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INTRODUCTION 

Environmental pollution by heavy metals is 
becoming an increasingly serious problem, rais-
ing significant concern due to its negative effects 
on natural ecosystems and human health (Vareda 
et al., 2019). Unlike organic pollutants, heavy 
metals are not naturally biodegradable and can 

accumulate at all levels of the food chain, leading 
to toxic and carcinogenic concentrations (Adria-
no et al., 2004).

The list of such heavy metals includes cop-
per, which enters aquatic environments primarily 
through wastewater from electroplating (Lejwoda 
et al., 2023) and metallurgical (Izydorczyk et al., 
2021) industries, as well as from the production and 
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tion capacity for the amine-functionalised sample reached 35 mg/g, compared to just 0.62 mg/g for the unmod-
ified DMSN. Pseudo-first-order and pseudo-second-order kinetic models, along with Langmuir and Freundlich 
isotherm models, were applied to analyse the adsorption mechanism. XPS analysis of the spent adsorbent further 
supported assumptions regarding the copper ion adsorption process.
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use of pesticides (Mohajerani et al., 2018; Husak, 
2015), fertilizers (Shaw et al., 2020), and anti-foul-
ing paints used as coatings for ship hulls, buoys, 
and underwater surfaces (Lagerström et al., 2020). 
Improper waste disposal and other anthropogenic 
activities also contribute to copper contamination.

Various conventional methods are employed 
to remove excess copper ions from water and 
maintain concentrations below the maximum per-
missible levels (WHO recommended safe limit in 
wastewater: 1 mg/L; United States Environmen-
tal Protection Agency: 1.3 mg/L). These methods 
range from chemical precipitation to electrodi-
alysis and photocatalysis (Shrestha et al., 2021; 
Saravanan et al., 2021).

The choice of a specific treatment method de-
pends on factors such as the initial Cu(II) concen-
tration, the chemical composition and pH of the 
water, regulatory standards for treated water, and 
available technical resources. As a result, differ-
ent processes are often combined to achieve the 
desired water quality in the most cost-effective 
manner (Ko, 2024; Azimi et al., 2017).

At the final stages of water purification and 
treatment, adsorption methods are recommended 
to achieve the lowest residual concentrations of 
inorganic toxicants. This is due to their relatively 
low operating costs, ease of implementation, and 
the availability of a wide range of adsorbent ma-
terials of inorganic (Zito et al., 2015; Kovalchuk 
et al., 2023), organic (Hao et al., 2023; Rasheed et 
al., 2020), biological (Anastopoulos et al., 2017; 
Solangi et al., 2021), and combined origins (Gil et 
al., 2021; Crini et al., 2018; Hokkanen et al., 2016).

Additionally, the desorption process can pro-
duce a concentrated stream of Cu(II), enabling 
the potential recovery of this heavy metal, which 
aligns with the principles of the circular economy 
and sustainable development strategies.

A review of scientific studies from the past 
decade indicates that traditional adsorbents such 
as clay minerals, activated carbon, and ion ex-
change resins exhibit a high capacity for heavy 
metal ion adsorption (Uddin, 2017; Zhang et al., 
2021; Kołodyńska et al., 2017; Nekouei et al., 
2019). However, due to their limitations, includ-
ing restricted selectivity and adsorption capacity, 
extensive research is ongoing to develop new ma-
terials with enhanced properties.

Activation of the adsorbent surface with func-
tional groups such as -SH, -NH₂, and -COOH is 
one of the most promising approaches for en-
hancing affinity toward target heavy metal ions. 

Additionally, many researchers combine these 
functional groups (-SH, -NH₂, and -COOH) with 
heteroatoms (O, N, S) in clay minerals to further 
improve adsorption performance (Tan et al., 2020).

