyester resin, 
with variations in the composition of PFF, FCS, 
and polyester resin.
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Figure 1 shows the densities of composite 
boards with different compositions as follows: 
55:20:25 with 0.814 gr/cm³, 45:30:25 with 1.137 
gr/cm³, 35:40:25 with 1.478 gr/cm³, 25:50:25 
with 1.388 gr/cm³, and 15:60:25 with 1.511 gr/
cm³. The data indicate that as the proportion of 
FCS increases in the composite boards, their den-
sity generally increases. However, in the 25:50:25 
composition (Sample 4), where a higher of den-
sity was expected, a decrease was observed. This 
anomaly may result from an uneven mixing pro-
cess during the preparation of the sample dough. 
Additionally, air trapped during the pressing pro-
cess may have hindered adequate particle bond-
ing, contributing to the decreased density (Yang 
et al., 2023). The highest density, 1.511 gr/cm³, 
was achieved by Sample 5, which contained the 
highest proportion of FCS. This higher density 
can be attributed to the increased shell content, 
which enhances the compactness of the compos-
ite board, along with the optimal use of resin dur-
ing the molding process. These factors contribute 
to improved physical and mechanical properties 
(Chrispin Das et al., 2023). 

Furthermore, the fabricated composite boards 
complies with the Japanese Industrial Standard 
(JIS) A 5905:2003 for fiber/particle boards. This 
standard specifies a minimum density of 0.80 gr/
cm³ for classification as a “hard board.” There-
fore, all composite boards produced with vary-
ing compositions meet the established standards 
(Homkhiew et al., 2020).

Porosity

Porosity refers to the percentage of void space 
within a material and is closely related to its den-
sity. Porosity testing was performed to determine 
the ratio of pore volume to the total volume of the 
composite (Rao et al., 2023). Figure 2 illustrates 
the porosity of the composite boards produced.

Based on Figure 2, the porosity results are 
as follows: 55:20:25 with a porosity of 0.322%, 
45:30:25 with 0.174%, 35:40:25 with 0.103%, 
25:50:25 with 0.239%, and 15:60:25 with 
0.047%. The highest porosity value, 0.322%, was 
observed in the 55:20:25 composition (Sample 
1), which can be attributed to the low proportion 

Figure 1. Density of the composite boards

Figure 2. Porosity of the composite boards
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of FCS, the primary filler material in the compos-
ite board. Conversely, the lowest porosity value, 
0.047%, was recorded in the 15:60:25 composi-
tion (Sample 5). This composition contains the 
highest proportion of FCS powder, significantly 
reducing the number of pores in the composite 
board. However, in the 25:50:25 composition 
(Sample 4), the porosity increased despite expec-
tations of lower values. This anomaly is likely 
due to the observed decrease in density, which 
may have resulted in the formation of more pores 
within the composite board (Haider et al., 2022).

Water absorption 

Water absorption testing is a method used to 
evaluate a key physical property of composite 
boards: their ability to absorb water after immer-
sion for 2 or 24 hours. This test is crucial for as-
sessing the board’s water resistance, particularly 
when the board is designed for outdoor use and 
exposure to environmental conditions. Figure 3 
presents the results of the water absorption test. 
The results show that the 55:20:25 composition 

(Sample 1) has the highest water absorption at 
0.396%, due to the higher proportion of PFF, 
which is hydrophilic and absorbs water easily. In 
contrast, the 15:60:25 composition (Sample 5) has 
the lowest water absorption at 0.034%, thanks to 
its high FCS content, which is water-resistant and 
creates a denser, less porous structure. As the FCS 
content increases, water absorption decreases, im-
proving water resistance. However, the 25:50:25 
composition (Sample 4), with 0.172% absorp-
tion, shows slightly higher water uptake than ex-
pected, likely due to uneven mixing or trapped air 
increasing porosity. In summary, higher FCS con-
tent enhances water resistance, making Sample 5 
ideal for moisture-prone applications.

