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INTRODUCTION

Textile factories, paint, fabric dyeing, paper 
production, and printing are just a few indus-
tries that use synthetic dyes. When discharged 
into the environment, they can be associated 
with more severe health problems, including 
respiratory problems and hormone disruption. 
Synthetic dyes produce organic pollutants, 
cause allergic dermatitis and skin irritation, and 
may increase the risk of cancer (Berradi, et al., 
2019). Organic pollutants can negatively impact 
the environment through contamination from 
wastewater that contains dyes, including methyl 
violet (Sadiku, et al., 2022).

The synthetic dye methyl violet comes in 
various forms, such as tetramethyl (2B), pentam-
ethyl (6B), and hexamethyl (10B) pararosaniline. 

Compared to 6B and 2B, methyl violet 10B has a 
darker color intensity. Water, ethanol, diethylene 
glycol, and dipropylene glycol can all dissolve 
methyl violet (Bouasla, et al., 2010). It is stable 
at room temperature, but can break down under 
prolonged exposure to sunlight, depending on the 
percentage of UV radiation from the sun (Jeyasu-
bramaniana, et al., 2015). 

Water cannot naturally destroy synthetic dyes, 
so these dyes persist in the environment and can 
contribute to long-term pollution (Aichour, et al., 
2021). Treatment of dyes derived from textile 
waste with modern methods such as biological 
treatment (Singh, et al., 2022), coagulation-floccu-
lation (Ihaddaden, et al., 2022), biochar/iron oxide 
(Zhang, et al., 2020), surfactant-modified biomass 
(Karaman, et al., 2022), modified magnetic nano-
sorbents (Perwez, et al., 2022), adsorption (Isik, et 
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al., 2022), chlorination treatment (Nikravesh, et 
al., 2020), Fenton process (Bouasla, et al., 2010) 
and photocatalytic (Zhuang, et al., 2022; Hu, et 
al., 2018). Among these methods, semiconductor-
based photocatalysis is promising, because it can 
convert various organic pollutants into less toxic 
compounds without using expensive oxidants. 

The most effective semiconductor is Tita-
nium dioxide (TiO2), because it is biologically 
and chemically inert, non-toxic, in addition to 
having relatively large band gap energy (3.2 eV) 
(Zhuang, et al., 2022), long-term chemical sta-
bility, and good photon stability (Dharma, et al., 
2022). The photocatalytic method works with the 
formation of positive electron pairs and holes (e-, 
h+) (Zhou, et al., 2024). Valence band electrons 
are induced to move to the conduction band by 
photon energy from sunlight or ultraviolet light, 
which results in holes in the valence band. When 
the hole reacts with water, hydroxyl radicals are 
created. Environmentally benign chemicals like 
CO2 and H2O are produced by the photocatalytic 
process (Porcu, et al., 2022)

Surface modification of photocatalysts with 
supporting materials can improve photocatalytic ef-
ficiency (Katwal, et al., 2021), such as glass beads 
(Zhang, et al., 2020), fiberglass (Huang, et al., 
2017), silica (Pal, et al., 2016), alumina (Kimet al., 
2022), and zeolite (Huayna, et al., 2024). Among 
the various supports for photocatalysis, zeolite is 
a more effective material, because it has a unique 
uniform pore size (Derbe, et al., 2021). Zeolite is an 
aluminosilicate compound consisting of two types: 
natural and synthetic. Synthetic zeolite can be made 
from muscovite raw materials containing silica and 
alumina (Khaleque, et al., 2020), such as bentonite 
and kaolinite (Maj and Matus, 2023). 

In this study, alumina and silica were obtained 
from muscovite raw materials to make synthetic 
zeolite using the hydrothermal method. The syn-
thesized zeolite was composited with an anatase 
TiO2 semiconductor to form a photocatalyst that 
increased the photocatalytic efficiency and de-
graded methyl violet dye.

