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INTRODUCTION

The increase in global climatic variability 
due to greenhouse gas (GHG) emissions (IPCC, 
2003), especially carbon dioxide (CO2), has en-
dangered both the environment and human health. 
This is because CO2 is the primary GHG driving 
global warming, due to its high annual emissions, 
increased atmospheric concentration and longer 

persistence of the gas in the atmosphere. In addi-
tion, CO2 is responsible for absorbing the thermal 
radiation emitted by the earth’s surface and is con-
sidered the main driving factor that causes global 
warming (50%) (Jobbagy and Jackson, 2000). In 
the past, agriculture was the main source of CO2 
emissions into the atmosphere (Hernández et 
al., 2014). At present, the densely populated ar-
eas of the planet are considered to be the main 
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responsible for CO2 emissions into the environ-
ment, due to the exorbitant use of petroleum de-
rivatives, deforestation and other anthropogenic 
effects (Waongo et al., 2015). Although agricul-
tural activities and land use change also play an 
important role, as they are globally responsible 
for approximately 14% of GHG emissions (Bains 
et al., 2024; Johnson et al., 2007). 

Thus human activities generate many nega-
tive effects on ecosystems, such as soil erosion, 
loss of biodiversity, deregulation of water flows 
through burning, which releases large quantities 
of CO2 into the atmosphere (Clemente-Arenas, 
2022; Lavelle et al., 2014). On a small scale, these 
impacts are exacerbated by the lack of technical 
and financial support available to smallholder 
farmers (Clemente-Arenas, 2022). For example, 
the agro-industrial cocoa sector is responsible for 
CO2 emissions related to fertilizer application, 
production processes, plantation field operations, 
machinery supply and other small sources (Di-
anawati et al., 2023).

In the context of climate change, it is necessary 
to propose and implement initiatives to mitigate 
GHG emissions without threatening the environ-
ment sustainability and quality of life in the popu-
lation (Johnson et al., 2007; Vallejos-Torres et al., 
2024; van Rikxoort et al., 2014). Here agrofor-
estry systems (AFS) emerge as a strategy to miti-
gate the effects of climate change, because they 
can absorb and store large amounts of CO2 from 
the atmosphere through photosynthesis (Poveda 
et al., 2013). Tree species, shrubs or fruit trees 
in AFS are usually associated in the same area 
(Wahidurromdloni et al., 2025), which becomes 
a great strategy for productive, economic and en-
vironmentally friendly purposes and also helps to 
mitigate the effects caused by anthropic activities 
(Casanova-Lugo et al., 2011; Nair et al., 2009). 
Likewise, different species in AFS can interact 
and in this way achieve sustainable management, 
consolidating the optimization and diversifica-
tion of production (Casanova-Lugo et al., 2011; 
Morales-Ruiz et al., 2025). Therefore, AFS can 
reduce GHG concentrations in the environment 
because they fix carbon in the plants (Umaña and 
Conde, 2013). Due to the AFS include shade trees 
with perennial crops, such as cocoa and coffee, 
which store carbon mainly in the woody compo-
nent, where they can store between 12 and 228 
Mg C/ha (Tito et al., 2022). However, it is im-
portant consider that the carbon capture capacity 
of AFS can be affected by species diversity, age, 

structure of the tree component, and vegetation 
density (Concha et al., 2007).

On the other hand, despite being a potential 
approach for mitigating the effects of climate 
change, AFS can also be a source of emissions 
due to poor management. This highlights the im-
portance of assessing the balance of GHG emis-
sions in AFS. This information will allow us to 
assess the impacts of AFS in the context of cli-
mate change and promote the use of this strategy 
for biodiversity conservation (Caicedo-Vargas et 
al., 2022; Nugroho et al., 2023). Moreover, con-
sidering that in the context of climate change, the 
rising temperature, variations in rainfall and wa-
ter stress had a negative effect on ability of plants 
to absorb CO2 from atmosphere (Chaudhry and 
Sidhu, 2022; Grosse-Heilmann et al., 2024; Vicca 
et al., 2022). Because, rising temperatures affect 
many physiological processes, including photo-
synthesis and respiration, and alter the nutritional 
factor in plants and many nutrient cycles in nature 
(Elbasiouny et al., 2022).

