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INTRODUCTION

Fresh water is a scarce resource on our planet, 
constituting only 3% of water resources, of which 
only 0.01% is available for human consump-
tion (Nasir et al., 2023). With population growth 
and industrialization, water can be used in vari-
ous industrial processes and domestic consump-
tion, which unfortunately are often discharged 
into surrounding ecosystems without any or poor 
treatment. These discharges generally include, 
among others, metals and metalloids (Soon et al., 
2022). Heavy metals (Cr6+, Pb2+, Cd2+, Zn2+, Ni2+ 

and Hg2+) and metalloids (e.g. As3+) are toxic, 
persistent and cause serious damage to both eco-
systems and living organisms (Baby et al., 2023; 
Senanu et al., 2023).

Manufacturing facilities across various sectors 
rely on chromium as a key material - from fabric 
production and metal treatment to glassmaking 
and leather processing. This element also plays 
vital role in electroplating operations, timber pres-
ervation methods, and the creation of colorants 
(Wang et al., 2023). Compared to compounds 
containing Cr(III), those including Cr(VI) are tox-
ic and dangerous (Wang et al., 2023), given that 
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the presence of Cr(VI) in our organism can cause 
cell death, DNA damage, and liver and kidney 
dysfunction (Shan et al., 2020). Harmful Cr(VI) 
easily migrates in water and its contamination can 
spread widely. Therefore, World Health Organi-
zation standards set a very low limit for its con-
centration (≤ 0.1 mg/L) in various types of water, 
including drinking water (Khalfaoui et al., 2024). 
Consequently, reducing of hexavalent chromium 
concentrations in aqueous matrices represents a 
critical environmental and public health impera-
tive, given its profound implications for the well-
being and biological integrity of ecosystems and 
organisms (Li et al., 2021).

There are a wide variety of methods to reduce 
or eliminate the presence of Cr(VI) in aqueous 
media, e.g. photocatalytic-reduction, precipita-
tion, membrane treatment, electrolysis, adsorp-
tion, and others (Li et al., 2021; Shan et al., 2020; 
Wang et al., 2023). Several of them are often 
expensive, require strict pretreatment standards, 
involve high energy consumption, and, above all, 
produce harmful secondary pollutants (Jimenez-
Paz et al., 2023; Solis et al., 2023). In contrast, 
an excellent alternative is the biosorption method, 
which uses non-living biological material (bio-
mass). It is an economical, ecological, and effec-
tive approach to removing heavy metals (Shan et 
al., 2020). Biomass from plant residues and those 
from agro-industrial processes is relatively abun-
dant, inexpensive and contains polymeric com-
pounds, e.g. cellulose, hemicellulose, pectin, lig-
nin and proteins, with functional groups that pro-
mote the capture of metals (Amaku et al., 2021; 
Pant et al., 2022; Thangagiri et al., 2022). In this 
context, the literature reports several waste-bio-
masses for chromium removal, e.g. Azadirachta 
indica (Thangagiri et al., 2022), nut leaf sheath 
(Pant et al., 2022), Arundo donax stem (Bhattarai 
et al., 2022), cocoa shell (Pérez et al., 2020), Eich-
hornia crassipes (Tejada et al., 2020), eucalyptus 
bark and moringa pods (Matouq et al., 2021), 
Pentaclethra macrophylla (Amaku et al., 2021), 
rice-husk (Lala et al., 2023), among others.

Agricultural trade on a global scale is signifi-
cantly influenced by coffee, which ranks among the 
most crucial farming commodities (Freitas et al., 
2024). Coffee waste is generated during the pro-
duction of coffee beans, with pulp being the first 
by-product (Castillo et al., 2021). Peru produces 
coffee in 10 regions, with an area of approximate-
ly 350 MHa (Alvarado et al., 2022), generating a 
considerable volume of residues, which represent 

low-cost and easily accessible material to be used 
as a potential biosorbent of heavy metals (Collazo-
Bigliardi et al., 2019; Dev et al., 2024).

