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INTRODUCTION

Increased atmospheric concentrations of gre-
enhouse gases (GHGs), including C, N and P com-
pounds, have driven global warming to become a 
critical environmental concern (Fu and Waltman, 
2022). GHG emissions are dominated by carbon 
dioxide (CO₂), which constitutes approximately 
80%, followed by methane (CH₄) at 11% and ni-
trous oxide (N₂O) at 6% (Benbi, 2013).

One of the dominant contributors of GHG 
emissions is agriculture, emitting roughly 18.4% 
of the global output, with CH₄ and N₂O being the 
primary pollutants (Brown et al., 2021; Kowalska 
et al., 2017; Laborde et al., 2021; Rehman et al., 
2020; Tubiello et al., 2013). When it comes to the 
strategies for mitigating climate change impacts, 

soil organic carbon (SOC) sequestration removes 
atmospheric carbon dioxide through photosyn-
thesis and stabilizes carbon in soil organic matter 
(OM) (Yang et al., 2022). OM decomposition and 
consequently SOC storage, are influenced by the 
conditions present in saline and sodic soils (Guil-
lén et al., 2023; Reyna et al., 2023).

Soil, as the resource that supports life and 
agriculture, plays a crucial role in carbon storage. 
Therefore, SOC levels are significantly influen-
ced by soil management practices (Gómez et al., 
2022). Conservation tillage and diverse crop rota-
tions, which maintain or enhance SOC, improve 
soil structure and porosity. Conversely, aggres-
sive tillage and monoculture lead to SOC deple-
tion (Gómez et al., 2022). SOC is essential for 
maintaining soil health, directly impacting crop 
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productivity and the availability of nutrients, par-
ticularly N (Reyna-Bowen et al., 2020). 

Regional GHG emissions, expressed as per-
centages of the global total, are: Asia (44%), North 
and South America (17%), Africa (15%), Europe 
(11%), and Australia/Oceania (4%) (Rehman et 
al., 2020; Tubiello et al., 2013). Multiple featu-
res, including climate, soil type and agricultural 
practices, influence this trend (Mrówczyńska-Ka-
mińska et al., 2021; Shakoor et al., 2021). Within 
regions like Latin America, emission levels can 
vary widely due to various agricultural practices. 
In Ecuador, approximately 70.0% of GHG emis-
sions come from agricultural activities (Cornejo 
and Wilkie, 2010), further contributing to soil de-
gradation in this country (Padilla and Haro, 2021). 

In the agroforestry systems of Theobroma ca-
cao L., high planting densities significantly im-
pact SOC (Monroe et al., 2016). Cocoa is vital for 
Ecuador, with annual exports growing at approxi-
mately 4.5% and a current planting area of 543.6 
ha-1 (Purcell et al., 2018). Ecuador ranks third in 
organic cocoa exports, with 10% of production in 
the Amazon region, mainly in conventional and 
organic agroforestry systems (Silva et al., 2022).

Previous research suggests that cocoa crops 
demonstrate a significant capacity for CO2 assi-
milation, resulting in carbohydrate synthesis equ-
ivalent to approximately 14% of the global cocoa 
yield (Ortiz-Rodríguez et al., 2016). Consequen-
tly, cocoa cultivation presents a promising possi-
bility for SOC sequestration, contributing to both 
rural socioeconomic development and ecological 
conservation (Goñas et al., 2022; Reyna-Bowen 

et al., 2018). Recognizing that cocoa variety in-
fluences the SOC sequestration rates through va-
riations in OM production and decomposition, the 
purpose of this research was to assess the effect of 
specific cocoa variety plantations on SOC stock.

MATERIALS AND METHODS

This research was developed in the coast re-
gion of Ecuador, in Manabí province, Calceta 
canton specifically in an area located at 0° 51’ 46” 
S, 80° 80’ 61” W, spanning an elevation gradient 
from 19 to 80 meters above sea level (Figure 1). 
Soil samples were collected from three 15-years-
-old Theobroma cacao L. plantations. With a tro-
pical climate, this region holds two seasons: rainy 
(from January to May) and dry (from June to De-
cember), the main meteorological annual parame-
ters include an average temperature of 25.6 °C, 
precipitation of 838.7 mm and a potential evapo-
transpiration of 1365.2 m.

