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INTRODUCTION

For more than a decade, the urgent need to re-
duce emissions of CO2 and other greenhouse gas-
es, which are responsible for climate change and 
global warming, has been resonating in the world. 
There are several political agreements, e.g. The 
Paris Agreement on Climate Change 2015, which 
aims to limit global warming below 2 °C to the 
pre-industrial level (Paris Agreement | Summary 
& Facts | Britannica, 2024). The Climate Change 
Conference (COP 28) in Dubai in 2023 called on 
countries to increase their emission reduction tar-
gets and signalled the beginning of the end of the 
fossil fuel era (COP 28: What Was Achieved and 
What Happens Next? UNFCCC (n.d.)). In addi-
tion to reducing greenhouse gases and achieving 
climate goals, carbon capture and storage (CCS) 

is also important for cement, steel, and aviation 
sectors, which are challenging to decarbonize due 
to their high CO2 emissions and lack of alterna-
tives (What is carbon capture and storage? CCS 
explained, National Grid Group (n.d.)). CCS can 
help to mitigate emissions from these sectors, 
playing a vital role in a comprehensive climate 
strategy (About CO2.Earth (n.d.)). CCS techno-
logies studied over 20 years represented physical 
(Ban et al., 2014; Belmabkhout et al., 2016; Jan-
sen et al., 2009), chemical (Liu et al., 2020; Sha et 
al., 2018; Yamamoto et al., 2013) and biological 
CO2 fixation (Goli et al., 2016; Latini et al., 2022; 
Onyeaka et al., 2021).

CO2 mineralization or carbonation is a safe 
and stable CO2 fixation/capture/sequestration 
through reactions between alkaline earth metal 
compounds and CO2 to form stable carbonates. 
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Capturing carbon dioxide (CO2) emissions is necessary for a multi-faceted approach to combating climate change. 
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Initially, almost two decades ago, researchers 
mainly studied abundant Ca/Mg silicates such as 
olivine, forsterite, serpentinite, and wollastonite 
(Huijgen et al., 2006; Lackner, 2002; O’Connor 
et al., 2002) later also Ca/Mg-bearing industrial 
waste, slags (Bao et al., 2010; Wang et al., 2014) 
and even municipal solid waste (Lai et al., 2012) 
for this purpose. However, existing CO2 minera-
lization methods have required calcination of the 
material at high temperatures, which makes them 
economically disadvantageous. The first reports 
on the use of high-energy milling for mechanical 
activation of silicate minerals for CO2 carbonation 
were reported between 2001 and 2004 (Kalinkin 
et al., 2003; Kalinkin et al., 2004; Kalinkina et al., 
2001a, 2001b). Later on, Turianicová et al. inves-
tigated the carbonation of olivine and vermiculite 
using mechanical activation (Turianicová et al., 
2013; Turianicová et al., 2014). The main dri-
ving idea was to imitate and accelerate the natural 
weathering process of minerals by high-energy 
milling, which breaks the mineral crystal lattice 
together with specific surface growth and overall 
subsequent chemical reactivity (Baláž, 2008).

K-feldspar, KAlSi3O8, is an abundant, in-
soluble potash ore of the aluminosilicate group of 
minerals with significant worldwide reserves (e.g. 
in China, and Türkiye), which has attracted inte-
rest due to the possibility of extraction of soluble 
potassium used as a fertilizer (Chen et al., 2024). 
The K-feldspar crystal lattice contains [AlO4]

5- and 
[SiO4]

4- tetrahedra joined at the corners through O 
atoms and forming an infinite 3D structure with 
K+ located in channels of the framework, which is 
typical for tectosilicates (Chen et al., 2024; Skorina 
and Allanore, 2015). In 2015, Ye et al. published 
the alternative utilization technology of K-feldspar 
which was thermally activated with the CaCl2 addi-
tive at a temperature of 908 °C. At this temperature 
and with a suitable amount of CaCl2, K

+ ions were 
exchanged for Ca2+ ions, and anorthite, pseudo-
wollastonite, and wollastonite were formed, which 
were responsible for the fixation of CO2 in an au-
toclave and the subsequent formation of stable cal-
cite (Ye et al., 2014). Such a process using high 
temperatures during roasting, a temperature of 150 
°C and a pressure of 4 MPa during autoclaving was 
laborious, consisting of process intermediate steps 
of filtering and drying, which was also time and 
economically demanding. A year later, Sheng et al. 
reported in detail that temperature, CO2 pressure, 
and reaction time affected the carbonation of po-
tassium-depleted residues of K-feldspar containing 

wollastonite, pseudowollastonite, Cl-mayenite, an-
orthite, and quartz. However, they also used an au-
toclave for experiments with maximum values ​​of 
200 °C temperature, 4 MPa pressure, and 120 min 
reaction time (Sheng et al., 2015).