Similar to several regions in the Peruvian 
Amazon, Madre de Dios has large areas that have 
been overexploited and abandoned due to defores-
tation for cattle ranching and shifting cultivation 
(Clemente-Arenas, 2022; Perz et al., 2005). In this 
context, AFS is an option for the rehabilitation, 
management of these degraded areas, prevent de-
forestation and degradation of natural forests. Due 
to AFS are similar to natural forests, they have 
great potential as carbon sinks (Casanova-Lugo et 
al., 2011; Poveda et al., 2013), promote the conser-
vation of biodiversity, reduce soil erosion, increase 
soil organic matter uptake, and restore degraded 
areas (Nair et al., 2009; Rügnitz et al., 2009).

Despite the importance of AFS, there are few 
studies analyzing carbon fixation and CO2 emis-
sions of AFS in the Peruvian Amazon. Although, 
there are studies that assess the sustainability and 
above-ground and soil carbon reserves in AFS 
(Arevalo et al., 2002; Concha et al., 2007; Lap-
eyre et al., 2004). The present study highlights 
the importance of AFS in the context of climate 
change by estimating their carbon stock and CO2 
emissions in the southern Peruvian Amazon and 
will serve as a baseline for future research. Since 
AFS in Madre de Dios have the potential to offer 
an alternative approach to development and con-
servation (Clemente-Arenas, 2022). The study 
aimed to estimate the anthropogenic CO2 emis-
sions and aboveground carbon stocks in agrofor-
estry systems of cocoa (Theobroma cacao L.) in 
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the southern Peruvian Amazon, Inambari, Madre 
de Dios. To this purpose, the sources of CO2 emis-
sions and fixation during the production process 
of T. cacao have been quantified.

MATERIAL AND METHODS

Study area 

The study was conducted in agroforestry sys-
tems (AFS) with Theobroma cacao L. (cocoa) 
located in three sectors of the Inambari district, 
in the southern Peruvian Amazon (Figure 1). The 
study area is located 140 km from the city of 
Puerto Maldonado, at an average altitude of 359 
m a.s.l. The climate of the study area is hot and 
humid, with temperatures ranging from 25 °C to 
37 °C. Annual precipitation ranges from 1413 to 
3734 mm (2257 mm average for the period 1970–
2023) (Aucahuasi-Almidon, et al., 2024).

Study design

Three sectors of the Inambari district were 
selected from the list of Agrobosque cooperative 
members (Nueva Generación, Santa Rita Alta and 

Puerto Trujillo). In each sector, three AFS were 
selected (nine in total). The age of establishment 
of the AFS ranged from 4 to 7 years, and farm 
size varied from 1.5 to 9 ha (Table 1). Table 1 and 
Figure 2 show all the species found in each AFS.

Vegetation sampling

In each AFS, a plot of 1000 m2 (20 × 50 m) 
was established. All trees, shrubs and fruit trees in 
each plot were identified. The diameter and height 
of each individual were measured using a diameter 
tape and a clinometer, respectively. For cocoa and 
small plants, diameter was measured at 30 cm above 
ground, and for trees, diameter at breast height 
(DBH) was measured at 1.30 m above ground.

Above ground biomass

The aboveground biomass of all the individu-
als recorded in the plots was estimated using spe-
cific and general allometric equations (Table 2).