The metal biosorption capacity of biomass 
depends on numerous factors (e.g. pH, biosorbent 
dose and concentration, etc.) and these are usu-
ally optimized individually (Lu et al., 2023). The 
process is repeated for the other factors until the 
optimal biosorption conditions are determined 
(Rzig et al., 2021). However, this procedure may 
be inefficient due to the considerable number 
of experiments required (Boddu et al., 2023). A 
good alternative to optimize these factors is the 
response surface methodology (RSM) with cen-
tral composite design (RSM-CCD), which is an 
empirical statistical technique that evaluates the 
simultaneous effects of multiple factors, thereby 
providing efficient experimental designs (Thakur 
et al., 2023). RSM-CCD methodology has been 
successfully employed in the Cr(VI) removal 
studies using biomasses other than coffee waste 
(Bayuo et al., 2020; Ben Khalifa et al., 2019; 
Boddu et al., 2023; Najafpour et al., 2020).

In this work, response surface methodology 
- face centered cube central composite design 
(RSM-FCCCCD) was applied to optimize the 
Cr(VI) adsorption capacity of Arabica coffee-
waste (WAC), taking into account important bio-
sorption factors, such as pH, chromium concen-
tration (C0) and WAC-dose.

METHODS AND MATERIALS

Preparation and characterization of the WAC 
biosorbent 

By-products from coffee processing were 
collected in Satipo, in Junín, Peru. The collected 
material was washed using distilled water, fol-
lowed by heat treatment at 70 °C for two days. 
The dried substance was then reduced to small-
er particles and passed through a N° 70 sieve 
(Lavado-Meza et al., 2023b). The structural and 
morphological features of the samples were ana-
lyzed by FTIR and SEM/EDX techniques, and 
evaluations were performedboth before and after 
the biosorption tests.

Biosorption experiments 

Sequential tests were performed us-
ing K2Cr2O7 solutions in a range of Cr(VI) 
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concentrations (C0) from 25 to 75 mg/L. The 
WAC-dose range considered was 0.5–1.5 g/L, 
while the pH was modified at the range of 2 to 
6 by adding 0.01 M HNO3 or 0.01 M NaOH and 
then stirring at 300 rpm for 2 h, followed by 
filtration to separate the WAC material. Chromi-
um concentrations were determined by diphe-
nylcarbazide methodology (ASTM D1687-02 
(2007)), which uses the intensity of the red-pur-
ple color for identification and measurement. A 
Shimadzu UV-1900i spectrophotometer mea-
sured the absorbance at l= 540 nm. The Cr(VI) 
biosorption capacity of WAC (qe) was deter-
mined Equation 1 in terms of initial-concentra-
tion (C0) and equilibrium-concentration (Ce) of 
hexavalent chromium; volume of solution (V) 
and WAC-mass (M).

	 𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 

	 (1)

Optimization of WAC biosorption capacity

Optimization of qe, expressed as a function of 
key factors controlling Cr(VI) biosorption, was 
performed using RSM in Design-Expert 13 soft-
ware. RSM-FCCCCD methodology was chosen 
to model, optimize and analyze the effect of three 
factors: pH, WAC-dose and Cr(VI) concentra-
tion, C0. The highest, medium and lowest values 
of these factors were labeled with (+1), (0) and 
(–1), respectively (see Table 1). The design in-
volved 16 runs (8 factorial points, 6 axial points 
centered on the faces and 2 replicates at the cen-
tral point). All experimental determinations were 
replicated in triplicate and qe was set as the re-
sponse variable.

Kinetics and equilibrium results

Equilibrium (isotherm) and kinetic studies of 
Cr(VI) biosorption with WAC were carried out 
considering optimal conditions of key factors ob-
tained from RSM-FCCCCD methodology. The 
experimental data were fitted by applying models 
described below.

