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INTRODUCTION

Recent studies indicate that urbanization and 
industrialization significantly contribute to urban 
heat islands (UHIs). UHIs are characterized by 
higher atmospheric and surface temperatures in 
urban areas compared to surrounding rural areas 
(Mas’Uddin et al., 2023; Wang et al., 2024). Typi-
cally, UHIs are found in densely populated urban 
zones with consistently higher energy consump-
tion than adjacent rural regions (Wang and Guan, 

2012; Tian et al., 2021). Currently, over half of the 
global population lives in cities, accounting for 
over 60% of the world’s total energy consump-
tion (Malley et al., 2015; United Nations Human 
Settlements Programme, 2023). These highly-
dense urban areas are often feature a high den-
sity of buildings and structures with low thermal 
capacity but high heat accumulation rate, caus-
ing them to absorb more solar radiation (Jamei 
et al., 2021). The rising atmospheric and surface 
temperatures, coupled with the presence of UHIs, 
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have had severe and harmful consequences on 
human health and well-being (Xu, et al., 2017a; 
Wang et al., 2023). UHIs can also influence local 
weather and climate through altering local weath-
er and climate patterns (Singh et al., 2017; Luo et 
al., 2022). As a result, the UHI phenomenon has 
evolved into one of the vital social and climate-
related challenges worldwide. 

Land use/cover change (LUCC) has been ac-
celerated by the urbanization process along with 
population growth and economic expansion (Da-
dashpoor et al., 2019; Yu et al., 2022). It is widely 
recognized that urban LUCC can have a certain 
impact on the thermal environment patterns. This 
is because different land use/cover types possess 
distinct characteristic thermal, moisture, and op-
tical spectral properties (Chen and Zhang, 2017; 
Roy et al., 2022). In recent years, most of studies 
have utilized remote sensing data, field observa-
tion data, and mesoscale models like the weather 
research and forecasting (WRF) model to assess 
the ways in which LUCC can modify urban ther-
mal patterns (Kubota et al., 2017; Harmay et al., 
2021; Yuan et al., 2023). These studies partially 
revealed the synergistic reaction mechanism be-
tween LUCC and thermal patterns in the process 
of UHIs. Previous research has verified that in ur-
ban areas, both vegetation cover and water bodies 
are conducive to reducing LST and enhancing the 
relative humidity of the air. Due to their cooling 
effects on the urban thermal environment, they 
have been referred to as “cold islands” (Chap-
man et al., 2018; Masoudi et al., 2021; Gao et al., 
2022). UHI effects mitigated by both vegetation 
cover and water can be explained as follows: (1) 
a significant portion of sunlight and environmen-
tal radiative waves can be reflected by vegeta-
tion and water bodies; (2) thermal energy and air 
moisture can be readily mediated through water 
evaporation, vegetation transpiration and vegeta-
tion photosynthesis. 

It is commonly acknowledged that urban 
parks are abundant in vegetation and water bod-
ies. As a result, they assume a crucial role in miti-
gating the urban thermal environment (Peng et 
al., 2016; Zhu et al., 2023). Many UHI studies 
have discussed how cooling effects of urban parks 
could be affected by the geometric forms such as 
park area, perimeter and ratios between park area 
and perimeter (Wang, et al., 2017a; Gao et al., 
2022; Cai et al., 2023). Some studies focused on 
how cooling effects of urban parks are affected 
by inner land-use landscape characteristics of 

urban parks (Xu, et al., 2017b; Liao et al., 2023). 
Generally, urban parks are regarded as vital urban 
public spaces that offer opportunities for natural 
landscape appreciation, recreational activities, 
and relaxation. Simultaneously, urban villages 
and residential districts serve as the primary liv-
ing environments for urban residents. Urban vil-
lages are areas surrounded by cities during rapid 
urbanization, often overlooked in urban planning. 
They are usually distributed in the urban built-up 
areas and characterized by a mixture of urban and 
rural society (Wei et al., 2024), providing afford-
able and accessible housing for rural migrants 
(Zhang et al., 2016). Due to exclusion from urban 
spatial planning, most urban villages developed 
chaotically during urbanization (Song and Zenou, 
2012; Huang et al., 2023). Owing to the scarcity 
of cooling elements like vegetation cover and 
water bodies, combined with their high building 
and population densities, urban villages are fre-
quently plagued by an inhospitable thermal envi-
ronment marked by elevated temperatures (Qiu et 
al., 2017). In contrast to urban villages, residen-
tial districts, which are governed by governmen-
tal development plans and management, typically 
feature lower building densities and higher veg-
etation cover. As a result, the thermal conditions 
in these districts are likely to differ significantly 
from those in urban villages. While urban parks 
have been extensively studied for their thermal-
regulating effects, the thermal environments and 
associated regulatory mechanisms of both urban 
villages and residential districts remain less un-
derstood. This knowledge gap is concerning, giv-
en that the thermal quality of both urban villages 
and residential districts directly impacts the living 
standards of urban residents.