Amino groups (-NH₂) are particularly effective 
for removing heavy metal cations from aqueous 
media. Due to their lone electron pair and ability 
to act as Lewis bases, they readily form coordi-
nate bonds with heavy metal ions (Lewis acids). 
In most cases, amino silanes are used as modifiers 
for the grafting of amino groups onto various sub-
strates (Wamba et al., 2018; Kostenko et al., 2019).

This approach can be applied to a wide range of 
materials, including aerosil, silica, silica gel, clay 
minerals, and even biosorbents (Arce et al., 2015; 
Najafi et al., 2012; Yang et al., 2020). For exam-
ple, studies have demonstrated that functionalizing 
zeolite from the Tsagaan-Tsav deposit (Mongolia) 
with 3-aminopropyltriethoxysilane (APTES) sig-
nificantly enhances Cu(II) ion removal from con-
taminated water (Shirendev et al., 2022).

Dendritic mesoporous silica nanoparticles 
(DMSN) are particularly attractive adsorbents 
due to their high specific surface area, uniform 
pore and particle size, chemical stability, and ex-
cellent surface functionalization capability (Xu et 
al., 2022). Their unique dendritic-fiber morphol-
ogy ensures that adsorption sites are easily acces-
sible from all directions, further improving their 
efficiency in metal ion removal.

The papers (Cabañas et al., 2018; Estevão 
et al., 2021) demonstrate the potential for func-
tionalizing mesoporous silica nanoparticles via 
the co-condensation method using amino orga-
nosilane for biomedical applications. In another 
study, Marconi et al. (2023) post-grafted amino 
groups onto dendritic fibrous mesoporous silica 
nanoparticles for the controlled release of cor-
rosion inhibitors. Additionally, Otalvaro et al. 
(2019) reported successful selective adsorption of 
antibiotics and dyes using amino-functionalized 
mesoporous silica as an adsorbent material.

Other structurally distinct silica materials 
modified with APTES have also shown promis-
ing results in removing various cationic heavy 
metals from contaminated aqueous solutions 
(Dhaffouli et al., 2024; Ramasamy et al., 2017). 
However, there are relatively few studies focused 
specifically on copper adsorption. For example, 
Kuśmierek et al. (2025) investigated the potential 
of hydrophilic commercial silica functionalized 
with APTES for the adsorption of copper ions 
from aqueous solutions.
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Therefore, the development of DMSN-based 
materials with enhanced affinity for copper cati-
ons and potentially other heavy metals or gases 
through surface functionalization using APTES 
presents an intriguing research direction, which is 
the focus of this study.

MATERIALS AND METHODS

Materials

Chemical and reagents

Cetyltrimethylammonium bromide (CTAB), 
sodium salicylate (NaSal), tetraethoxysilane 
(TEOS), triethanolamine (TEA), and copper(II) 
sulfate pentahydrate (CuSO4·5H2O) were used in 
this study and were purchased from Merck. 3-Ami-
nopropyltriethoxysilane (APTES) was obrained 
from Sigma-Aldrich, while sodium hydroxide 
(NaOH) was sourced from Ineos Group (France), 
and sodium chloride (NaCl) from Brenntag SE 
(Germany). Distilled water and ethanol (EtOH) 
were used as solvents. All chemicals were of ana-
lytical grade and used without further purification.

Synthesis of functionalized silica nanoparticles 

The synthesis of DMSN was carried out by 
alkaline hydrolysis in an aqueous-alcohol solu-
tion using structure-forming agents, namely ce-
tyltrimethylammonium bromide (CTAB) and 
sodium salicylate (NaSal), in combination with 
an inorganic precursor, namely tetraethoxysilane 
(TEOS), according to the method described by Yu 
et al., 2024. The duration of the synthesis was 1.5 
hours at a temperature of 80 °C. 