Compressive strength test

Compressive strength testing is conducted to 
evaluate the mechanical properties of composite 
materials under pressure or compressive forces. 
The results of the compressive strength test for 
the fabricated composite materials made are 
shown in Figure 4.

Figure 3. Water absorption of composite boards

Figure 4. Compressive strength test results
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The measured compressive strengths are 
as follows: 55%:20%:25% at 0.034 kgf/mm², 
45%:30%:25% at 0.048 kgf/mm², 35%:40%:25% 
at 0.060 kgf/mm², 25%:50%:25% at 0.096 kgf/
mm², and 15%:60%:25% at 0.133 kgf/mm². The 
highest compressive strength (0.133 kgf/mm²) 
was achieved with the 15%:60%:25% compo-
sition (Sample 5), indicating that compressive 
strength improves as the proportion of FCS pow-
der increases, up to an optimum value. Conse-
quently, the mechanical strength of the composite 
board improves with the increased concentration 
of FCS powder in the mixture. 

Tensile strength test

Tensile testing is a process used to evaluate 
the mechanical properties of composite mate-
rials under tensile stress. This testing is essen-
tial for determining a material’s or composite’s 
ability to resist tensile forces without failing or 
breaking. It is crucial because it reveals the ma-
terial’s capacity to endure tensile stresses that 
may occur in practical applications, particularly 
in situations where the material must support 
applied forces or loads on its surface (Hadini 
et al., 2024). The tensile test for the composites 
was conducted in accordance with the standard 
test method ASTM D 1037-93 (Nicolao et al., 
2020). During this test, a sample of the compos-
ite material is subjected to a gradually increas-
ing tensile force while its response to the applied 
force is measured. The tensile test results for the 
composite materials are shown in Figure 5. The 
tensile test results are as follows: 55%: 20%: 
25% of 0.0017 kgf/mm2, composition of 45%: 
30%:25% of 0.0020 kgf/mm2, 35%:40%:25% 
of 0.0030 kgf/mm2, 25%:50%:25% of 0.0031 
kgf/mm2, and 15%:60%:25% of 0.0032 kgf/

mm2. The highest tensile strength was obtained 
from Sample 5 (15%:60%:25%) with a value of 
0.0032 kgf/mm2. This finding is consistent with 
previous studies, which reported an increase in 
tensile strength as the palm fiber content de-
creased in palm fiber epoxy composites (Hasa-
nah et al., 2024; Hadini et al., 2024).

Impact test

Impact testing is a method used to assess the 
response of composite materials to impact loads. 
This evaluation provides critical insights into the 
strength and ductility of materials when subjected 
to impact forces, which are often encountered in 
real-world applications. The impact test results 
are presented in Figure 6. The impact strength of 
each variation of composite boards is as follows: 
55%:20%:25% at 1.2 J/mm², 45%:30%:25% 
at 1.0 J/mm², 35%:40%:25% at 1.2 J/mm², 
25%:50%:25% at 1.4 J/mm², and 15%:60%:25% 
at 1.6 J/mm². The highest impact strength was 
obtained from Sample 5 (15%:60%:25%) with 
a value of 1.6 J/mm². However, the decrease in 
impact strength observed in the composition of 
45%:30%:25% (Sample 2) is associated with in-
sufficient pressing treatment during the molding 
of the brittle composite board. This study found 
that both the volume fraction and pressing treat-
ment affect the composite’s strength in the impact 
test (Jing et al., 2023).

DSC analysis

The DSC thermal analysis method is widely 
used to analyze the thermal properties of a ma-
terial. This analysis was conducted to determine 
the thermodynamic behavior of the base material, 
as the production of thermal insulation materials 

Figure 5. Tensile strength of composite boards
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involves hot pressing, which can affect the quality 
of the material, particularly its physical proper-
ties. Therefore, it is essential to analyze the ther-
mal properties of the base material to assess its 
ability to withstand the applied heat load, both 
before and after the production process (Jennings 
et al., 2024). The results of the DSC testing on 
composite boards are shown in Figure 7.