Thermodynamic study

Gibbs energy (ΔG0) of the biosorption pro-
cess was calculated by Equation 2, while enthalpy 
(ΔH0) and entropy (ΔS0) were evaluated using of 
Van der Walls equation (Equation 3). The equi-
librium constant Kc, at temperature T, was deter-
mined as the ratio of Cr(VI) concentration in bio-
sorbent (Ces) and in solution (Ce).

	

𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 

	 (2)

	

𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 

	 (3)

RESULT AND DISCUSSION

Biosorbent characterization

FTIR spectra of samples, both unloaded 
(clean) and Cr(VI)-loaded, are shown in Figure 1. 
FTIR of clean-WAC (See Fig. 1 in blue) exhibits 
bands related to, i/ (at 3290.83 cm–1) OH groups 
in cellulose, hemicellulose or lignin (Datt et al., 
2022); ii/ (at 2919.83 cm–1) typical C–H vibra-
tions (Suganya et al., 2019); iii/ (at 2363.33 cm–1) 
alkyne (C≡C) or cyanide (C≡N) groups (Banch-
hor et al., 2021); iv/ (at 1640.22 cm–1) carbonyl 
(C=O) groups (Mahmoud et al., 2020); v/ (at 
1540.9 cm–1) C=C vibrations in aromatic struc-
tures of lignins (Rzig et al., 2021); vi/ (at 1027.90 
cm–1) C–O vibrations inside glycosidic linkages 
of polysaccharides, such as galactomannans and 
arabinogalactans (Ballesteros et al., 2014). 

FTIR of (WAC+Cr) (See Fig.1 in red) displays 
similar bands to those observed for clean-WAC, but 
with position shifts and intensity variations; which 
would reflect the presence of biosorbed Cr(VI) on 
WAC (Datt et al., 2022; Yusuff et al., 2023). SEM 
images and EDX diagrams of WAC, unloaded and 
Cr(VI)-loaded, are depicted in Figure 2. We can 
see, in Figure 2a, a rough and porous morphology 
of clean-WAC, typical in organic waste (Murthy 
and Gowrishankar, 2020). After contact with chro-
mium, the morphology of biosorbent (WAC+Cr) 
undergoes a drastic transformation, exhibiting a 

Table 1. Levels of experimental factors to be used with RSM-FCCCCD methodology
Levels pH Dose (g/L) C0 (mg/L)

–1 2 0.5 25

0 4 1 50

+1 6 1.5 75
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significantly more compact and less porous surface 
(Fig. 2b), which reflects the impact of chromium 
biosorption on WAC. EDX diagram of clean-WAC 
shows a structure including elements such as C, 
N, and O (see Fig. 2a right), which is consistent 

with the organic structure of biowaste (Jaihan et 
al., 2022). The EDX profile of the Cr-loaded WAC 
also exhibits characteristic Cr peaks (see Fig. 2b 
right), confirming the incorporation of this metal 
into the WAC substrate.

Figure 1. FTIR of WAC, clean or unloaded (blue) and Cr(VI)-loaded (red), at T = 20 °C 
and contact time, tsp = 120 min

Figure 2. SEM/ EDX profiles of WAC: clean (a) and Cr(VI)-loaded (b)
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Optimization of qe

Table 2 shows the RSM-FCCCD matrix that 
allows optimizing the relationship of the response 
function qe and independent biosorption factors 
pH, WAC-dose and C0, represented respectively 
by, A, B, and C.

Table 3 contains the regression coefficients 
of the proposed RSM-FCCCD predictive model. 
The quadratic expression for the predicted Cr(VI) 
adsorption capacity, qe,p (Equation 4) was identi-
fied as the most suitable (R2 and adjusted R2 > 
0.9) to describe the Cr(VI) biosorption process 
onto WAC.