The amino functionalization of the surface 
of the synthesized DMSN was carried out by 

post-coupling using 3-Aminopropyltriethoxysi-
lane (APTES) in an aqueous-alcoholic medium 
according to a modified procedure described by 
Tobilko et al., 2019. For this purpose, a DMSN 
sample was placed in a water-alcohol solution 
(1:3) acidified with concentrated HCl. The mix-
ture was transferred to a three-necked flask in a 
thermostat maintained temperature 80 °C. With 
constant stirring, the APTES alcohol solution was 
added dropwise to the system using a peristaltic 
pump over the course of 1 hour. Figure 1 shows 
a schematic of the setup illustrating this process. 

After that, the mixture was left in a drying 
oven at 80 °C for an additional 10 hours to com-
plete the reaction. The resulting product was re-
peatedly washed with ethanol until a neutral pH 
value was achieved. The solid phase was sepa-
rated from the liquid phase by centrifugation and 
dried at 60 °C. 

Methods 

Characterization of materials 

The Fourier-transform infrared spectroscopy 
(FTIR) study was carried out in the wavelength 
range of 4000–400 cm-1 using a Fourier spec-
trometer FSM 1201 with the standard method 
of tableting with potassium bromide (KBr). The 
samples under study were thoroughly mixed with 
KBr powder in a mass ratio of 1:300, and the re-
sulting mixture was pressed into transparent tab-
lets with a diameter of 13 mm.

Low-temperature nitrogen adsorption/desorp-
tion was performed on the pre-evacuated samples 
using a Quantachrome NOVA-2200e Surface 
Area and Pore Size Analyzer. Data processing was 
carried out using the ASiQwin software. The spe-
cific surface area (SBET, m

2/g) was calculated by 

Figure 1. Schematic diagram of the installation for amino functionalization of DMSN surface
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the multipoint BET method (Brunauer, Emmett 
and Teller). The total pore volume (VΣ, cm3/g) 
was determined using the maximum adsorbed 
volume of nitrogen at a relative pressure p/po ≈ 
1. The pore size distribution was measured using 
by the BJH (Barrett-Joyner-Halenda) model. The 
average pore radius (R, nm) was calculated using 
the Equation 1:

	 𝑅𝑅 = 2𝑉𝑉∑
𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

       (1) 
 

𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑁𝑁𝐻𝐻2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 

=  𝑉𝑉HCl𝑁𝑁HCl − 𝑉𝑉KOH𝑁𝑁KOH
𝑚𝑚  

(2) 
 

𝑅𝑅 = 𝐶𝐶𝑖𝑖𝑖𝑖−𝐶𝐶𝑒𝑒𝑒𝑒
𝐶𝐶𝑖𝑖𝑖𝑖

∙ 100%      (3) 
 
  

𝑙𝑙𝑙𝑙(𝑎𝑎𝑒𝑒 − 𝑎𝑎𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒 − 𝑘𝑘1𝑡𝑡     (4) 
 

𝑡𝑡
𝑎𝑎𝑡𝑡

= 1
𝑘𝑘2𝑎𝑎𝑒𝑒2

+ 𝑡𝑡
𝑎𝑎𝑒𝑒

       (5) 
 

𝑎𝑎 = (𝐶𝐶𝑖𝑖𝑖𝑖−𝐶𝐶𝑒𝑒𝑒𝑒)∙𝑉𝑉
𝑚𝑚        (6) 

 
𝑎𝑎𝑒𝑒 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒𝑒𝑒

1+𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒𝑒𝑒
        (7) 

 
𝑎𝑎𝑒𝑒 = 𝐾𝐾𝐹𝐹𝐶𝐶𝑒𝑒𝑒𝑒

1/𝑛𝑛        (8) 
 

	 (1)

where:	VΣ – total pore volume, cm3/g; SBET – spe-
cific surface area, m2/g.

Differential thermal and thermogravimetric 
analysis (DTA/TG) was performed on a derivato-
graph (Q-1000, MOM) in the temperature range 
from 20 °C to 1000 °C, with heating in air a rate of 
5 °C/min. Al2O3 was used as a comparison sample.