Litter biomass

In each vegetation plot, litter was collected in 
four subplots of 0.25 m2 (50 × 50 cm) (Hernandez 

Figure 1. Map of the location of the agroforestry systems in the study area (d), with reference to Peru (a) and 
Madre de Dios (b), (c) illustration of a plot implemented in each agroforestry system
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Table 1. The age, the area and species present in each agroforestry system

Sector
Agroforestry system (AFS) AFS age 

(year)
Area 
(ha)Code Species

Nueva 
Generación

AFS-1 Theobroma cacao L. [cocoa], Jacaranda copaia (Aubl.) D.Don [achihua], 
Cedrela odorata L. [cedro], Averrhoa carambola L. [starfruit], Citrus 
sinensis (L.) Osbeck [orange] y Citrus limon (L.) Osbeck [lemon]

5 2

AFS-2 Theobroma cacao L. [cocoa], Musa paradisiaca L. [banana], Jacaranda 
copaia (Aubl.) D.Don [achihua] y Citrus limon (L.) Osbeck [lemon] 7 2

AFS-3 Theobroma cacao L. [cocoa] y Jacaranda copaia (Aubl.) D.Don [achihua] 5 5

Santa Rita 
Alta

AFS-4 Theobroma cacao L. [cocoa], Musa paradisiaca L. [banana] y Solanum 
sessiliflorum Dunal. [peach tomato] 4 1.5

AFS-5 Theobroma cacao L. [cocoa] 5 9

AFS-6 Theobroma cacao L. [cocoa] y Bertholletia excelsa Bonpl. [brazil-nut] 4 5

Puerto Trujillo

AFS-7
Theobroma cacao L. [cocoa], Musa paradisiaca L. [banana], Citrus 
reticulata Blanco. [tangerine], Cedrela odorata L. [cedro] y Matisia cordata 
Humb. [sapote]

5 5

AFS-8 Theobroma cacao L. [cocoa] y Musa paradisiaca L. [banana] 5 4

AFS-9 Theobroma cacao L. [cocoa], Artocarpus altilis (Parkinson) [breadfruit], 
Musa paradisiaca L. [banana] y Citrus limon (L.) Osbeck [lemon] 5 3

Note: the common names for each species are given in square brackets.

Figure 2. Photographs of agroforestry systems with cacao (Theobroma cacao). (A) T. cacao + Averrhoa 
carambola. (B) T. cacao + Cedrela odorata. (C) T. cacao + Citrus reticulata. (D) T. cacao + Citrus limon. (E) 

T. cacao + Musa paradisiaca. (F) T. cacao + Bertholletia excelsa
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et al., 2021). We stored each leaf litter sample in 
appropriately coded paper bags and then dried it 
in an oven at 70 °C to a constant weight. To obtain 
total carbon, litter biomass had to be multiplied 
by the carbon fraction (0.5) (Hernandez et al., 
2021; Poveda et al., 2013; Rügnitz et al., 2009).

Determination of CO2 emissions

To determine the sources of CO2 emissions, 
semi-structured interviews were carried out with 
the owners of the AFS (Canal and Andrade, 2019). 
The quantity of product used in AFS was quanti-
fied in order to subsequently perform the transfor-
mations with the emission factors generated ac-
cording to different products. (IPCC, 2006). The 
items included in the surveys were (1) fuel use, (2) 
nitrogen fertilizer use, (3) herbicide use, (4) house-
hold resource use (firewood use, coal use, and gas 
use), and (5) electricity (Marín, 2016). For the AFS 
emissions, the sum of all reported emission sourc-
es has been considered in CO2e units (Equation 1).

 2( ) Fertilizer Herbicide Fuel Transport Firewood Coal GasE CO e E E E E E E E= + + + + + +  (1) 
 

2( ) Aboveground Litter beans cocoaF CO e F F F −= + +  (2) 
 

 
 2( ) Fertilizer Herbicide Fuel Transport Firewood Coal GasE CO e E E E E E E E= + + + + + +  (1) 

 

2( ) Aboveground Litter beans cocoaF CO e F F F −= + +  (2) 
 

 (1)

where: E – Emissions of CO2e.