METHODS

Preparation of activation muscovite raw 
materials

Muscovite raw materials were crushed and 
sieved using a 200-mesh sieve. The samples were 

then stirred in 200 mL of distilled water at room 
temperature for 30 minutes, filtered, and the pre-
cipitate was oven-dried at 100 °C for 2 hours be-
fore being dried and stored for further processing 
(Doğaroğlu et al., 2023). Muscovite raw materials 
were activated using 1 M HCl, where a 50-gram 
sample was soaked in the acid for 3 hours, washed, 
and neutralized to pH 7 with distilled water. The 
neutralized samples were dried at 100 °C for 2 
hours and calcined at 500 °C for 4 hours to prepare 
them for further applications (Velarde et al., 2023).

Zeolite synthesis from muscovite raw materials

The synthesis process involved mixing 18 g 
of H₂O with 1.08 g (Synthesis B) and 2.52 g (Syn-
thesis A) of sodium hydroxide. Muscovite raw 
materials was added in quantities of 0.82 g and 
0.76 g, respectively. The mixtures were placed in 
an autoclave, sealed tightly, and heated at 170 °C 
for 72 hours. The resulting solids were vacuum-
filtered and rinsed with distilled water until the 
filtrate reached a neutral pH. Finally, the products 
were dried at 110 °C for 24 hours.

Fusing TiO₂ and synthetic zeolite

To prepare the TiO₂/zeolite composite, 4 g 
of TiO₂ and 10 g of synthetic zeolite were mixed 
with 21 mL of 96% ethanol in a 250 mL glass 
beaker. The mixture was ground using an agate 
mortar and then sonicated for 30 minutes. It was 
subsequently heated at 110 °C for 3 hours in an 
oven, followed by calcination at 550 °C for 2 
hours in a furnace. After calcination, the solids 
were ground into a fine powder.

Characterization of the photocatalyst

The prepared samples were characterized us-
ing various analytical instruments. The elemental 
composition of the muscovite raw material and 
photocatalyst was analyzed using a Shimadzu 
EDX-720 spectrometer via X-ray fluorescence 
(XRF). X-ray diffraction patterns were recorded 
by a Shimadzu XRD-7000 diffractometer via 
X-ray diffraction (XRD), using Cu Kα radiation 
(λ=1.5405 Å) in the 2θ range between 20º to 80º. 
The band gap energies of the samples were deter-
mined using a Thermo Scientific Evolution 220 
UV-DRS spectrophotometer. Bond-type analy-
sis was performed by Fourier transform infrared 
(FTIR) using a Shimadzu IR Prestige 21 FTIR 
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spectrometer, with spectra recorded in the range of 
400–4000 cm-¹. Crystal morphology and diameter 
were analyzed using scanning electron microsco-
py-energy dispersive spectroscopy (SEM-EDS) 
by means of a HITACHI S-4800. In addition, the 
N₂ adsorption-desorption isotherms of the synthe-
sized samples were characterized using a surface 
area analyzer (SAA) Micro 200 to determine the 
specific surface area using the Brunauer-Emmett-
Teller (BET) method. The pore volume and aver-
age pore radius were analyzed using desorption 
isotherms via the Barrett-Joyner-Halenda (BJH) 
method to determine the pore size distribution.

Photocatalytic test

A 25 mL solution of methyl violet with a con-
centration of 30 mg/L (pH 7) was placed into 50 
mL beaker glasses, and 20 mg each of TiO₂, TiO₂/
analcime zeolite, and TiO₂/cancrinite zeolite pho-
tocatalysts were added. The mixtures were then 
irradiated under UV light for 150 minutes. After 
irradiation, the absorbance of the solutions was 
measured using a UV-Vis spectrophotometer at 
the maximum wavelength of methyl violet.

RESULTS AND DISCUSSION

Preparation and activation of muscovite raw 
materials

The results of XRF muscovite raw material 
contain several metal oxides shown in Table 1, 
but there is a difference in concentration before 

and after washing with 1M HCl, namely in SiO2 
and Al2O3. The concentration of SiO2 after wash-
ing with 1M HCl increased while Al2O3 decreased 
in concentration. According to Jia, et al. (2018), 
the calcination process was carried out at a tem-
perature of 500 °C, causing the Al bond to break 
so that the concentration of Al2O3 decreased, 
which then caused defects in the zeolite structure. 
The movement of less stable Si to occupy the po-
sition of Al that had been broken caused the con-
centration of SiO2 to increase from before being 
washed by 1M HCl.