The X-ray photoelectron spectroscopy (XPS) 
analyses were carried out with a PHI 5600 spec-
trometer using a monochromatic Al K(alpha) 
source. The instrument work function was cali-
brated to give a binding energy (BE) of 84 eV for 
the Au 4f7/2 line of metallic gold, and the spectrom-
eter dispersion was adjusted to give a BE of 932.6 
eV for the Cu 2p3/2 line of metallic copper. Survey 
scan analyses were carried out with a pass energy 
of 93.9 eV and a step size of 0.2 eV. The charge 
neutralization on the samples was adjusted to get 
the peak position of C 1s C-C peak at 284.8 eV.

Determination of the content of functional 
groups

The method of reverse titration of benzoic 
acid in 0.05 N toluene with KOH solution in the 
presence of bromothymol blue indicator was used 
to determine the total concentration of the main 
centers [B] (Tanabe et al., 1990). A 100 mg sample 
of DMSN, pre-annealed and cooled to room tem-
perature without exposure to moisture, was added 
with 10 ml of a 0.05 N solution of benzoic acid in 
toluene. After 30 minutes of stirring, a 3 ml aliquot 
of the sample was taken and titrated. The amount 
of adsorbed benzoic acid was calculated from the 
difference between the amount of acid taken and 
the amount determined after adsorption.

The content of amino (-NH2) groups (meq/g) 
was determined by the acid-base back-titration 
method (Moaseri et al., 2013). The weighted 
DMSN-NH2 sample (at least 100 mg) was im-
mersed in 20 ml HCl (0.1 N) for 24 h, and the 
resulting solution was titrated with KOH (0.1 N). 

The content of -NH2 groups was calculated by the 
following Equation 2:
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𝑡𝑡
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	 (2)

where:	V is the volume of acid and alkali taken 
for titration, ml; N is the equivalent con-
centration of acid and alkali taken for ti-
tration, N; m is the mass of the sample, g. 

Adsorption experiments 

The adsorption capacity of the obtained sam-
ples was evaluated using model solutions contam-
inated with Cu(II) ions in the concentration range 
of 10–100 mg/L. The ionic strength (I = 0.01) was 
adjusted with a 1 M NaCl solution. The pH value 
was adjusted with 0.1 M NaOH solution and con-
trolled with a pH meter (ADWA AD1020).

Experimental studies of the effect of pH on 
the degree of purification of model solutions from 
Cu(II) ions were carried out in the pH range from 
3 to 6, which corresponds to the range of pH val-
ues with the highest percentage of Cu2+ form. The 
removal efficiency (R, %) of copper (II) ions was 
estimated by Equation 3: 
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∙ 100%      (3) 
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	 (3)

where:	Cin and Ceq are representing the initial 
and equilibrium copper concentrations 
(mg/L). 

To study the kinetics of the adsorption pro-
cess, the contact time of the adsorbent with the 
model solution (20 mg/L) was varied in the range 
from 15 to 60 minutes. The analysis of the kinetic 
process parameters was carried out using pseudo-
first-order (PFO) and pseudo-second-order (PSO) 
models, represented by Equation 4 and Equation 
5, respectively: 
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where:	ae and at (mg/g) are the adsorption capacity 
at equilibrium and at any time (min), respec-
tively; k1 (min-1) and k2 (g/mg·min) are the 
PFO and PSO rate constant, respectively.

All adsorption experiments were carried out 
under static conditions at 20 ± 2 °C and con-
tinuous shaking of the samples (Biosan OS-20). 
The solid-to-liquid phase ratio was 1:500. After 
the adsorption equilibrium was established, the 
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liquid phase was separated by centrifugation 
(3600 rpm), and the equilibrium concentration of 
copper was determined by inductively coupled 
plasma atomic emission spectroscopy (Thermo 
Scientific iCAP 7400 ICP-OES).

The adsorption capacity (а, mg/g) of copper 
ions was estimated by Equation 6:
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where:	Cin and Ceq represent the initial and equi-
librium copper concentrations (mg/L), V 
is the solution volume (L), and m is the 
weight of the adsorbent (g).