The cocoa crop, consisting of varieties EET 
95, EET 103 and EET 116, was planted in March 
1990 on 0.84 hectares. The trees are spaced 4 me-
ters apart within rows. Weed control is performed 
every 8 to 15 days with manual scything, targe-
ting broad-leafed and thin weeds. Phytosanitary 
measures involve pruning twice a year to remove 
diseased fruit, sucker shoots and branches. Insect 
management occurs every 8 days using traps and 
targeted applications. Harvesting is manual, and 
fertilization includes direct soil applications and 
foliar biostimulant sprays. Irrigation is applied 

Figure 1. Study area of three species of Theobroma cacao L cultivations (varieties EET 95, EET 103 
and EET 116) at the ESPAM MFL in Calceta, Manabí, Ecuador
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twice a week by sprinklers, except during Ja-
nuary, February and March when rain suffices. 
Crop residues, including husks and prunings, are 
left in the field.

Although the importance of soil and air tem-
perature in comprehending ecological processes 
was recognized, the authors’ capacity to monitor 
these factors was constrained by a lack of funding 
and appropriate equipment. Therefore, by collec-
ting soil samples between July and August 2022, 
the authores were able to compare soil properties 
across several cocoa kinds and assess the impact 
of plants on SOC. Eight sampling locations were 
chosen (below trees and in-row sections) within 
each region, and samples were taken down to a 
depth of 30 cm. This produced 240 soil samples 
in total (10 at each layer), a method intended to 
offer a thorough examination of the biological dy-
namics pertinent to the research aim (Figure 2).

Soil bulk density (BD) was assessed using 45 
samples collected from five representative soil 
pits. For this parameter, the depths were: 0–10, 
10–20 and 20–30 cm with three replicates per 
depth and location (under-tree and in-row). To 
achieve a stable dry weight, the samples were 
oven-dried at 105 °C for 72 hours, a 98.2 cm³ cy-
linder was used to obtain BD as the dry soil mass 
divided by the known sampler volume (Hao et al., 
2008). From these subsamples, the soil moisture 
content was determined, while the remaining soil 
was air-dried in preparation for further analysis.

To determine SOC, the soil samples were 
sieved in a 2 mm mesh and homogenized. Sto-
niness, expressed as a mass percentage, was de-
termined gravimetrically. To reach a stable dry 
weight, the samples were dried at 40 °C for 72 
hours in an oven, SOC concentration was quan-
tified using the Walkley wet oxidation method 
(Walkley, 1947). For SOC stock, the calculus 
was made according to Equation 1, for each 

depth interval and the entire soil profile accor-
ding to the Intergovernmental Panel on Climate 
Change (IPCC) guidelines.

	
𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10000𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 

× 𝐵𝐵𝐵𝐵𝑖𝑖 × 𝑑𝑑 × (1 − 𝛿𝛿) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖=𝑛𝑛
𝑖𝑖=1   

 

	 (1)

Equation 2 determines the soil total organic 
carbon stock by summing the contributions from 
each layer, while accounting for stoniness. This 
is achieved by multiplying the organic carbon 
concentration (g·g-1) by the BD of the soil layer 
(g·cm-3) and its thickness (cm), and then subtrac-
ting the influence of coarse particles (represented 
by the fraction δ, ranging from 0 to 1). The sum-
mation is performed across all n soil layers, yiel-
ding the overall carbon stock Equation 2. 

	

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10000𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 × 

× 𝐵𝐵𝐵𝐵𝑖𝑖 × 𝑑𝑑 × (1 − 𝛿𝛿) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖=𝑛𝑛
𝑖𝑖=1   

 
	 (2)

To evaluate differences in mean SOC concen-
tration (%) and stock across soil depths and loca-
tions within the three cocoa varieties, parametric 
analysis of variance (ANOVA) was performed 
using InfoStat 2018. RStudio was operated to 
conduct correlation analyses and principal com-
ponent analysis (PCA) to explore the main rela-
tionships among the parameters.