The results of the DSC testing of composite 
boards with varying compositions are as follows: 
for the composition 55%:20%:25%, endother-
mic activity occurs at temperatures ranging from 
28.99 °C to 120.75 °C, while exothermic activ-
ity occurs between 459.21°C and 548.72 °C, 
with a peak heat of 52.60 mW at 499.45 °C. For 
the composition 45%:30%:25%, endothermic 
activity occurs at temperatures from 54.68 °C 
to 110.74°C, with exothermic activity between 
463.09 °C and 534.27 °C, and a peak heat of 
46.24 mW at 505.08 °C. For the composition 

35%:40%:25%, endothermic activity is ob-
served from 162.24 °C to 273.24 °C, while exo-
thermic activity occurs between 462.47 °C and 
504.73 °C, with a peak heat of 42.66 mW at 
491.62 °C. For the composition 25%:50%:25%, 
endothermic activity occurs at temperatures 
ranging from 113.94 °C to 236.9 °C, while exo-
thermic activity is observed between 469.63 °C 
and 511.64 °C, with a peak heat of 30.07 mW 
at 499.92 °C. Finally, for the composition 
15%:60%:25%, endothermic activity occurs 
between 133.26 °C and 286.73 °C, while exo-
thermic activity is observed from 469.63 °C to 
507.14 °C, with a peak heat of 55.03 mW at 
493.32 °C. 

These findings indicate that increasing the 
palm fiber content reduces the thermal stability 
of the composites. According to Ahmad et al. 
(2023), the different temperatures required for fi-
bers to release their water content are due to the 

Figure 6. Impact strength of composite boards

Figure 7. The effect of thermal conditions on board composites with various mass of PFF, FCS, and polyester
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varying non-substituted hydroxyl groups present 
on their surfaces. Fibers with a greater affinity 
for water molecules require higher temperatures 
for water evaporation. This study also observed 
similar results, demonstrating that an increase 
in the polyhydroxybutyrate percentage within 
composite materials lowers their thermal stabil-
ity (Hachaichi et al., 2021). Based on the data 
presented, it can be concluded that the composite 
board composition of PFF and FCS using polyes-
ter adhesive, which exhibits good thermal stabil-
ity, is the composition of 15%:60%:25%, with a 
DSC value of 55.03 mW (Pardi et al., 2024).

SEM morphology

The microstructure testing was conducted to 
examine the pores of the composite boards at 500× 
magnification using SEM, as shown in Figure 8.

In general, the composite exhibits uneven 
mixing, leading to unfilled gaps or voids within 
the matrix, which contribute to the formation 
of voids on the composite’s surface (Khallaf et 
al., 2024). Based on SEM results, the micro-
structure of the composite boards varied sig-
nificantly with changes in composition. Sample 
A (55%:20%:25%) exhibited a high density of 
voids and irregularities, with poor interfacial 
adhesion between PFF, FCS particles, and poly-
ester resin, along with uneven fiber distribution. 
Sample B (45%:30%:25%) showed reduced po-
rosity compared to Sample A but still displayed 

visible voids, uneven dispersion of FCS particles, 
and fiber pull-out, indicating suboptimal bond-
ing. In Sample C (35%:40%:25%), the disper-
sion of FCS particles improved; however, small 
gaps between the matrix and reinforcement, as 
well as particle aggregation, were observed, po-
tentially creating stress concentration points. 
Sample D (25%:50%:25%) demonstrated better 
FCS particle distribution, but voids remain in 
some points. Sample E (15%:60%:25%) exhib-
ited the most uniform dispersion of FCS parti-
cles, minimal voids, strong interfacial bonding, 
and a compact structure with reduced fiber pull-
out. This well-integrated morphology enhances 
the composite’s mechanical and physical prop-
erties, as seen in its superior tensile, compres-
sive, and impact strengths, as well as its thermal 
stability. The compact and cohesive structure of 
Sample E supports its designation as the opti-
mum composition, with SEM analysis directly 
correlating its microstructural features to its su-
perior overall performance.