The Langmuir Equation 7 and Freundlich 
Equation 8 equations were used to describe the 
experimental adsorption isotherms of Cu(II) ions: 
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where:	 ae (mg/g) is the equilibrium adsorption 
capacity, Ceq (mg/L) denotes equilibrium 
concentration, amax (mg/g) is the maximum 
adsorption capacity, KL (L/mg) denotes the 
Langmuir equilibrium constant, and KF 
((mg/g)(L/mg)1/n) and 1/n are Freundlich 
constants related to the adsorption capac-
ity and adsorption intensity, respectively.

RESULTS AND DISCUSSION

The analysis of structural features by IR spec-
troscopy (Fig. 2) showed that all the vibrational 
bands characteristic of amorphous silica are pres-
ent in the studied samples, namely: the vibra-
tional Si-O bond of isolated Si-OH groups (966 

cm-1), symmetrical valence vibrations (803 cm-1), 
asymmetrical valence vibrations (1093 cm-1) and 
bending vibrations (467 cm-1) of the O-Si-O bond 
(Dong et al., 2023; Li et al., 2021). 

The presence of new functional groups (-NH2) 
was confirmed by the appearance of a shoulder 
of valence and deformation vibration bands at 
~1500 cm-1 (Dhaffouli et al., 2024). In addition, 
the asymmetric and symmetric stretching modes 
of -CH2 observed in the range of ~ 2830–2990 
cm-1 indicate the presence of APTES propyl 
chains (Pasternack et al., 2008). The absence of a 
peak in the ν ~ 3000 cm-1 region, which belongs 
to the symmetrical stretching of the -N-H bond, 
may be due to the low intensity of amine groups 
originating from APTES functionalization (Berk-
tas et al., 2000). 

The functionalization of the DMSN surface 
also transforms the peak in the ν ~ 3400 cm-1 re-
gion from the low-frequency side and a shoulder 
appears in the range of ~ 3200–3000 cm-1. This 
peak corresponds to the asymmetric vibrations of 
the -OH group, namely partially hydrated silanols 
(Si-OH residue) and adsorbed molecular water 
(Innocenzi et al., 2003; Lei et al., 2009). The peak 
at 1640 cm-1 characterizes the bending vibrations 
of the water molecule (Innocenzi et al., 2003).  

The content of -OH groups in the initial 
DMSN sample was 0.16 meq/g. The content of 
-NH2 groups in the obtained sample, determined 
as the average of three titration results, was 2.03 
meq/g. In the simplest case of functionalization, 
one hydroxyl group on the DMSN surface reacts 
with one triethoxysilyl group of APTES (Figure 3). 

In this case, the equivalent content of amino 
groups in the modified sample should be equal to 
the equivalent content of hydroxyl groups in the 
initial DMSN. That is, 0.16 meq/g for NH2 groups 
content. However, the content of amino groups in 
the resulting sample is significantly higher, which 
indicates a much more complex mechanism of 
DMSN modification by APTES. Such a mecha-
nism could, for example, involve partial conden-
sation of APTES with simultaneous functional-
ization of the DMSN surface (Figure 4). 

The number of condensed APTES molecules 
(n in Figure 4) in the resulting system is likely to 
vary significantly. Still, the average number n can 
be calculated by dividing the equivalent content 
of amino groups by the equivalent content of hy-
droxyl groups, which is 12.68.

Figure 5 shows the DTA and TG curves 
for the DMSN sample before and after surface 

Figure 2. IR spectra of DMSN before and after 
surface functionalization with amino groups
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functionalization. The DTA curves of both samples 
show similar endo effects at temperatures from 40 
to 110 °C, which correspond to the dehydration 
of the surface of silica particles. In this range, the 
mass loss (TG curve) is mainly due to the removal 
of physically bound water, i.e., adsorbed on the 
surface of the original and modified silica particles 
(Bergaya et al., 2013; Dugas et al., 2003). 