	

𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 

	(4)

Based on the ANOVA results, the significance 
of each term is established by its p- and F-values. 
A term is considered statistically significant if p 
< 0.05 (Jaihan et al., 2022; Singh and Bhateria, 
2020). In this analysis, the terms A, C, AC, A2 
were found to be significant, while B, AB, BC, 
B2, and C2 were deemed insignificant (Table 4). 
Notably, the F–value for A (=145.25) is sub-
stantially higher than those for B (=3.50) and C 
(=6.98), indicating that A (pH) exerts the greatest 

influence among the evaluated parameters. After 
eliminating the non-significant terms, Equation 
4 would be simplified to Equation 5, where the 
parameters of the two critical factors (pH and C0) 
are highlighted.

	

𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 

	(5)

Interdependence of biosorption factors

The dependence of operational factors (pH, 
WAC-dose and C0) on the projected chromium(VI) 
uptake capacity (qe,p) are represented through 
RSM-FCCCD plots, as depicted in Figure 3. An 
increasing trend in (qe,p vs C0) is observed in Fig-
ures 3a and 3c. Conversely, decreasing trends in 
(qep vs dose and pH) are evident in Figures 3b and 
3c. The increase in qe,p with C0 can be mainly at-
tributed to the enhanced mass gradient between 
the solution and the biosorbent, which would act 
as a driving force transporting chromium to the 
biosorbent surface (Gupta et al., 2013).

As seen in the previous section, pH exerts 
a strong influence on Cr(VI) biosorption. Thus, 
Figures 3b and 3c, show the sharp decrease in 
qe,p with increasing pH. This finding suggests that 
strongly acidic pH levels favor Cr(VI) biosorp-
tion. Cr(VI), depending on its concentration and 

Table 2. FCCCD matrix of the combination of independent factors (pH, WAC-dose, C0) and dependent or response 
function qe

Nº Run
Levels Independent variables Response function, qe (mg/g)

A B C pH C0 (mg/L) Dose (g/L) Experimental Predicted, qe,p

1 1 1 1 6 75 1.5 0.25 0.25

2 1 –1 1 6 75 0.5 2.17 1.00

3 –1 1 1 2 75 1.5 17.61 17.60

4 –1 –1 –1 2 25 0.5 12.91 13.68

5 –1 0 0 2 50 1 18.85 17.01

6 1 0 0 6 50 1 0.89 2.03

7 0 1 0 4 50 1.5 1.76 0.59

8 0 0 1 4 75 1 1.02 3.05

9 1 –1 –1 6 25 0.5 1.48 1.66

10 0 –1 0 4 50 0.5 2..43 2.91

11 –1 –1 1 2 75 0.5 23.32 23.05

12 1 1 –1 6 25 1.5 2.02 2.46

13 –1 1 –1 2 25 1.5 9.04 10.38

14 0 0 –1 4 25 1 2.49 0.25

15 0 0 0 4 50 1 1.29 1.99

16 0 0 0 4 50 1 1.30 1.99
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pH, can be in the form of chromate (CrO4
2−), di-

chromate (Cr2O7
2−) or bichromate (HCrO4

−) (See 
Fig. 4). Thus, at the pH range 2 to 6, Cr(VI) is 
mainly as HCrO4

−. At pH below 2, that is under 
strongly acidic conditions the presence of H+ pro-
tons would drive the reduction process of Cr(VI) 
to Cr(III), according to Equation 6 (Verma et al., 

2021). At this pH range (pH < 2), the fraction of 
HCrO4

− decreases, favoring the predominance of 
neutral H2CrO4 (See Fig. 4).