RESULTS AND DISCUSSION

Figure 3 shows that the moisture behavior in 
the soil profile has variability over the position of 
each of the sampled areas. In the EET 116 cocoa 
variety, the area with the highest moisture is be-
tween 5 and 20 cm, unlike the other two varieties 
where the highest percentage of moisture is on the 
surface 0–5 cm and 20–30 cm. From this behavior 
of moisture on the surface, it can be understood 
that the effect of crop residues and pruning in 

Figure 2. Soil samples were collected at four depths, both under trees and in-rows
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each of the species directly affects moisture reten-
tion on a different scale compared to the samples 
under the tree. Traditional management in cocoa 
plantations leads to a lack of residues or vegeta-
tion cover under the tree (Quintana et al., 2019; 
Quizhpe et al., 2017). This management has the 
opposite effect to what is seen in rows where bet-
ter moisture retention is noted (Bronick and Lal, 
2005; Quintana et al., 2019). 

No statistical differences in SOC were ob-
served between cocoa varieties at depths of 5–10 
cm and 10–20 cm, either under-trees or in-rows. 
The absence of significant spatial variation in 
soil moisture content at these depths suggests a 
standardized behavior, with textural properties 
likely accounting for the observed differences, 
corresponding to a largely sandy loam soil at 
this depth and the response of moisture to dry 
season. However, plantations have sprinkler ir-
rigation, maintaining soils with their respective 
moisture. Nevertheless, in section 20–30 cm a 
similar behavior was shown as in the first sec-
tion, EET103 in-row showed the highest per-
centage of moisture (7.01%), being significantly 
different only from EET116 below the tree with 
5.69%. There were no significant differences at 
the other sampling locations. The increase in 
moisture in the last section can be assumed to 
be due to the slight change in texture that ex-
ists in the area (Bronick and Lal, 2005). A small 

percentage increase in clay content has had a no-
table effect on moisture in the 20–30 cm section.

Moisture was also analyzed vertically to see 
the behavior in each of the varieties of cocoa 
plants. The results showed that only the EET116 
variety showed significant differences between 
the in-row and below the cocoa plant. The 5–10 
cm soil section exhibited the highest moisture 
percentage (6.91%), while the 0–5 cm and 20–
30 cm sections showed lower percentages of 
5.62% and 5.69%, respectively (Figure 3).

There was no significant variation across soil 
depths and sampling locations for BD. In aver-
age, EET 95 BD reached 1.12 g cm⁻³ beneath 
trees and 1.15 g cm⁻³ in rows. The correspond-
ing values for EET 116 and EET 103 were 1.22 
g cm⁻³, 1.17 g cm⁻³, 1.14 g cm⁻³ and 1.18 g cm⁻³. 
The standardization of BD values, observed af-
ter 15 years of cocoa plantation management, 
suggests that BD does not significantly influence 
the comparison of SOC concentrations.

Figure 4 presents a correlation matrix re-
vealing key relationships between soil proper-
ties and cocoa trees. As expected, SOC and SOC 
stock are perfectly correlated (1.00), as they both 
quantify soil carbon content. Similarly, OM and 
SOC show a strong positive correlation (0.72), 
since SOC is a major component of OM. These 
findings highlight the central role of soil organic 
carbon in this system.

Figure 3. Soil moisture content (%) for EET 95, EET 103 and EET 116. Capital letters (vertical comparisons 
by location); lowercase letters (horizontal comparisons by depth section. Statistically differences are denoted by 

different letters (p > 0.05)
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Interestingly, cocoa trees show significant 
positive correlations with SOC (0.20), OM (0.20), 
SOC stock (0.27), and soil depth (0.23). This sug-
gests that cocoa trees thrive in deeper soils with 
higher organic matter content, likely due to im-
proved nutrient and water availability. Supporting 
this idea, BD shows a moderate negative correla-
tion with soil depth (-0.49), indicating that deeper 
soils tend to be less compacted, promoting root 
growth and nutrient uptake. 

While BD exhibits weak positive correlations 
with OM and SOC (0.048) and a slightly stronger 
correlation with SOC stock (0.19), these relation-
ships warrant further investigation. Understand-
ing these complex interactions could help imple-
ment informed management practices aimed at 
optimizing soil conditions for cocoa cultivation. 
However, it is crucial to remember that correla-
tion does not equal causation, and other factors 
may be influencing these relationships. 