Determination of CO2 fixations

For the estimation of CO2 fixation, the aboveg-
round biomass, the litter biomass and the biomass 
of the annual production of cocoa beans were 
quantified. The aboveground biomass obtained 
was multiplied by the carbon fraction 0.5 to cal-
culate the carbon stock stored by the vegetation 
and litter in AFS (IPCC, 2003). Carbon storage in 

total biomass was divided by the age of each AFS 
to determine the carbon fixation rate for cocoa 
trees, shrubs, timber forest trees, and fruit trees 
(Marín, 2016). In order to quantify the rate of fixa-
tion in terms of CO2e, the carbon values obtained 
have been multiplied by a constant of 3.67 (IPCC, 
2006; Vallejos-Torres et al., 2024). To quantify the 
carbon fixation of AFS, the sum of all reported 
fixation sources was considered (Equation 2).

 

2( ) Fertilizer Herbicide Fuel Transport Firewood Coal GasE CO e E E E E E E E= + + + + + +  (1) 
 

2( ) Aboveground Litter beans cocoaF CO e F F F −= + +  (2) 
 

 (2)

where: F – fixation of CO2e.

Data analysis

Analysis of variance (ANOVA) was used 
to compare carbon fixation and CO2 emissions 
among the three sectors studied at a significance 
level of 0.05. Pearson’s correlation coefficient was 
used to analyze the relationship between the age of 
the AFS, the carbon stock and the carbon fixation. 
All analyses were performed using the SigmaPlot 
16 statistical package and the GG Plot 2 package 
of R version 2023.09 in an R-Studio environment.

RESULTS AND DISCUSSION

Table 3 shows all species recorded in the nine 
AFS evaluated. In general, the density of plants 
per AFS varied between 620 and 1170 individuals/
ha. T. cacao (530–1160 plants/ha) was the most 
abundant species in the AFS. Species other than 
T. cacao were identified at low densities (10–180 
plants/ha). Fruit plants such as M. paradisiaca 
(10–80 plants/ha) and species of the genus Citrus 

Table 2. Allometric equations for estimating aboveground biomass of species in the nine cacao agroforestry 
systems in Inambari District, Madre de Dios, Peru

Species Allometric equation Source

Theobroma cacao L. (cocoa) AGB = 3.3973 × D-4.8961 (Brancher, 2010)

Tree species (DAP < 5 cm) AGB = exp (-1,9968 + 2,4128 ln(D)) (Nelson et al., 1999)

Tree species (DAP > 5 cm) AGB = 0.0559(ρ × D2 × H) (Chave et al., 2014)

Shrub species AGB = 0.1184 × D2.53 (Arevalo et al., 2002)

Musa paradisiaca L. (banana) AGB = 0.0303 × D2.1345 (Hairiah et al., 2010)

Citrus fruits AGB = -6.64 + 0.279 × BA + 0.000514 × BA2 (Schroth et al., 2002)

Bertholletia excelsa Bonpl. (brazil-nut) AGB = -18.1 + 0.663 × BA + 0.000384 × BA2 (Schroth et al., 2002)

Note: AGB (kg) – aboveground biomass; D (m) – diameter (1.30 m) (30 cm); H (m) – height; ρ (mg/cm3) – wood 
density; BA (cm2) – basal area.
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(C. reticulata, C. sinensis and C. limon, between 
10–60 plants/ha) were the most abundant species. 
While species with forestry potential (timber and 
non-timber) were found at lower densities. J. co-
paia was the species with the highest density (30 
trees/hectare), followed by other forest species at 
lower densities (10 trees/ha, Cedrela odorata and 
Bertholletia excelsa).

Above ground biomass

Table 4 shows the results of the carbon stock 
and the estimated carbon fixation rate. The carbon 
stock in the AFS varied between 7.7 and 13.7 Mg/
ha, and the carbon fixation rate varied between 1.5 
and 3 Mg/ha/year. No significant differences were 
found in AFS carbon stocks by sector (ANOVA, 

p > 0.05). Low stock and carbon sequestration 
values in AFS are associated with low T. cacao 
densities and the absence of forest species (e.g., 
AFS-5 and AFS-8). On the other hand, no signifi-
cant correlations were found between AFS age 
and carbon stock (r = 0.45; p = 0.22) and carbon 
fixation (r = -0.34; p = 0.37).