The maximum moisture removal rates differ 
between the original silica and the modified AP-
TES. For the original sample, the maximum cor-
responds to the endo effect at 69 °C, and for the 

modified sample at higher temperatures up to 85 
°C. This difference may be due to the influence of 
amino groups and the possible presence of CO2 
adsorbed from the air, which shifts the maximum 
moisture removal rate to higher temperatures in 
the DMSN-NH2 sample. The period of the second 
mass loss, between 120–200 °C, is explained by 
the removal of chemically bound water. 

When the temperature exceeds 200 °C, the 
main contribution to the mass loss is due to the 
decomposition of organo-functional groups 
(Sehlleier et al., 2014). According to the literature 
(Qiao et al., 2015), the boiling point of APTES is 
217 °C, so it is assumed that physically adsorbed 
APTES will be completely removed from the ma-
trix surface by 300 °C. Therefore, the maximum 
at 280 °C, which is present only in the DMSN-
NH2 sample, probably indicates the cleavage of 
the amino group in the form of ammonia or oxi-
dation to nitrogen. In general, primary amines are 
characterized by a large number of possible re-
actions with the release of gaseous products (Al-
matarneh et al., 2019). 

In the temperature range above 450–500 °C, 
an exogenous effect is observed when residual al-
kyl groups that no longer contain nitrogen are ox-
idized to gaseous products (CO, CO2). The DTA 
curve shows that the main decomposition ends by 
500 °C. This temperature is consistent with the 
results of an article (Dugas et al., 2011), which 
indicates that the C-Si bond begins to break at 

Figure 3. The simplest scheme of interaction of surface -OH groups with APTES

Figure 5. DTA and TG curves for DMSN before and 
after surface functionalization with amino groups

Figure 4. The proposed mechanism of surface functionalization 
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temperatures of 450–510 °C. The low-temper-
ature nitrogen adsorption/desorption isotherms 
(Fig. 6a) of both samples under study, according 
to the IUPAC classification, can be attributed to 
type IV with H3 hysteresis loops. This type of iso-
therm is characteristic of materials with a mesopo-
rous structure, which is confirmed by the obtained 
pore size distribution (Fig. 6b). 

The specific surface area of amino-function-
alized DMSN (247 m2/g) is lower than that of the 
original sample (404 m2/g). This decrease is due 
to the introduction of organic functional groups 
into the pores, which also reduces their volume. 
Consequently, the total pore volume decreases 
from 1.534 cm3/g to 1.073 cm3/g. At the same 
time, the average pore radius slightly increases 
from 7.6 nm to 8.7 nm, but before and after func-
tionalization, the local maximum is observed in 
almost the same range. However, these changes 
in the pore structure after DMSN functionaliza-
tion are insignificant. The obtained sample retains 
80% of its structural characteristics and can be 
used as a potential adsorbent for the removal of 
heavy metal ions from aqueous media.

For the most part, wastewater contaminated 
with copper ions is acidic. In this case, the pre-
dominant form of copper is Cu2+. In addition, at 
pH 6, the precipitation of Cu(OH)2 from solution 
begins. Therefore, in this study, the effect of pH 
on the copper ion removal process was investi-
gated in the range from 3 to 6 (Fig. 7). 

The initial DMSN practically does not exhibit 
adsorption capacity, with a maximum purification 
efficiency observed at pH 6, reaching only 15%. 
In contrast, DMSN-NH2 demonstrates highly ef-
ficient Cu(II) removal across the entire studied 
range, with a slight decrease in the degree of 

purification from 99% to 87% as the pH increases 
from 3 to 6. The ability of a potential adsorbent to 
absorb copper ions in an acidic environment is a 
key factor for the effective removal of Cu(II) from 
real water bodies, such as concentrated copper-
containing wastewater. This is because, in highly 
concentrated solutions, copper complexes can 
precipitate at pH values below neutral (Yantasee 
et al., 2004). Figure 8 shows the time dependence 
of the Cu(II) adsorption process. In general, the 
establishment of adsorption equilibrium occurs 
quite quickly. Within 15 minutes for DMSN-NH2 
and 60 minutes for DMSN, the maximum remov-
al of Cu(II) from the model solutions is achieved. 
Table 1 presents the calculated parameters of the 
pseudo-first-order and pseudo-second-order ki-
netic models of this process. 