The use of milling in the investigation of CO2 
mineralization of K-feldspar is very rarely de-
scribed in the literature. Wang et al. applied a rod 
mill for wet milling of K-feldspar only for its pre-
treatment and then for milling calcined mixtures 
of K-feldspar and CaSO4, which were subjected 
to CO2 mineralization in the autoclave at tempe-
ratures of 50–150 °C and CO2 pressures of 0.3–4 
MPa (Wang et al., 2014). Shangguan et al. applied 
the milling-assisted technology using a planetary 
mill to activate K-feldspar and CaCl2 as an addi-
tive before the subsequent CO2 mineralization 
process in an autoclave at a temperature of 150 °C 
and a pressure of 4 MPa (Shangguan et al., 2016). 
Since the existing CO2 mineralization methods 
remain economically costly, it is therefore of the 
utmost importance to search for new strategies to 
improve CO2 carbonation technology.

The aim of this study was to utilize abundantly 
occurring K-feldspar ore modified with CaO ad-
ditive for capturing CO2 gas without using the la-
borious, expensive and ultimately dangerous auto-
claving process. This is the first report on the novel 
strategy consisting of two-step high-energy ball 
milling schematically shown in Fig. 2. Namely, the 
mechanochemical modification of the K-feldspar 
took place during the first step, followed by in situ 
capture of CO2 in the second step. To the best of 
our knowledge, this is a not yet published report 
on such a strategy. The advantage is the simplicity, 
time-saving character of the entire process without 
intermediate steps and its performance in a single 
device - a chamber of the ball mill. The kinetics 
of the process, phase analysis, physico-chemi-
cal properties, morphology of the products, the 
amount of captured carbon and CO2-mineraliza-
tion ratio were evaluated. Infrared spectroscopy, 
and thermogravimetric analysis equipped with 
mass spectroscopy were utilized to verify CO2 
mineralization of CaO-modified K-feldspar.

EXPRIMENTAL

Materials

K-feldspar ore used as input material for 
the experiments was provided by Kale Seramik 
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Company, Türkiye together with the following 
chemical analysis: 70.87% SiO2, 16.33% Al2O3, 
10.6% K2O, 1.99% Na2O, 0.34% CaO, 0.15% 
Fe2O3, 0.14% BaO, 0.06% P2O5, 0.05% TiO2, 
0.04% MgO, 0.01% SrO. Based on the X-ray 
diffraction (XRD) analysis shown in Figure 1 in 
addition to K-feldspar (microcline, KAlSi3O8), 
diffraction peaks for quartz (SiO2) and albite 
(NaAlSi3O8) were revealed (Baláž et al., 2024). 

The values of particle size of the fractions d90, 
d50, and d10 of K-feldspar ore were 518, 293, and 
121 μm, respectively. Reagent-grade calcium oxi-
de powder (CaO, 99.9%, Sigma-Aldrich, USA) 
was used as an additive for the mechanochemical 
modification of K-feldspar.

In situ CO2 capture experimental procedure 
by two-step milling

Mechanochemical modification of K-feld-
spar ore with CaO (first step, see Fig. 2) was per-
formed in the laboratory planetary ball mill Pul-
verisette 6 (Fritsch GmbH, Germany) according 
to the chemical reaction:

	

1 
 

2 𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆3𝑂𝑂8 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 4 𝐻𝐻2𝑂𝑂 = 
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴2𝑆𝑆𝑆𝑆3𝑂𝑂10 · 3 𝐻𝐻2𝑂𝑂 + 2 𝐾𝐾𝐾𝐾𝐾𝐾 + 3 𝑆𝑆𝑆𝑆𝑂𝑂2 

 
(1) 
 
 

𝐶𝐶𝐶𝐶2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%) = 
=  𝑀𝑀2−𝑀𝑀3

𝑀𝑀1
× 100 (2) 