According to Table 1, muscovite raw materials 
contain several metal oxides with noticeable dif-
ferences in the concentrations of SiO2 and Al2O3 
before and after washing with 1M HCl. The con-
centration of SiO2 increased after washing, while 
Al2O3 decreased. According to Jia et al. (2018), the 
calcination process at 500 °C disrupts Al bonds, 
leading to a reduction in Al2O3 concentration and 
defects in the zeolite structure. The displacement 
of less stable Si atoms into the positions formerly 
occupied by Al results in an increase in SiO2 con-
centration after washing with 1M HCl. This obser-
vation is further supported by the diffraction pat-
tern of muscovite raw materials before activation 
with 1M HCl, as shown in Figure 1.

Unactivated muscovite raw materials appear 
in muscovite, chlorite, and quartz peaks, some 
peaks 2q = 5.88°, 19.98°, 28.92°, 54.56°, and 
62.14° that appear on the sample can be changed 
by using 1M HCl, which functions as an activa-
tion agent to remove impurities present in the 

Table 1. XRF results of muscovite raw materials before and after washing with 1M HCl

Metal oxide Concentration (%)
before washing with 1M HCl

Concentration (%)
after washing with 1M HCl

SiO2 49.293 50.888

Al2O3 46.114 44.831

Fe2O3 2.677 2.766

K2O 0.920 0.782

TiO2 0.511 0.513

CaO 0.310 0.064

MnO 0.049 0.046

ZrO2 0.045 0.044

V2O5 0.021 0.020

Y2O3 0.015 0.010

Rb2O 0.010 0.009

ZnO 0.008 0.008

CuO 0.008 0.007

SrO 0.008 0.004
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sample (Tan, et al., 2017; Liu and Pan, 2013) to 
increase the surface area and open pores (Side, 
et al., 2023). Muscovite raw materials sample 
activated with 1M HCl (Figure 1a) is a crystal-
line mineral with the appearance of typical peaks 
at values 2q = 19.99°, 26.20° 34.99° 54.90°, and 
62.02°. Qualitative analysis can be identified by 
comparing the diffraction pattern of muscovite 
raw materials with the standard diffractogram of 
muscovite phase (COD file 96-901-2888). The 
typical peak of muscovite is at 2q = 19.99°, both 
samples have the typical peak.

This result is supported by the FTIR spectrum 
pattern of muscovite raw materials (Figure 2a), 
which shows the results of the FTIR spectrum of 
muscovite as reported in the research of Selim, 
et al. (2018), indicating peaks in the 450 cm-1 to 
1100 cm-1 region of strong Si-O absorption and 
OH bending. According to previous reports, the 
468 cm-1 absorption is due to Si-O-Si bending vi-
brations and 528 cm-1 Al-O-Al bending vibrations 
(Janek, et al., 2009). The 694 cm-1 absorption 
band shows the Si-OH and 912 cm-1 Al-OH func-
tional groups. The absorption band around 3400 
cm-1 is a hydroxyl group (Herrera, et al., 2021). 
While in the FTIR spectrum pattern (Figure 2b), 
the peak in the 450–1950 cm-1 absorption area has 
similarities to the mineral peak before activation, 
it indicates that washing using HCl does not dam-
age the Si-O-Si and Al-O-Al structures (Liu and 
Pan, 2013) in muscovite raw materials used as a 
source of aluminosilicates in zeolite synthesis. 
According to Sabalova et al. (2018), 1M HCl can 
dissolve some of the mineral matrices and cause 

structural changes in the sample, so that the wave 
numbers in 2300 cm-1 to 3400 cm-1 regions ex-
perience structural breakdown into several wave 
numbers caused by activation using 1M HCl (Al-
vand, et al., 2024).