The microstructure of the sample above dem-
onstrates that the greater the material mixture 
and the pressure applied during molding signifi-
cantly influence the characteristics of the com-
posite board (Er Yusuf et al., 2024). Additionally, 
studies by Hasanah et al. (2024) and Raza et al. 
(2023) report similar findings, highlighting that 
the homogeneity of the composite is affected by 
the proportion of the polymer matrix. Composites 
with a higher proportion of polystyrene matrix 

Figure 8. SEM morphology of composite boards with variations in PFF:FCS:polyester resin composition: 
(A) 55%:20%:25%, (B) 45%:30%:25%, (C) 35%:40%:25%, (D) 25%:50:25%, and (E) 15%:60%:25% 

(red arrows indicate voids)
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relative to surface PFFs exhibited no significant 
separation, indicating that the fibers were well-
dispersed and homogeneously distributed within 
the polystyrene matrix (Patil et al., 2023). Further-
more, the microstructure of the 15%:60%:25% 
composition in this study shows minimal void 
formation, contributing to the composite board’s 
optimal physical and mechanical properties.

Figure 9 presents the average particle size of 
the composite boards, measured using ImageJ and 
OriginLab software. The results indicate that the 

average particle size for Sample 1 (55%:20%:25%) 
is 208.32 ± 274296.88 µm, for Sample 2 
(45%:30%:25%) is 8467.02 ± 2360.48 µm, for 
Sample 3 (35%:40%:25%) is 9129.85 ± 3339.93 
µm, for Sample 4 (25%:50%:25%) is 8915.78 ± 
3858.82 µm, and for Sample 5 (15%:60%:25%) 
is 20806.60 ± 92112.91 µm. As the composition 
of FCS increases, the composite board exhibits 
improved mechanical strength, with the optimal 
value achieved in Sample 5, which has an Adj R-
Square value of 0.99978 µm (Abir et al., 2023).

Figure 9. Particle size distribution of composite boards: (A) 55%:20%:25%, (B) 45%:30%:25%, 
(C) 35%:40%:25%, (D) 25%:50%:25%, and (E) 15%:60%:25%
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CONCLUSIONS

This study demonstrated that composite 
boards made from PFF, FCS, and polyester resin 
exhibit promising properties for various applica-
tions, particularly in the furniture industry. The 
optimal composition of 15% PFF, 60% FCS, and 
25% polyester (Sample 5) produced composite 
boards with excellent physical and mechani-
cal properties, including compressive strength, 
tensile strength, and impact resistance. SEM 
microstructure analysis revealed a high degree 
of distribution and homogeneity of the compo-
nents within the composite. According to JIS A 
5905:2003 standards, the composite is classified 
as a “Hard Board,” underscoring its potential 
as a sustainable alternative to traditional wood 
products. These findings suggest that combin-
ing PFF, FCS, and polyester resin can create an 
eco-friendly and durable material for furniture 
manufacturing, helping reduce environmental 
impact and utilize waste materials. 

Future research could explore using other 
parts of the palm tree, such as leaf fibers and 
stems, to create composites with varied prop-
erties for specific applications. The impact of 
different particle sizes of FCS powder on com-
posite performance could also be investigated. 
Developing bio-based or eco-friendly adhesives 
as alternatives to polyester resin would enhance 
sustainability. Long-term testing under different 
environmental conditions, such as humidity, UV 
exposure, and temperature changes, could assess 
durability for outdoor use. Adding flame-retar-
dant treatments or other additives could broaden 
applications to construction materials. Scaling 
up production and performing cost analyses 
would help evaluate industrial feasibility, while 
a life cycle assessment could highlight environ-
mental benefits.
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