 

	 (1)

The following milling conditions were used: 
volume of milling chamber 250 mL, loading of 
the mill 50 balls (10 mm in diameter), the mate-
rial of milling chamber and balls- tungsten car-
bide (WC), the total mass of the powder charged 
20.18 g, ball-to-powder ratio-20:1, milling 

atmosphere-air, rotation speed-600 rpm, and mill-
ing time-90 min (each cycle of milling lasting 30 
min was followed by a cooling break of 15 min). 
These conditions were chosen based on the De-
sign of Experiments via the Taguchi method from 
our previous research, as this sample exhibited the 
highest reactivity for recovery of Al (Baláž et al., 
2024). Immediately after the first step (Figure 2), 
the process of in situ sequestration in the same 
mill and milling chamber followed, so that CO2 
gas with a flow rate of 5 L/min was introduced 
through the valve of the milling chamber lid and 
the chamber was flushed for 2 min through the 
second valve to ensure air-free milling environ-
ment. The resulting pressure of CO2 in the milling 
chamber before the start of milling was ~30 kPa. 
The milling conditions were as follows: rotation 
speed 450 rpm, milling time 30 and 60 min, and 
addition of 10.1 ml H2O, in line with the previous 
CO2 in situ sequestration experiments with oli-
vine (Turianicová, 2009).

Characterization methods 

X-ray diffraction measurements (XRD) were 
carried out in the Bragg-Brentano geometry using 
a D8 Advance diffractometer (Bruker, Germa-
ny), working with CuKα radiation and a Bruker 
LYNXEYE detector. ICDD-PDF2 Database was 
used for phase matching. Fourier-transform infra-
red (FT-IR) spectra were measured using the Ten-
sor 29 (Bruker, Germany) in the frequency range 
of 4000–400 cm−1 with the KBr pellet method. 

Figure 1. XRD pattern of the raw K-feldspar ore. Reprinted with permission from (Baláž et al., 2024)
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KBr was dried before the analysis at 100 °C for 1 
h. Thermogravimetric measurements (TG/DTA) 
were carried out using STA 449 Jupiter thermal 
analyzer (Netzsch, Germany) coupled with a 
QMS 430C Aëolos mass spectrometer (Netzsch, 
Germany). The measurements were performed at 
steady airflow from 45 °C up to 1000 °C with a 
heating rate of 10 °C/min. Changes in the sample 
weight and m/z signals (m/z = 18 (H2O) and m/z 
= 44 (CO2)) were constantly monitored.

Elemental carbon, hydrogen, nitrogen, and sul-
phur were analysed using a Vario MACRO cube 
(Elementar Analysensysteme GmbH, Germany) 
with a thermal conductivity detector. Helium (pu-
rity 99.995%, intake pressure 2 bar) was chosen as 
the carrier gas in all analyses. The purity of oxy-
gen for combustion was 99.995% with an intake 
pressure of 2 bar. A combustion tube was set up at 
1150 °C and a reduction tube at 850 °C. Sulphani-
lamide (C = 41.81%, N = 16.26%, H = 4.65%, S = 
18.62%) was used as the CHNS standard.

CO2 mineralization ratio or mechanochemi-
cal carbonation ratio was calculated according to 
literature (Shangguan et al., 2016) based on the 
weight loss of the in situ sequestered mechanical-
ly activated K-feldspar without CaO and mecha-
nochemically modified K-feldspar samples with 
CaO after calcination in a muffle furnace. The cal-
culation was performed according to the formula:

	

1 
 

2 𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆3𝑂𝑂8 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 4 𝐻𝐻2𝑂𝑂 = 
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴2𝑆𝑆𝑆𝑆3𝑂𝑂10 · 3 𝐻𝐻2𝑂𝑂 + 2 𝐾𝐾𝐾𝐾𝐾𝐾 + 3 𝑆𝑆𝑆𝑆𝑂𝑂2 

 
(1) 
 
 

𝐶𝐶𝐶𝐶2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (%) = 
=  𝑀𝑀2−𝑀𝑀3

𝑀𝑀1
× 100 (2) 

 

	 (2)

where:	M2 and M3 are masses of one-hour cal-
cinated samples at 400 °C and 800 °C 
respectively, and M1 is the mass of the 
sample before calcination. 