	

𝑞𝑞𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒)
𝑀𝑀 × 𝑉𝑉 (1) 

 
∆𝐺𝐺0 = −𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙(𝐾𝐾𝑐𝑐)   (2) 
 
𝑙𝑙𝑙𝑙 (𝐾𝐾𝑐𝑐) = ∆𝑆𝑆0

𝑅𝑅 − ∆𝐻𝐻0

𝑅𝑅𝑅𝑅    (3) 
 

𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 −  2.3313𝐵𝐵 +  
+ 0.4035𝐶𝐶 +  1.0258𝐴𝐴𝐴𝐴 −  0.0502𝐴𝐴𝐴𝐴 − 

− 0.0430𝐵𝐵𝐵𝐵 +  1.8814𝐴𝐴2  − 
− 0.9750𝐵𝐵2 −  0.0009𝐶𝐶2 

 
 (4)  

 
𝑞𝑞𝑒𝑒,𝑝𝑝 =  34.7121 −  17.3144𝐴𝐴 +  0.4035𝐶𝐶 − 

− 0.0502𝐴𝐴𝐴𝐴 +  1.8814𝐴𝐴2 
 

 (5)  
 

𝐻𝐻𝐻𝐻𝐻𝐻𝑂𝑂4
−  +  7𝐻𝐻+  +  3𝑒𝑒− →  𝐶𝐶𝐶𝐶3+  +  4𝐻𝐻2𝑂𝑂 (6) 

 
	(6)

Figure 5 shows optimization contours generat-
ed using the RSM-FCCCCD model. The maximum 

Table 3. ANOVA results of the RSM-FCCCD model applied to Cr(VI) biosorption onto WAC
Source Sum of squares dfa Mean square F-value p-value

Model 855.20 9 95.02 24.59 0.0005

A (=pH) 561.19 1 561.19 145.25 < 0.0001

B (=dose) 13.53 1 13.53 3.50 0.1105

C (=C0) 26.95 1 26.95 6.98 0.0385

AB 8.42 1 8.42 2.18 0.1904

AC 50.33 1 50.33 13.03 0.0112

BC 2.31 1 2.31 0.5974 0.4689

A² 149.31 1 149.31 38.64 0.0008

B² 0.1566 1 0.1566 0.0405 0.8471

C² 0.9145 1 0.9145 0.2367 0.6439

Residual 23.18 6 3.86

Lack of Fit 23.18 5 4.64

Pure Error 0.0000 1 0.0000

Total Corr 878.38 15

R2 0.974

Adjusted R2 0.934

C.V. (%) 21.7

Note: a df – degrees of freedom.

Figure 3. Three-dimensional graphs of: (a) qe,p vs dose and C0; (b) qe,p vs dose and pH; (c) qe,p vs pH and C0
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predicted adsorption capacity, qe,p,max= 23.38 (23.05) 
mg/g is obtained from Equation 4 and Equation 5 at 
the critical intersection points within the red areas: 
pH 2, C0 = 75 mg/L and WAC-dose = 0.5 g/L. Our 
results are consistent with those reported by Li et al. 
(2023), Kumari et al. (2021) and Lall et al. (2022), 
who employed biosorbents derived from lignin, 

coconut residues and Saraca asoca, respectively; 
and observed a maximum qe at pH 2.

Adsorption isotherm

Adsorption isotherms are crucial tools for 
characterizing the biosorption process (Musah 
et al., 2022). The experimental isotherm data (qe 

Figure 4. Distribution of chromium species in aqueous media under different pH levels

Figure 5. Contour plots of qe,p on (a) dose –pH; (b) C0 – pH and (c) dose-C0
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vs Ce), obtained under optimized operational pa-
rameters (dose, pH and C0) at equilibrium condi-
tions, are very well adjusted by Langmuir and 
Freundlich and also Temkin models (See Fig. 
6), given that the fitted R2 values are similar to 
each other (≥ 0.95) (Table 4). This result shows 
that chromium sorption onto WAC is a favorable 
process (Kumari et al., 2021; Lavado-Meza et 
al., 2023b) involving various adsorption mecha-
nisms, such as chemisorption, physisorption, 
among others (Araújo et al., 2018; Ehiomogue 
et al., 2022; Musah et al., 2022).