Traditional polycultures can have significant-
ly higher carbon reserves compared to monocul-
tures (Canal and Andrade, 2019). Agroforestry is 
considered an important strategy for carbon se-
questration due to the storage potential of plant 
species and soil. However, the storage capacity 
can vary depending on the species used in the 
AFS and the characteristics of the site (Goñas et 
al., 2022). The carbon stocks found in the present 
study were lower than those reported by previous 

Table 3. Abundance of species found in the agroforestry systems evaluated
Sector AFS Species Abundance (plants/ha) Total (plants/ha)

Nueva Generación

AFS-1

Jacaranda copaia 30

900

Theobroma cacao 810

Averrhoa carambola 20

Cedrela odorata 10

Citrus limon 10

Citrus sinensis 20

AFS-2

Jacaranda copaia 10

1090
Theobroma cacao 1060

Citrus limon 10

Musa paradisiaca 10

AFS-3
Jacaranda copaia 10

890
Theobroma cacao 880

Santa Rita Alta

AFS-4

Theobroma cacao 530

620Solanum sessiliflorum 10

Musa paradisiaca 80

AFS-5 Theobroma cacao 880 880

AFS-6
Theobroma cacao 1160

1170
Bertholletia excelsa 10

Puerto Trujillo

AFS-7

Theobroma cacao 780

1040

Cedrela odorata 10

Citrus reticulata 60

Musa paradisiaca 180

Matisia cordata 10

AFS-8
Theobroma cacao 880

890
Musa paradisiaca 10

AFS-9

Theobroma cacao 770

960
Citrus limon 50

Artocarpus altilis 50

Musa paradisiaca 90
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studies in AFS of the Peruvian Amazon (Concha 
et al., 2007; Díaz Pablo et al., 2024; Goñas et al., 
2022; Tito et al., 2022; Vela Alvarado et al., 2024) 
and in Madre de Dios (Clemente-Arenas, 2021, 
2022; Surco-Huacachi and Garate-Quispe, 2022), 
for AFS with similar ages. In Madre de Dios, car-
bon stocks of 20–116 Mg/ha have been reported 
for AFS between 4 and 7 years of establishment 
(Clemente-Arenas, 2021, 2022; Surco-Huacachi 
and Garate-Quispe, 2022). These differences 
with our study may be due to (1) higher density 
of T. cacao, (2) higher density of forest species 
(J. copaia, C. odorata, B. excelsa, A. altilis and 
Dipteryx species), and (3) better management of 
AFS. Because the abandonment of AFS can have 
a negative impact on the accumulation of carbon 
in vegetation, and because cocoa AFS, which in-
clude forest, fruit, timber and industrial species, 
are the most effective at sequestering carbon com-
pared to conventional land use systems (Concha 
et al., 2007; Segura-Elizondo and Moya, 2021). 

On the other hand, carbon stock in cocoa AFS 
in the Peruvian Amazon can vary from 2.9–4.4 
Mg/ha in the first year of establishment to 27–169 
Mg/ha in AFS at age 10–20 years (Tito et al., 
2022; Vela Alvarado et al., 2024). This high vari-
ability in the carbon stock of the cacao AFS is 
due to trees species (Tito et al., 2022), vegetation 
structure (Hernandez et al., 2021; Ruiz-Russi et 
al., 2023), soil physicochemical characteristics 
that may affect AFS productivity (Culqui et al., 
2025), and the management of AFS (Silva-Parra, 
2018). However, most studies report the presence 
of tree species and their size as the main factors 
influencing the variability of AFS carbon accu-
mulation (Clemente-Arenas, 2021). Because tree 
vegetation can represent between 48–80% of the 
carbon stored in AFS (Alexander et al., 2025; 

Goñas et al., 2022; Hernandez et al., 2021; Vela 
Alvarado et al., 2024), and this proportion in-
creases as the age of the AFS increases (Goñas et 
al., 2022; Kouadio et al., 2025). 