Scanning electron microscopy (SEM) study 
was performed using a MIRA3 FE‐SEM micro-
scope (TESCAN) equipped with the energy-dis-
persive X‐ray (EDX) detector (Oxford Instrument).

RESULTS AND DISCUSSION

The XRD patterns of the mechanochemically 
modified K-feldspar and a subsequent in situ CO2 
sequestration (i.e. after both steps of milling) in 
Figure 3 confirmed the capture of CO2 and sub-
sequent mineral carbonation and the formation of 
calcite, CaCO3 (01-072-1652). With the increase 
of the in situ capture time (second step of mill-
ing) from 30 min to 60 min, the intensity of the 
CaCO3 peaks increased. Further increasing in situ 
capture time would be disadvantageous from an 
economic point of view of the applicability of the 
process in practice. By comparing the pattern of 
K-feldspar without the addition of CaO, where only 
its significant amorphization occurred, with the 
addition of CaO, a mechanochemical reaction of 
K-feldspar with CaO probably occurred leading to 
the formation of some type of a calcium alumino-
silicate such as anorthite, CaAl2Si2O8 (041-1486) 
or scolecite, CaAl2Si3O10.3H2O (01-075-1456) 

Figure 2. Scheme of in situ CO2 capture procedure by two-step milling

Figure 3. XRD patterns of K-feldspar after two-step 
milling: mechanical activation and mechanochemical 

modification with CaO and subsequent in situ CO2 
sequestration with milling time 30 and 60 min
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according to the Equation 1. However, it could 
not be proven by XRD analysis due to the overlap 
of the peaks of these aluminosilicates. The Ca2+ 
cations in these compounds together with H2O 
were subsequently able to react with CO2 gas in 
the milling chamber during in situ sequestration 
and formed CaCO3. The reaction mechanism 
of carbonation of Ca-containing minerals was 
described by Huijgen et al. (Huijgen et al., 2006). 
According to them, it is a solid-liquid reaction in 
which gaseous CO2 forms H2CO3 with H2O, and 
this differently dissolves Ca2+ ions from Ca-con-
taining minerals, and the nucleation and growth 
of the CaCO3 phase gradually takes place.

Figure 4 compares the behaviour of mecha-
nochemically carbonated K-feldspar after two-
step milling for 30 and 60 min during thermal 
treatment up to 1000 °C. The thermal analysis 
coupled with mass spectrometry (QMS) indicated 
similarity between both samples, suggesting that 
the prolonged milling time did not significantly 
affect CO₂ sequestration. In both cases, a two-
step thermal decomposition occurred, as clearly 
shown on the TG curves. The similar mass losses 
of 23.8% and 21.9% are attributed to the release 
of gaseous products with amu = 18 and 44, cor-
responding to H₂O (amu 18) and CO₂ (amu 44). 
These effects are related to the dehydration and 
decarbonation process, respectively, which was 
also confirmed by the MS spectra located at the 
bottom of Figure 4a) and 4b). The in situ mecha-
nochemical carbonation occurred under wet con-
ditions, leading to partial formation of calcite (Fi-
gure 3). While dehydration occurred up to 200 °C, 

decarbonation occurred at approximately 750 °C. 
From the TG and QMS curves (bottom part of 
Figure 4), it was possible to evaluate the thermal 
stability of the produced calcite which showed 
stability in the temperature range of 25–550 °C, 
and it is assumed that it will also have long-term 
stability. The endothermic effect around 900 °C 
visible in the DTA curves could be associated 
with structural changes in feldspar, most likely 
resulting from its mechanochemical pretreatment.

Infrared spectroscopy (FTIR) was utilized 
to confirm the formation of the carbonate phase 
(calcite) during the in situ sequestration process. 
Figure 5 shows the FTIR spectra of K-feldspar 
after two-step milling for 30 and 60 min, both be-
fore and after thermal treatment. Evidence of CO₂ 
binding and carbonate phase formation can be 
identified by the peak in the wavenumber region 
of 1600–1300 cm⁻¹, characteristic of CO₃²⁻ vib-
rations (Nakamoto, 2008). As seen in the spec-
tra, this peak is only present when K-feldspar 
was mechanochemically modified with CaO. 
The spectra of samples after thermal treatment 
do not exhibit this peak due to decarbonation 
induced by heating. The spectra in the range of 
1250–400 cm⁻¹ showed significant differences af-
ter thermal treatment, indicating structural chan-
ges. The results of CHNS elemental analysis and 
the values of CO2 carbonation (mineralization) 
ratios of mechanically activated and CaO-modi-
fied K-feldspar samples after two-step milling are 
summarised in Table 1. According to the amounts 
of carbon, modified K-feldspar samples refer to 
the binding of around 4–6.5 times more C against 