The kinetic curves are well described by both 
models, with R2 > 0.99. This suggests that the 

Figure 6. Isotherms of low-temperature nitrogen adsorption/desorption (a) and pore size distribution by radius 
(b) DMSN and DMSN-NH2

Figure 7. Dependence of the degree of Cu(II) ion 
removal on the pH of the aqueous medium by DMSN 

and DMSN-NH2 samples
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adsorption process may occur via a mixed mecha-
nism. At the initial stages, adsorption is rapid due 
to a high concentration gradient, indicating physi-
cal adsorption during the first 10 minutes. As the 
Cu(II) concentration in the solution decreases, 
the process rate slows down, and adsorption in-
creasingly involves chemical interactions, such as 
the formation of complexes or chemical bonds be-
tween Cu2+ ions and active sites on the material`s 
surface. However, pseudokinetic models are only 
general tools for presenting kinetic results. They do 
not provide a clear physical description of the ki-
netic mechanism, nor do they determine which ad-
sorption step is more significant (Simonin, 2016). 
The equilibrium adsorption behavior of Cu2+ions 
on DMSN and DMSN-NH2 samples, described by 
the Langmuir and Freundlich adsorption models, 
is shown in Fig. 9. The results indicate that the 
adsorption capacity of the synthesized DMSN for 
copper ions is relatively low, reaching no more 

than 0.62 mg/g. For comparison, the adsorption of 
Cu(II) on commercial SiO2 under similar condi-
tions is 0.3 mg/g (Yu et al., 2023). 

When the DMSN surface is modified with 
amino groups, the adsorption capacity increases 
by a factor of 50. The calculated parameters of 
the adsorption equations are summarized in Ta-
ble 2.  The adsorption of Cu(II) on DMSN and 
DMSN-NH2 samples is well described by both 
models, further supporting the hypothesis of a 
mixed adsorption mechanism combining physi-
cal adsorption and chemisorption within the 
studied copper concentration range. To further 
investigate the mechanism of copper ions ad-
sorption on the surface of amino-functionalized 
DMSN, XPS analysis of the sample before and 
after adsorption was performed (Fig. 10). The 
elemental composition of the initial and treated 
samples is shown in Table 3. The O1s maximum 
(about 532 eV), attributed to oxygen and surface 
hydroxyl groups (Si-OH), represents the main 
peak of the spectrum. The Si2p and Si2s peaks 
(about 100–160 eV) correspond to silicon present 
in the DMSN structure. The C1 peak, at 284 eV 
is associated with the carbon of the aminopropyl 
group (-C3H6-NH2), while the N1 peak, at 400 eV 
corresponds to the nitrogen of the amino group.

The DMSN-NH2*Cu sample, with adsorbed 
copper ions has a characteristic Cu2p3/2 peak at 
933.6 eV. Notably, the interaction between Cu2+ 
ions and amino groups leads to an increase in the 
intensity of the O1 and N1 peaks and their par-
tial shift to the higher energy zone. In order to 
evaluate the possibility of reusing DMSN-NH2, 
desorption experiments were conducted to deter-
mine its regeneration efficiency over three cycles 
of copper ion adsorption/desorption.