Previous studies have demonstrated that AFS 
increase carbon fixation rates and promote the 
conservation of ecosystems degraded by anthro-
pogenic activities, which can be considered as a 
strategy to mitigate climate change (Hernandez 
et al., 2021; Morales-Ruiz et al., 2025). The car-
bon fixation rates found in this study were similar 
to the mean values reported for AFS in the trop-
ics (2.1 Mg/ha/year) (Clemente-Arenas, 2021; 
Mena-Mosquera and Andrade C, 2021; Singh et 
al., 2024), which can vary between 0.29 and 17.6 
Mg/ha/year (Poveda et al., 2013; Segura and An-
drade, 2012; Sow et al., 2024), due to site charac-
teristics, land use, species composition, age of the 
AFS, and forest management practices (Chirwa 
et al., 2022; Sow et al., 2024). Values found in 
the study were also similar to those reported for 
cacao AFS in the Peruvian Amazon (1.48 to 2.64 
Mg/ha/year) (Rojas, 2022; Silva-Parra, 2018). 
Our results demonstrate that AFS have the poten-
tial for carbon sequestration and climate change 
mitigation (Chirwa et al., 2022).

Litter biomass

The carbon content in the litter of the AFS var-
ied between 9.6–20.3 Mg/ha (Table 5). The sec-
tors evaluated showed no differences in the carbon 
content of the AFS’ litter (ANOVA, p > 0.05). Al-
though AFS in the Puerto Trujillo sector had the 
highest average litter carbon content (Table 5).

Litter carbon stock assessment is important 
because its nutrient-rich decomposition and in-
teraction with microorganisms promote more 

Table 4. Results of estimates of aboveground biomass and carbon fixation in agroforestry systems

Sector Aboveground biomass 
(Mg/ha)

Carbon
(Mg/ha)

Carbon fixation
(Mg/ha/year)

Mean carbon fixation by 
sector (Mg/ha/year)

Nueva Generación

25.5 12.7 2.5

2.0 a27.3 13.7 2.0

15.4 7.7 1.5

Santa Rita Alta

16.8 8.4 2.1

2.4 a21.9 11 2.2

23.9 12 3.0

Puerto Trujillo

23.4 11.7 2.3

2.1 a15.5 7.7 1.5

23.3 11.6 2.3

Note: means within a column followed by the same letter are not significantly different according to ANOVA.
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efficient nutrient cycling in AFS (Nugroho et al., 
2023), creating conditions for vigorous and sus-
tained vegetation growth (Wahidurromdloni et 
al., 2025), improving system productivity and 
reducing dependence on external fertilizers, all 
of which are critical to the sustainability of AFS 
(Culqui et al., 2025; Segura-Elizondo and Moya, 
2021). Our results for litter carbon were similar 
to those reported for AFS in Madre de Dios (7.3–
22 Mg/ha) (Surco-Huacachi and Garate-Quispe, 
2022). In addition, litter carbon levels were higher 
than those reported for primary forests in Madre 
de Dios (1.6–3.4 Mg/ha) (AIDER, 2012) and 
those reported in cocoa AFS in Peru and the Ama-
zon (Concha et al., 2007; Díaz Pablo et al., 2024; 
Leiva-Rojas and Ramírez-Pisco, 2021; Vallejos-
Torres et al., 2024). These differences may be 
due to greater dynamics in litter decomposition 
and greater input of carbon and nutrients to the 
soil through mineralization in forests than in AFS 
(Leal et al., 2023), since Amazonian forests have 
high soil carbon stocks (25–60 Mg/ha) (AIDER, 
2012; Cardozo et al., 2022; Dalmo et al., 2016). 
Other factors such as tree density, species compo-
sition, phenology, and land management practices 
would also influence higher carbon content in lit-
ter (Ratna et al., 2022).