It is interesting to note that the qmax = 30.5 
mg/g reported in this study (see Table 4) is one of 
the highest qmax values for Cr(VI) removal using 
similar biosorbents (see Table 5). This capacity is 
considerably higher than that observed in materi-
als such as orange peel (4.96 mg/g), peanut shell 
(2.48 mg/g), banana peel (10.2 mg/g), blueberry 

peel (6.81 mg/g), and potato peel (3.28 mg/g). 
This finding highlights the potential of WAC as 
an effective material for the treatment of water 
contaminated with Cr(VI) ions. In terms of sus-
tainability, WAC offers additional advantages as 
an abundant, low-cost waste material that can be 
recycled, contributing to waste reduction and the 
circular economy. Its high Cr(VI) adsorption ca-
pacity makes it suitable for large-scale applica-
tions, particularly in coffee-producing regions, 
making it an attractive option both economically 
and environmentally.

Reaction kinetics

The kinetic biosorption processes provide 
crucial information on the time-dependent inter-
actions of the biological material with the aque-
ous medium. The time evolution of the Cr(VI) 

Figure 6. Experimental isotherm data, at T=20 °C, tsp = 120 min

Table 4. Isotherm models applied to Cr(VI) biosorption onto WAC
 

Isotherm models Parameters 

Langmuir 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒

1 + 𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒
 

qmax 30.5 mg/g 

KL 0.04 L/mg 

R2 0.96 

Freundlich 
𝑞𝑞𝑒𝑒 = 𝐾𝐾𝐹𝐹𝐶𝐶𝑒𝑒

1 𝑛𝑛⁄  

KF 3.97 mg/g 

n 2.51 

R2 0.96 

Temkin 

𝑞𝑞𝑒𝑒 = 𝑅𝑅𝑅𝑅
𝐵𝐵 𝑙𝑙𝑙𝑙( 𝐴𝐴𝑇𝑇 𝐶𝐶𝑒𝑒 ) 

AT 0.48 L/g 

B 395.03 J/mol 

R2 0.95 
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biosorption capacity, qt, was examined under 
optimized experimental conditions at T= 20 °C 
(Figs. 7 and 8).

The kinetic experimental data were adjusted to 
three models: pseudo-1st and pseudo-2nd-order ki-
netics, and Webber-Morris-intraparticle-diffusion 

model. The kinetic constants obtained from non-
linear fits are given in Table 6. The (qt vs t) rela-
tionship is best adjusted with the pseudo 2nd order 
model (R2 = 0.93) (Fig. 7), suggesting that Cr(VI) 
biosorption occurs mainly via the chemisorption 
mechanism (Jaihan et al., 2022). The literature 

Table 5. Maximum adsorption capacities, qmax, to remove Cr(VI) using biosorbents coming from agriculture waste
Biosorbents qmax (mg/g) References

Orange peel
Leaves (Sambucus nigra L.)
Gliricidia sepium Leaf Powder
Lagerstroemia speciosa bark
Ficus carica
Peanut shells
S. glauca
Banana peel; Cranberry kernel shell
Potatoes peel

4.96
6.389
35.71
20.40
19.58
2.48
10.9

10.2; 6.81
3.28

(Khalfaoui et al., 2024)
(Mancilla et al., 2022)
(Suganya et al., 2019)

(Srivastava et al., 2015)
(Gupta et al., 2013)
(Rzig et al., 2021)

(Banchhor et al., 2021)
(Parlayici and Pehlivan, 2019)

(Mutongo et al., 2014)
Waste Arabica-Coffee (WAC) 30.5 This work

Figure 7. (qt vs t) kinetic experimental data of Cr(VI) biosorption onto WAC at T= 20 °C