Table 1. Coefficients of kinetic equations

Sample
Pseudo-first-order model Pseudo-second-order model

Qeq, mg/g k1, min-1 R2 Qeq, mg/g k2, g/mg·min R2

DMSN 0.77 0.17 0.9951 0.84 0.34 0.9992

DMSN-NH2 8.97 0.29 0.9998 9.29 0.09 0.9974

Table 2. Coefficients of adsorption equations

Sample
Langmuir model Freundlich model

Qmax KL R2 KF n R2

DMSN 0.76 1.16 0.8517 0.56 11.7 0.8387

DMSN-NH2 37.5 0.74 0.9671 17.61 3.9 0.9667

Figure 8. Kinetics of Cu(II) adsorption 
on the studied samples
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Figure 9. Adsorption isotherms of Cu(II) on DMSN 
and DMSN-NH2 samples

Figure 10. XPS of amino-functionalized DMSN before and after adsorption Cu(II)

 The adsorption of copper ions was carried 
out under the following optimal conditions: the 
solid-to-liquid phase ratio was 1:500, the interac-
tion duration was 60 min, the concentration of the 
Cu(II) model solution was 100 mg/L, the ionic 
strength was 0.01, and the pH was 5.7. Copper 
ion desorption from the DMSN-NH2 surface was 
achieved using 0.1 M HCl. Before this, the spent 
sample was washed several times with distilled 
water, followed by 60 minutes of stirring in 0.1 M 
HCl at a solid-to-liquid phase ratio of 1:500. Af-
ter centrifugation, the copper ion concentration in 
the liquid phase was determined. The solid phase 
was then repeatedly washed with distilled water, 
and a single wash with 0.01 M NaOH solution 
was performed to activate the amino groups.

Using 0.1 M HCl was found that the desorp-
tion capacity after each cycle was 10%, while the 
adsorption capacity of the material increased by 
50%. The underlying reasons for this phenom-
enon – including the potential activation of novel 

adsorption centers, structural changes in DMSN, 
and modifications in the chemical properties of 
the -NH2 groups – require further investigation.

CONCLUSIONS

The obtained results confirm the successful 
synthesis and amino-functionalization of dendritic 
mesoporous silica nanoparticles (DMSN). It was 
determined that the content of -NH2 groups in the 
modified sample is significantly higher than the 
content of -OH groups in the initial sample – 2.03 
meq/g and 0.16 meq/g, respectively. This confirms 
a complex modification mechanism involving 
partial condensation of APTES with simultaneous 
functionalization of the DMSN surface.

At the same time, the textural parameters of 
the material underwent notable changes, charac-
terized by a decrease in specific surface area from 
404 m2/g to 247 m2/g and a reduction in total pore 
volume from 1.534 cm3/g to 1.073 cm3/g. Never-
theless, the mesoporous structure remained large-
ly intact. Structural, morphological, and adsorp-
tion studies demonstrated that the modification 
of the DMSN surface with amino groups signifi-
cantly enhances the efficiency of copper (Cu2+) 
ion removal from aqueous solutions. DMSN-NH2 

Table 3. Elemental composition of the samples

Element
Initial Treated

Concentration, at.% Concentration, at.%

C 22.83 18.57

N 2.96 2.28

O 49.47 51.91

Si 24.74 26.83

Cu - 0.41
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exhibited high adsorption capacity (up to 99%) 
even in acidic environments, as confirmed by ki-
netic and isothermal adsorption models. The re-
sults of XPS analysis indicate the formation of 
coordination bonds between Cu2+ ions and amino 
groups, suggesting a combination of physical ad-
sorption and chemisorption. Preliminary research 
on the regeneration and reuse of the material sug-
gests that effective reuse is feasible. However, 
further research is needed to study the optimal 
conditions for this process in detail. The DMSN-
NH2 offers several advantages, including a simple 
synthesis process, control over particle size and 
texture parameters, and easy separation from the 
liquid phase. However, the material also has cer-
tain drawbacks, such as high dispersion, which 
may reduce accessibility to active sites. Conse-
quently, the modified DMSN-NH2 are promising 
adsorbents for the effective treatment of wastewa-
ter contaminated with heavy metal ions.
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