Synthesis zeolite from muscovite raw materials 

This procedure generally involves the simul-
taneous addition and stirring of a solution contain-
ing muscovite raw materials, NaOH, and distilled 
water. Sodium hydroxide is used as the mineraliz-
ing agent (Wang, et al., 2007). Dissolution under 
hydrothermal conditions using Na2SiO3, CaOH, 
and KOH solutions has been studied (Ma et al., 
2016). However, recrystallization of muscovite 
using NaOH solvent under hydrothermal condi-
tions without organic templates is rarely reported. 

Synthesis A, carried out at 170 °C for 72 
hours produced zeolite cancrinite as a single 
phase, by previous reports (Selim, et al., 2018; 
Ifeoma, et al., 2022), accompanied by signifi-
cant diffraction peaks (Figure 3a), located at 2q 
= 19.0°, 24.0°, and 27.1° which correspond to 
(110); (210); (211) peaks typical of zeolite can-
crinite with standard cancrinite 24.0° (JCPDS 
No. 01-087-1523). Synthesis B produced anal-
cime zeolite (Figure 3b) with sharp diffraction 
peaks 2q = 15.8°, 27.5°, and 30.9° correspond-
ing to crystal planes (211); (400); and (511) with 
standard analcime 27.5° (JCPDS No. 41-1478). 
This can be obtained by adjusting the Si/Al ratio. 
Therefore, the ratio affects the formation of crys-
tal phase and crystallization of zeolite. Sodium 

Figure 1. XRD diffraction patterns of a) activated muscovite raw materials, b) muscovite raw materials, and 
c) standard diffractogram for muscovite phase (COD file 96-901-2888).
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Figure 2. FTIR spectra of a) muscovite raw materials and b) 1M HCl activated muscovite

Figure 3. XRD Patterns (a) synthesis A, (b) synthesis B, (c) TiO2 anatase, (d) TiO2-synthesis A, 
and (e) TiO2-synthesis B

hydroxide plays an important role in zeolite for-
mation. Increasing the concentration of NaOH 
results in more SiO2 forming cancrinite, so that 
the analcime phase changes to the cancrinite 
phase (Lee, et al., 2000).

Fusing TiO2 and synthetic zeolite

Figure 3c displays the TiO2 anatase diffrac-
tion pattern, which was found on the crystal plane 
(101); (004); and (200) peaks. The usual peak 
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is 2q = 25.3°, 37.8°, and 48.1° that appear like 
typical peaks of TiO2 anatase in the standard 2q 
= 25.3° (JCPDS No. 21-1272). The composites of 
TiO2/CAN and TiO2/analcime have been produced 
using a sonication method with a frequency of 20 
KHz. The TiO2/cancrinite composite in the dif-
fraction pattern (3d) shows a significant indicator 
of composite formation at 2q = 18.9°, 25,3°, and 
27.1°. Adjacent peaks show typical TiO2 anatase 
and zeolite cancrinite patterns, suggesting that the 
intensity of the diffraction peak has not changed 
significantly, concluding that zeolite cancrinite 
molecules have no influence (Ifeanyi, et al., 2024). 
In diffraction pattern (3e), TiO2/analcime photocat-
alyst shows a sharp peak at 2q = 20.1°, 25.3°, 30.1° 
and undergoes some shifts due to the presence of 
a new TiO2 anatase phase, which has a distinctive 
peak of 25.3°. However, the characteristic peaks of 
analcime and cancrinite also appear, although they 
are slightly shifted due to the composite process. 
However, it still indicates that the zeolite structure 
was not significantly damaged during the synthesis 
process. However, the zeolite (analcime) peaks are 
weak, which can be explained by the low zeolite 
concentration of the composite and the fact that 
TiO2 nanoparticles assemble the zeolite surface, 
which lowers the ANA zeolite peak in the compos-
ite. (Saule, et al., 2024).