Figure 4. TG/DTG-DTA curves with QMS analysis of K-feldspar after two-step milling: (a) mechanochemical 
modification with CaO and subsequent in situ CO2 sequestration for 30 min, (b) for 60 min



406

Journal of Ecological Engineering 2025, 26(5), 401–409

Figure 5. FT-IR spectra of mechanically activated K-feldspar (black line) and mechanochemically modified 
K-feldspar with CaO and subsequent in situ CO2 sequestration for 30 (red line) and 60 min (blue line) before 

(solid line) and after (dash line) thermal treatment

Table 1. Elemental analysis of K-feldspar after two-step milling: mechanical activation or mechanochemical modification 
with CaO and subsequent in situ CO2 sequestration, and calculated CO2 mechanochemical carbonation ratio

Sample C (%) H (%) CO2 mechanochemical carbonation ratio (%)

K-feldspar/–/30 min 0.27 1.59 0.74

K-feldspar/CaO/30 min 1.02 1.50 3.49

K-feldspar/CaO/60 min 1.69 1.24 6.05

Figure 6. SEM image (a) and EDX analysis (b) of K-feldspar/CaO/60 min

unmodified feldspar. The contents of N and S 
were under the detection limit. The mineraliza-
tion ratio increased up to 8 times compared to 
unmodified K-feldspar reaching 6.05%, which is 
slightly higher than the 5.0% achieved by (Shang-
guan et al., 2016) for milled feldspar (up to 20 h) 
with the addition of CaCl2-slag, where CO2 se-
questration was carried out in an autoclave at 
150 °C and 4 MPa. On the other hand, our value is 
slightly lower in comparison to the mineralization 

ratio of 7.7% reached by (Wang et al., 2014), 
who calcined feldspar with CaSO4 at 1200 °C 
for 2 h before autoclaving at 100 °C and initial 
CO2 pressure of 4 MPa. The morphology of K-
feldspar after mechanochemical modification and 
subsequent in situ CO2 sequestration was studied 
with SEM. An SEM image of the K-feldspar/
CaO/60 min sample with the highest CO2 carbon-
ation ratio is displayed in Figure 6a. In order to 
estimate the chemical composition of the sample, 
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the EDX quantitative analysis was performed as 
shown in Figure 6b. It resulted in a chemical com-
position with a K:Al:Si:O atomic ratio of about 
1:1:4:5 which corresponded to oxygen-deficient 
K-feldspar, KAlSi3O8. The 2.1% of bound carbon, 
presented as calcium carbonate (CaCO3) roughly 
matched the CHNS analysis of the given sample 
(Table 1). The element mapping for Ca and C in 
Figure 7 also revealed and confirmed the pres-
ence of CaCO3 particles in the K-feldspar/CaO/60 
min sample.

CONCLUSIONS

In this paper, the new strategy for the poten-
tial use of common, and abundant but refractory 
K-feldspar ore for CO2 sequestration was presented 
and tested. The novel mechanochemical process-
ing of K-feldspar consisted of two-step high-
energy ball milling, while during the first milling 
stage, K-feldspar was modified with CaO, and 
during the second milling stage, CO2 capture and 
mechanochemical carbonation were performed. 
Milling time during the second milling stage had 
only a slight effect on the amount of sequestrated 
carbon. The highest amount of carbon 1.69%, 
and a maximum carbonation ratio of 6.05% was 
achieved for CaO-modified K-feldspar during 60 
min of milling in a CO2 atmosphere. This new 
strategy supported the mechanism of CO2 capture 
through the formation of calcium aluminosilicate 
during K-feldspar modification, which was sub-
sequently able to react with CO2 to form calcium 

carbonate. Unmodified K-feldspar was unable to 
capture CO2 by this process. The proposed simple 
technology could represent, from an environmen-
tal and economic point of view, affordable and 
scalable processing of K-feldspar, e.g. in the ce-
ment industry.
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