The results presented in Figure 5 indicate 
that for the first soil layer (0–5 cm depth) SOC 
concentration average for all cocoa varieties was 
2%. However, significant differences in SOC con-
centration were observed, with the highest con-
centration (2.51%) in rows of EET 116 and the 
lowest (1.57%) under EET 103 trees. In contrast, 
no significant differences were detected in SOC 
concentration at other locations or depths. 

Nevertheless, SOC concentration declined 
with increasing depth, with average values of 
1.3%, 1.0% and 0.89% at each depth, respective-
ly. While (Yang et al., 2022) reported a fourfold 

difference in SOC concentration between the up-
per and lower soil layers (0–100 cm), the findings 
of wthis research (0–30 cm) revealed a nearly 
threefold difference between the upper and sec-
ond lower layers, suggesting a potentially steeper 
decline in SOC concentration at shallower depths.

An important behavior on surface carbon 
dynamics is that waste management has played 
an important role in these systems (Goñas et al., 
2022). Pruning and the shells of the cocoa pod 
are accumulated in the rows between the plants. 
This residue has been incorporated and decom-
posed during the 15 years of plantation operation. 
Residue accumulation significantly contributes to 
the superficial soil layer, which exhibits the high-
est microbial activity (Yang et al., 2022). The ob-
served SOC concentration patterns are linked to 
soil moisture dynamics. The greater surface cover 
in rows, comprising both living and dead vegeta-
tion (pruning and harvesting residues), promoted 
SOC accumulation in the 0–5 cm layer through 
enhanced decomposition, a process further influ-
enced by environmental factors, including tem-
perature (Solly et al., 2014). 

These factors in a tropical climate cause mi-
crobial activity to be more active than in the sam-
ples located under the tree where no pruning or 
harvesting residues are found (Jadan et al., 2015; 
Jobbagy and Jackson, 2000). In contrast, as seen 
in Figure 5, below the cacao tree the organic car-
bon concentrations were lower than in the rows. 
This explains the importance of the incorpora-
tion of the organic residues in the rows for their 

Figure 4. Pearson correlation matrix of soil dynamics: cocoa trees; depth; BD; OM; SOC and SOC stock
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incorporation through decomposition in time 
(Jobbágy and Jackson, 2000). Likewise, the mi-
croorganisms at depth do not have this access to 
nutrients, so the difference in carbon concentra-
tion is notable (Fontaine et al., 2007).

In rows, at the 0–5 cm depth, SOC stocks 
reached 14.44 t ha⁻¹ for EET 116 and 14 t ha⁻¹ for 
EET 103. The lowest SOC stock (9.04 t ha⁻¹) was 
found beneath EET 103 trees. While no significant 
differences were observed among other sampling 
locations at subsequent depths, a fluctuating trend 
in SOC stock was evident: 7.56 t ha⁻¹ at 5–10 cm, 
12.5 t ha⁻¹ at 10–20 cm and 10.2 t ha⁻¹ at 20–30 
cm. This pattern reflects the influence of root dy-
namics on SOC distribution across the soil profile. 

The elevated SOC stock at the 10–20 cm 
depth (Figure 6) suggests a significant contribu-
tion from root biomass and exudates associated 
with cocoa tree growth. In long summers with 
sprinkler irrigation, moisture is retained for much 
longer under pruning and harvest residues. This 
has a direct effect on the development of the 

roots, causing them to drift towards the direc-
tion of the rows in search of water. This leads to a 
greater presence of roots in that section. Accord-
ing to studies, the highest amounts of roots are 
between 10 to 20 cm deep (Hayes and Seastedt, 
1987; Solly et al., 2014).