The infrared spectra of synthesized TiO2/anal-
cime and TiO2/cancrinite are shown in Figure 4, 
and the spectra bands correspond to aluminosilicate 
and anatase TiO2 materials. The absorption band 
450–600 cm-1 is the O-Ti-O stretching vibration 

by standard (NIST 13463-67-7). While 610–1100 
cm-1 corresponds to bending vibrations (TO4, 
T=Si/Al), Si-O-Ti asymmetric vibrations and Ti-O 
deformation confirm titanium presence in the ma-
terial structure. This band stretches to a band with 
H2O bending vibrations at about 3000 cm-1 from 
the region around 1300 cm-1. The stretching vibra-
tion of the hydroxyl group is represented by the 
absorption band at 3000–3600 cm-1 (Amin, et al., 
2023). Overall, these FTIR results confirm the suc-
cessful impregnation of TiO2 on the zeolite without 
damaging the main structure of the material.

The morphology of TiO2 with zeolite ANA 
and CAN at various magnifications is displayed 
in Figure 5. Figure 5c displays a uniform size of 
10.58 μm and a characteristic hexagonal structure 
of TiO2/ANA (Figure 5a,b). Most crystals with 
the same shape were also found in kaolinitic rock 
zeolite analcime (Novembre and Gimeno, 2021), 
and fly ash zeolite analcime (Li, et al., 2023). TiO2/
CAN (Figure 5d,e) exhibits a cancrinite-typical 
shape as rod-like, hexagonal needles in Figure 5f, 
which have a length of roughly 21.3 μm. Similar 
morphologies were found in cancrinite zeolites 
synthesized from a geophagic clay (Joseph, et al., 
2022), and cancrinite in sediment (Deng, et al., 
2006). The morphological results for TiO2 are in 
the form of amorphous nanoparticles only thinly 
distributed over the zeolite, because the material 
ratio in the synthesis (10 g zeolite vs. 4 g TiO2) is 
dominated by zeolite, which can cause TiO2 not to 
be visible morphologically, the TiO2 particles have 
a round shape and size and uniform morphology 

Figure 4. FTIR Spectra of TiO2/cancrinite and TiO2/analcime composites
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(Tovani, et al., 2020). SEM analysis showed that 
some of the small particles surrounding the zeolite 
were TiO2 in the anatase phase based on their size 
and distribution. This is supported by anatase TiO2 
which is often formed as small particles. Accord-
ing to Shokry et al. (2025), the SEM analysis of 
TiO2 found that TiO2 particles are mostly spherical 
with diameters ranging from 70 to 158 nm.

The surface area and pore size distribution of 
the TiO2/CAN and TiO2/ANA composites, as de-
termined by N2 adsorption, exhibit a similar pat-
tern in Figure 6, with a sharp increase in spike 
at relatively low pressure (P/Po) followed by a 
narrow hysteresis at P/Po = 0.8 – 1.0 due to the 
solid surface pores controlling capillary conden-
sation and the number of adsorbate layers (Toshi-
hide and Nicholson, 2011), and is associated 
with solids having particle aggregates containing 
slit-shaped pores. Composite exhibits a type-III 

isotherm (Burhan, et al., 2018). Table 2 shows the 
pore size > 2 nm using the BJH method, and the 
composite obtained a mesoporous structure (Dey, 
et al., 2023). Cancrinite and analcime zeolites 
with TiO2 addition significantly increased sur-
face area. Previous studies revealed the surface 
areas of cancrinite and analcime to be 14.71 m²/g 
and 17.39 m²/g, respectively (Amin, et al., 2023). 
These findings offer a fascinating perspective on 
the impact of TiO2 addition, which is known as a 
semiconductor material with high photocatalytic 
activity that not only provides additional func-
tionality but also affects the pore of zeolite, fur-
ther increasing the presence of TiO2 addition. The 
BJH adsorption surface area of the TiO2/ANA 
composite is 48.64 m2/g, while that of the TiO2/
CAN sample is 32.20 m2/g. The mesopore surface 
area gives a higher estimate, because BJH method 
calculates the total area of the mesopores.