Table 6. Parameters of kinetic models applied to Cr(VI) biosorption onto WAC
 

Kinetic models Kinetic parameters 

Pseudo-1st order 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝑘𝑘1𝑡𝑡) 

qe 25.04 mg/g 

k1 0.04 1/min 

R2 0.84 

Pseudo-2nd order 

𝑞𝑞𝑡𝑡 =
𝑞𝑞𝑒𝑒2𝑘𝑘2 · 𝑡𝑡

1 + 𝑞𝑞𝑒𝑒 · 𝑘𝑘2 · 𝑡𝑡
 

qe 22.32 mg/g 

k2 1.26 g/mg min 

R2 0.93 

Intraparticular diffusion of Webber-Morris 
𝑞𝑞𝑡𝑡 = 𝑘𝑘𝑖𝑖𝑖𝑖 · 𝑡𝑡0.5 + 𝐶𝐶 

kd I 1.78 (mg/g) (1/s)0.5 

R2 0.99 

kd II 1.06 (mg/g) (1/s)0.5 

R2 0.92 
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Figure 8. Weber-Morris intraparticle diffusion at T = 20 °C

Table 7. Thermodynamic values of the Cr(VI) biosorption onto WAC
∆G° (kJ/mol)

∆H° (kJ/mol) ∆S° (J/mol K)
296 K 303 K 323 K

–14.41 –15.31 –17.13 12.15 90.64

reports similar results with other agricultural resi-
dues (Boddu et al., 2023; Ren et al., 2022; Srivas-
tava et al., 2015).

In Figure 8, qt vs t0.5 experimental data were 
fitted to the Webber-Morris intraparticle diffusion 
model. Two distinct stages in the biosorption pro-
cess can be identified: 
	• External diffusion, associated with the trans-

port of hexavalent chromium ions from the 
aqueous medium to the biomass surface (Pant 
et al., 2022). 

	• Internal diffusion, associated with the migration 
of chromium ionic compounds, from the surface 
(external boundary layer), through the internal 
cavities of the biomass (Gupta et al., 2013). 

The linear segment of the graphical representa-
tion exhibits a non-zero intercept, suggesting that 
additional kinetic factors beyond pore diffusion 
control the adsorption rate (Albadarin et al., 2011; 
Lavado-Meza et al., 2023a; Pant et al., 2022).

Values of thermodynamic functions of the 
hexavalent chromium biosorption are given in 
Table 7. We can see that this process is spontane-
ous (∆G0 < 0), endothermic (∆H0 > 0) and with 
increased randomness (∆S0 > 0) at the interface of 
the aqueous medium and the biosorbent surface.

CONCLUSIONS

The RSM-FCCCD methodology allowed us 
to optimize the Cr(VI) biosorption capacity qe of 
Arabica-coffee pulp biomass (WAC), in terms of 
key factors, such as pH, chromium concentration 
C0 and WAC-dose. A quadratic dependence of the 
predicted Cr(VI) biosorption capacity qe,p was ob-
tained as a function of key-factors, highlighting 
the strong influence of the pH factor. The optimal 
values of the considered factors were pH 2, C0 = 
75 mg/L WAC-dose = 0.5g/L. These values were 
taken into account to obtain a qmax= 30.5 mg/g. 
FTIR analysis of WAC (loaded and unloaded with 
Cr) showed the presence of OH, CH, CO, COH 
groups associated among others with cellulose, 
hemicellulose, lignin and polysaccharides. SEM 
imaging revealed that the clean WAC exhibited 
a rough and porous surface morphology, while 
Cr(VI)-loaded WAC displayed a more compact 
and less porous surface. Furthermore, the equilib-
rium relationship (qe vs Ce) was well adjusted to 
Langmuir, Freundlich and Temkin isotherm mod-
els, indicating that the biosorption mechanism in-
volves complex processes, such as chemisorption, 
Van der Waals attractions and other interactions; 
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although chemisorption stands out, given that the 
kinetic relationship (qt vs t) fits well to the pseudo-
2nd-order kinetic model. On the other hand, the 
evaluation of thermodynamic functions showed 
that the biosorption studied is a spontaneous (∆G0 
< 0) and endothermic (∆H0 > 0) process. Finally, it 
is important to mention that this work presents an 
interesting approach to the potential use of coffee 
processing waste (coffee pulp) as an eco-friendly 
and low-cost material capable of removing heavy 
metals, e.g. chromium, from aqueous systems.
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