With the analysis of the entire profile analyzed 
(0–30 cm), it was observed that the species EET 
116 stored 41 t ha-1 and 54 t ha-1 below tree and 
row, respectively. For the samples taken from EET 
103 in-row reached 47 t ha-1. On the other hand, 
EET95 and EET 103, with 36 t ha-1, 37 t ha-1 and 
47 t ha-1, below tree and in-row, respectively, got 
the lowest values, without significant differences 
(Figure 7). The fundamental patterns identified in 
this study could be partially applicable to the areas 
with similar soil and climate conditions, although 
more precise understanding would need more re-
search covering a greater range of variables. While 
this research advances authors’ knowledge of co-
coa production in tropical regions, it is improbable 
that particular quantitative results will be directly 

Figure 5. Comparative SOC concentration (%) for EET 95 (black), EET 103 (red) and EET 116 (green). 
Lowercase letters (horizontal comparisons across soil depth sections); uppercase (vertical comparisons across 

locations). Statistically differences are denoted by different letters (p > 0.05)
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interconnected. It is important, because it offers a 
useful case study that highlights important eco-
logical processes and management factors. Any 
effort to generalize these findings to other areas 

or farming systems must thus be carefully consid-
ered and backed by specific research.

To justify the selection of principal compo-
nents in principal component analysis (PCA), the 

Figure 6. Distribution of SOC stock (t ha⁻¹) across soil depth profiles, comparing EET 95, EET 103 and EET 
116 cocoa tree at both beneath-tree and row locations. Letters denote statistically significant differences

Figure 7. Total accumulated SOC stock (t ha⁻¹) for EET 95, EET 103 and EET 116 cocoa trees at 0–30 cm 
depths, comparing beneath-tree and row locations. Different letters denote significant differences
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scree plot (Figure 8) was analyzed. The plot re-
veals a sharp decrease in explained variance after 
the first component, and an elbow at the second, 
supporting the retention of only two components 
to effectively represent the data variability.

The PCA biplot, viewed in the context of 
the Ecuadorian cocoa study, reveals key insights 
into the factors driving SOC dynamics (Figure 
9). The high variance explained by principal 
component 1 (PC1, 91.4%) suggests it primarily 
captures the influence of cocoa variety and loca-
tion (under tree vs. row), aligning with the sig-
nificant SOC findings from the study. Principal 

component 2 (PC2) likely represents secondary 
variables, such as soil depth, which were not the 
main focus of the study.

The clear separation between below tree and 
row samples along PC1 reinforces the observa-
tion of location-based differences in SOC made 
in the study, particularly for the EET103 variety 
at shallow depths. The influence of SOC stock-
ing (ha) on PC1 might be indirectly linked to lo-
cation, as row samples likely experience higher 
stocking due to open conditions. Meanwhile, 
OM is positively associated with both PC1 and 
PC2, suggesting its dependence on both location 

Figure 8. Percentage of explained variances

Figure 9. PCA group in two categories below tree and row
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and other factors, such as soil depth, which 
aligns with the study’s findings of varying SOC 
concentrations across depths.

Furthermore, the PCA biplot can be connect-
ed to specific study outcomes. The high SOC 
concentrations in the EET116 variety likely con-
tribute to the separation of some row samples 
along PC1. The absence of significant SOC dif-
ferences between beneath-tree and row locations 
for EET 95 and EET 103 may explain the ob-
served sample overlap.

However, it is important to acknowledge that 
the PCA biplot does not explicitly show varietal 
differences. Further analysis focusing on variet-
ies could uncover additional patterns. Moreover, 
incorporating soil depth and the time factor into 
the PCA could provide a more comprehensive 
understanding of SOC dynamics. By integrating 
the study findings and considering these addi-
tional factors, the PCA biplot becomes a pow-
erful tool for visualizing and interpreting the 
complex interplay of factors influencing SOC in 
cocoa plantations.

CONCLUSIONS 

Under constant climatic circumstances, the 
EET 116 cocoa variety has greater SOC content 
and accumulation, which is visibly associated 
with increased aerial and root biomass growth. 

Mature cocoa plantations, especially those 
over 15 years old, show a substantial ability for 
carbon sequestration, regardless of the individu-
al cocoa variety produced, with carbon content 
in the plantation rows equaling or exceeding that 
of the surrounding soil. 

Unlike random sampling techniques, the 
customized experimental design used in this 
study highlights the importance of precise man-
agement practices in SOC within cocoa agro-
forestry systems, showing that even traditional 
methods can have significant positive environ-
mental effects.
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