Figure 5. TiO2/ANA composite (a-c) and TiO2/CAN composites, (d-f) SEM photos at varying magnifications
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Figure 7 shows the UV-Vis reflectance spec-
trum with the determination of band gap energy, 
which can be obtained by plotting a straight line 
that intersects the X-axis on the graph of the re-
lationship between energy (eV) with (F(R)hν)1/2. 
This graph shows anatase TiO2 has a band gap 

energy = 3.17 eV approach to the band gap en-
ergy of previous research (Zhuang, et al., 2022). 
The decrease in the TiO2/CAN (3.13 eV) and TiO2/
ANA (3.11 eV) composites indicates structure 
modification due to the interaction between TiO2 
and zeolite. The TiO2/ANA composite, with the 

Table 2. The result of composites using the BET method
Composites Surface area Pore diameter Total pore volume

TiO2/ANA 34.80 m2/g 8.2 nm 0.07 cm3/g

TiO2/CAN 23.08 m2/g 12.9 nm 0.07 cm3/g

Figure 6. The composites by isothermal N2 adsorption-desorption and pore size distribution (as an inset figure)

Figure 7. Band gap determination graphs of TiO2 anatase, TiO2/CAN and TiO2/ANA composites
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lowest band gap value, shows the most significant 
interaction between TiO2 and zeolite analcime. 
This is likely due to the nature of analcime zeolite, 
which supports the even dispersion of TiO2, there-
by increasing charge transfer and lowering the 
electron excitation energy. This decrease in band 
gap energy indicates that both composites have a 
higher potential to utilize UV light with a larger 
wavelength (Irodia, et al., 2023) than TiO2 anatase 
without supporting materials so that the TiO2/ANA 
photocatalyst is more effective for photodegrada-
tion activity tests and can be proven by the pho-
tocatalytic test results in Figure 8. When TiO2 is 
distributed in zeolite, there is interaction between 
TiO2 and zeolite at their interface. These interac-
tions can change the interface structure and affect 
the electron energy levels in TiO2. A modification 
in the band gap energy distribution in TiO2 results 
in a reduction of the band gap. 

Photocatalytic test

In the photodegradation effectiveness test 
stage, testing was carried out under optimum con-
ditions using TiO2/ANA, TiO2/CAN, and TiO2. 
This comparison aims to evaluate the effective-
ness of adding TiO2/ANA in degrading methyl 
violet compared to using TiO2 and TiO2/CAN. 
The results of testing the effectiveness of methyl 
violet photodegradation for each treatment can be 
seen in Figure 8.

According to statistics, the percentage of deg-
radation using TiO2 is obtained at 50.48%, this is 

due to the ability of TiO2 as a semiconductor to de-
compose methyl violet through the mechanism of 
absorption of UV radiation. TiO2 can decompose 
methyl violet in the UV absorption region with a 
band gap of 3.17 eV. The semiconductor nature of 
TiO2 allows this material to absorb light energy, 
especially UV radiation, thus producing electron 
and hole pairs that trigger the formation of hy-
droxyl radicals (•OH) (Shokry, et al., 2025). In the 
photodegradation treatment using TiO2/CAN, the 
degradation percentage increased to 91.66%. This 
increase is due to the modification of TiO2 on the 
surface of zeolite cancrinite, which reduces the 
band gap of TiO2 from 3.17 eV to 3.13 eV. This 
decrease in band gap reduces the energy required 
for electron transition from the valence band to the 
conduction band, thereby increasing the degrada-
tion efficiency (Katwal, et al., 2021). Meanwhile, 
using TiO2/ANA produced the highest degrada-
tion percentage of 95.33%. This efficiency is in-
fluenced by the modification of TiO2 on zeolite 
analcime, which functions as a carrier to expand 
the specific surface and improve the distribution of 
TiO2 (Huayna, et al., 2024). On the basis of sup-
porting data, TiO2/ANA has a band gap of 3.11 eV 
and a larger surface area than TiO2/CAN, contrib-
uting to higher degradation effectiveness. Thus, the 
development of TiO2 on the surface of zeolites, es-
pecially analcime zeolites, was shown to improve 
the photodegradation efficiency by decreasing the 
band gap and optimizing the surface area.