CO2 emissions 

The total CO2 emissions in the AFS varied 
between 0.12 to 2.15 Mg CO2e/ha/year (Table 6), 
and they had a high variability (95% coefficient 
of variation). Fuel consumption was present in all 
AFS and was the largest source of CO2 emissions 
(up to 98%). The use of gas, firewood and fertil-
izer contributed less to CO2 emissions (0.4–29%). 

Gas and coal were the least frequent sources of 
emissions, being present in only two AFS. No sig-
nificant differences in CO2e emissions were found 
among sectors (ANOVA, p > 0.05). While AFS in 
Puerto Trujillo had the lowest average emissions 
(0.44 Mg CO2e/ha/year), while the Santa Rita 
Alta sector had the highest average and variabil-
ity of emissions (0.94 Mg CO2e/ha/year) (Figure 
3). This high variability in emissions is due to dif-
ferences in the use of fuel and coal for domestic 
use and fuel for transport according to AFS. 

The characterization of each resource use and 
its emissions in the AFS allows us to quantify their 
impacts (Dianawati et al., 2023). Our results are 
consistent with previous studies reporting that fuel 
use is the main source of CO2 emissions in AFS 
(Umaña and Conde, 2013). Therefore, CO2 emis-
sions would play an important role in maintaining 
the environmental benefits of the cocoa production 
process (Pérez-Neira et al., 2020). However, our 
emissions results are lower than those found by 
the AFS for coffee and cocoa (0.5–1.3 Mg CO2e/
ha) in the Amazon region of Colombia and Bra-
zil (Ortiz-Rodríguez et al., 2016; Segura and An-
drade, 2012). On the other hand, the proportion of 
emissions from fertilizer use in our study was low 
(between 3.8–28%), which is different from what 
was reported by a study in the Amazon, which 
found that fertilizer use (30–35%) and transport 
(45–57%) were the main sources of emissions 
(Ortiz-Rodríguez et al., 2016; Pérez-Neira et al., 
2020; van Rikxoort et al., 2014). 

CO2 fixations 

The fixation rates of the AFS in the study var-
ied between 12.8 to 23.8 Mg CO2e/ha/year. At the 

Table 5. Results of estimates of litter biomass and carbon fixation in agroforestry system
Sector AFS Biomass (Mg/ha) Carbon (Mg/ha) Mean litter carbon by sector (Mg/ha)

Nueva Generación

AFS-1 19.10 9.55

13.48 aAFS-2 21.30 10.65

AFS-3 40.50 20.25

Santa Rita Alta

AFS-4 32.2 16.1

13.15 aAFS-5 18.9 9.45

AFS-6 27.8 13.9

Puerto Trujillo

AFS-7 34.8 17.4

17.43 aAFS-8 33.6 16.8

AFS-9 36.2 18.1

Mean 26.97 13.48 14.69

Note: means within a column followed by the same letter are not significantly different according to ANOVA.
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sector level, no significant differences were found 
in the average CO2 fixation in the AFS (ANOVA, 
p > 0.05). Although the highest CO2 fixation val-
ues were found in Santa Rita Alta and Puerto Tru-
jillo, this is due to a balance between carbon stor-
age in aboveground biomass and leaf litter. The 
high rate of CO2 fixation in the AFS is consistent 

with previous studies, which suggest that cocoa 
AFS can store a large quantity of carbon (Umaña 
and Conde, 2013). On the other hand, the CO2 fix-
ation results are consistent with those reported in 
previous studies on AFS with T. cacao (14-22 Mg 
CO2e/ha/year) (Cabezas-Andrade et al., 2024; 
Canal and Andrade, 2019). Our results show 

Table 6. Results of the estimation of CO2 emissions in the agroforestry system

Source of emission

Sector

Nueva Generación Santa Rita Alta Puerto Trujillo

AFS-1 AFS-2 AFS-3 AFS-4 AFS-5 AFS-6 AFS-7 AFS-8 AFS-9

Fertilizers (Mg CO2/ha/year) - 0.146 - 0.083 0.029 - 0.042 - 0.214

Herbicides (Mg CO2/ha/year) 0.046 0.138 - - 0.348 - 0.017 - -

Fuel (Mg CO2/ha/year) 0.196 0.342 0.098 0.978 0.109 0.078 0.196 0.196 0.391

Fuel for transportation (Mg CO2/ha/year) 0.098 0.196 0.039 0.196 0.065 0.039 0.059 0.049 0.130

Firewood (Mg CO2/ha/year) - 0.038 - 0.008 - - 0.018 0.018 0.002

Coal (Mg CO2/ha/year) 0.470 - - 0.882 - - - - -

Gas (Mg CO2/ha/year) - - 0.002 - 0.001 - - - -

Total emissions (Mg CO2e/ha/year) 0.81 0.86 0.14 2.15 0.55 0.12 0.33 0.26 0.74

Mean (Mg CO2e/ha/year) 0.60 a 0.94 a 0.44 a

Figure 3. Box plots comparing stored carbon (aboveground, litter and cacao beans), emissions and fixations of 
CO2e by agroforestry system sector in the Peruvian Amazon. The gray cross (+) represents the average. Lower-

case letters above boxplots indicate non-significant differences among sectors
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that AFS can be considered in a climate change 
mitigation strategy due to their great potential 
to reduce GHG emissions, promote strategies to 
conserve native biodiversity, and also provide 
socio-economic benefits to local populations (Ca-
nal and Andrade, 2019; Silva-Parra, 2018), un-
like monocultures (Cabezas-Andrade et al., 2024; 
Pérez-Neira et al., 2020).

Our results show that all AFS in the study had 
a positive carbon balance (12–23.5 Mg CO2e/ha/
year) (Figure 3F), because the CO2 fixation rates 
(Figure 3E) were much higher than the emission 
rates (Figure 3D). Agricultural production has a 
significant impact on the environment and is con-
sidered one of the main sources of GHG emis-
sions (Bains et al., 2024). In this context, agrofor-
estry is emerging as an alternative to traditional 
agriculture in the Amazon, as a dynamic and eco-
logical natural resource management system that 
provides greater social, economic and environ-
mental benefits than agriculture and plantations 
(Dianawati et al., 2023; Ruiz-Russi et al., 2023). 
Since we found a positive net carbon sequestra-
tion, our results suggest that AFS did not have 
a negative impact on the environment (Nguyen-
Duy et al., 2018). This is consistent with previ-
ous studies on AFS with T. cacao, Coffea arabica 
and Cordia alliodora in the Colombian Amazon 
(Canal and Andrade, 2019; Umaña and Conde, 
2013). Therefore, our results show that cocoa pro-
duction management can be environmentally sus-
tainable (Pérez-Neira et al., 2020; Ruiz-Russi et 
al., 2023), have less environmental impact, can be 
economically viable in terms of return on invest-
ment, energy or GHG intensity (Caicedo-Vargas 
et al., 2022). Our results highlight the importance 
of AFS in the context of climate change (Canal 
and Andrade, 2019) and the increasing environ-
mental impacts of traditional agricultural systems 
(Pérez-Neira et al., 2020). Considering the tree 
structure and how AFS are managed, they tend to 
store more carbon. Furthermore, AFS can harbor 
several tree species and can promote strategies for 
climate change adaptation and mitigation. There-
fore, it is clear that AFS can be useful in address-
ing climate change (Canal and Andrade, 2019). 

CONCLUSIONS

Our results show that the AFS in the study had 
a positive carbon balance. The aboveground carbon 
stock in the AFS varied between 7.7 and 13.7 Mg/

ha. The emission CO2 rates were low. However, fuel 
use emerged as the primary source of CO2 emis-
sions across all AFS. Therefore, by providing habi-
tat for diverse species, AFS would enable strategies 
to adapt to and mitigate climate change. These find-
ings are valuable for informing sustainable public 
policies and aligning them with low-carbon objec-
tives, enhancing the economic and environmental 
resilience of areas degraded or abandoned by tradi-
tional agricultural practices in the Amazon.
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