Table 3 compares the photocatalytic degrada-
tion performance in degrading methyl violet of 

Figure 8. Graph of methyl violet photodegradation effectiveness test 
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various catalyst systems under different experi-
mental conditions, highlighting the differences in 
catalyst type, methyl violet concentration, cata-
lyst mass, irradiation time, and maximum percent 

degradation of methyl violet. This table shows the 
efficiency of this study, which reached 97.23% 
on TiO2/ANA, 95.33% degradation using TiO2/
ANA, and 91.66% degradation on TiO2/CAN in 

Table 3. Comparison of photocatalytic degradation performance in degrading methyl violet of various catalyst 
systems under different experimental conditions

Catalyst Catalyst dosage 
(g)

Concentration 
of MV (mg/L) Time (minute) Percentage (%) 

degradation Ref

TiO2/ANA/UV 0.02 30 150 95.33 Present work

TiO2/CAN/UV 0.02 30 150 91.66 Present work

TiO2/UV 1 10 14 89 Shokry, et al., 2025

TiO2/natural light 0.3 20 30 83 Yang, et al., 2013

TiO2/Pt/UV 0.025 15 20 72.6 Saeed, et al., 2017

Pristine TiO2/UV - - 480 70 Padma, et al., 2023

CuO-TiO2 1 - 480 49.5 Sherly, et al., 2024

TiO2/AgNP/UV - 4 100 89 Oliveira and Sant’Ana., 2024

Au/UV - - 180 86 Gadallah, et al., 2007

Figure 9. Reaction mechanism of methyl violet degradation process
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the degradation of methyl violet using 20 mg in 
each catalyst variation under UV light for 150 
minutes. This performance surpasses many other 
studies, including those using advanced catalysts 
such as Pt metal-doped TiO2, which often require 
longer times or higher costs. Alternative systems, 
such as TiO2 using a recirculating reactor (Shokry, 
et al., 2025), show good efficiency but involve 
aluminum foil as a UV light enhancer in the reac-
tor. Compared to this study, the combination of 
TiO2/zeolite is efficient in degrading methyl vio-
let due to the utilization of natural resources, and 
its high efficiency emphasizes its potential as a 
cost-effective and environmentally friendly solu-
tion for color effluent treatment.

The mechanism of methyl violet degradation 
using photocatalysts involves a series of oxida-
tion and de-methylation reactions initiated by 
forming hydroxyl radicals (•OH) on the photocat-
alyst surface (Haleem, et al., 2024). The reaction 
starts with N-demethylation, releasing the methyl 
group on the methyl violet molecule, produc-
ing formaldehyde (HCHO) as a by-product. In 
the final stage, this reaction gradually produces 
simple organic compounds, such as HCOOH and 
CH3OH, which are mineralized to carbon diox-
ide (CO2) and water (H2O). This process demon-
strates the efficiency of photocatalysts in degrad-
ing complex molecules into simpler and environ-
mentally friendly products (Fig. 9).

CONCLUSIONS

In this study, the hydrothermal method was 
successfully used to make synthetic zeolites from 
raw materials of muscovite into cancrinite and 
analcime zeolites. In principle, the formation of 
various types of zeolites can be designed by se-
lecting the temperature and alkali concentration 
used. Then, they are composited with anatase 
TiO2 to become a more effective photocatalyst 
in degrading methyl violet dye. The TiO2/ANA 
photocatalysts showed hexagonal morphology 
with homogeneous crystals with a surface area of   
34.80 m2/g. In contrast, TiO2/CAN showed a rod 
morphology with a surface area of   23.08 m2/g, 
each morphology surrounded by small particles 
indicating the morphology of TiO2. UV-DRS 
spectra confirmed that TiO2/ANA showed a lower 
band gap of 3.11 eV compared to TiO2 (3.17 eV) 
and TiO2/CAN (3.13 eV). The TiO2/zeolite ANA 
composite showed photocatalytic efficiency in 

degrading methyl violet with a dye degradation 
of 95.33%. This experiment proves that TiO₂/
zeolite-based photocatalyst can be used to treat 
dye-contaminated wastewater, contributing to en-
vironmental sustainability.
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