Considering the aforementioned deficiencies 
in UHI research, three typical land-use types (e.g. 
urban village, residential district, and urban park) 
were selected for an in-depth examination of 
their thermal characteristics and heat regulation 
mechanisms in Guangzhou, South China. This 
study helped enhance the understanding of ef-
fective strategies for regulating the UHI effect. It 
furnished scientific data that can serve as a robust 
foundation for contemporary urban detailed plan-
ning and management, thereby facilitating the 
creation of more sustainable and thermally-com-
fortable urban environments. To achieve these 
objectives, the following approaches were adopt-
ed: (1) Analyze the LST disparities among three 
typical land-use types, namely urban villages, 
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residential districts, and urban parks; (2) Quan-
tify how both the inner and outside LST of urban 
village, residential district and urban park could 
be affected by the area, parameter and the ratios 
between area and parameter of three typical land 
use types; (3) Examine the correlation between 
urban planning indicators (such as green cover-
age, building number and plot ratio) and LST in 
residential districts; (4) Explore how the cooling 
effect could be affected by inner land-use land-
scapes of urban parks. 

MATERIALS AND METHODS

Study area

Megalopolis Guangzhou (112°57′~114°3′E, 
22°26′~23°56′N) is situated in Pearl River Delta, 
South China (Figure 1). Guangzhou has a typical 
subtropical marine monsoon climate, featuring 
relatively high temperatures throughout the year. 
Average annual temperature exceeds 22 ℃, and 
average temperature in the hottest month, July, is 
approximately 28 ℃. Overall, Guangzhou’s cli-
mate is marked by warm and rainy conditions, 
abundant sunlight, a long summer, and a short 
frost-free period. As a pivotal gateway city for the 
reform and opening-up in South China, Guang-
zhou has scored remarkable and unparalleled 

achievements in urban development. It has suc-
cessfully evolved into one of the five National 
Central Cities in China. However, Guangzhou 
has been continuously troubled by the high-tem-
perature “scorching” climate. The highest annual 
air temperature has often remained above 37 ℃ 
for an extended period, and as a result, the per-
ceived body temperature has exceeded 40 ℃. As 
the renowned “City of Flowers”, Guangzhou has 
always been committed to the planning and de-
velopment of urban parks, and these urban parks 
can, to some extent, alleviate the negative im-
pacts of the UHI effect. During the rapid urban 
development process, a large number of modern 
residential districts have been constructed in the 
urban center of Guangzhou. Nevertheless, many 
urban villages still remain in the urban central ar-
eas. The UHI effect can be significantly alleviated 
by ecological land-use types like forests, water 
bodies, and grasslands in the urban central areas. 
Regrettably, in urban villages where the UHI ef-
fect is prominent, such ecological land-use types 
have largely disappeared.

Remote sensing data

With the advancement of remote sensing 
(RS) and geographic information system (GIS) 
technologies, the LST retrieved from remote 
sensing data has been extensively applied to 

Figure 1. Typical research samples and land surface temperature distribution in Guangzhou



284

Journal of Ecological Engineering 2025, 26(9), 281–296

explore how UHI effect can be influenced by 
various abiotic and biotic factors. In numerous 
studies, LST can be effectively obtained. In this 
study, Landsat 8 images featuring multispectral 
and thermal infrared wavebands were employed 
to retrieve the LST in Guangzhou. The Landsat 
8 images were sourced from the website: http://
ids.ceode.ac.cn/. Located in the southern sub-
tropical region, Guangzhou undergoes frequent 
rainy and cloudy weather, degrading Landsat 
8 image quality and resulting in scarce usable 
imagery for research. Landsat 8 satellite has a 
typical 16-day revisit cycle. Coupled with the 
interference of rain, clouds, and fog, its remote 
sensing imagery struggles to capture short-term 
or seasonal variation characteristics of the UHI 
effect. Retrieval results showed that for Landsat 
8 images of path 122 and row 44 with cloud cov-
er below 5% in 2014, the acquisitions on Janu-
ary 17, 2014 (1.62% cloud cover), November 
16, 2011 (0.56% cloud cover), and October 15, 
2014 (0.17% cloud cover) were eligible. Howev-
er, the first two images exhibited evident cloud 
interference over the Guangzhou region, leaving 
only the October 15, 2014 image that met the 
research criteria. On that day, October 15, 2014, 
the highest temperature was 30 ℃ and the low-
est temperature was 17 ℃. The coordinate sys-
tem of the selected remote sensing images is the 
WGS-84. To reduce atmospheric impacts, mul-
tispectral images were radiometrically corrected 
using the FLAASH model in ENVI 5.1 and geo-
metrically corrected with ground control points. 
Then, the images were clipped by Guangzhou’s 
vector map.

Sampling data for three typical land-use 
types

To understand how abiotic and biotic factors 
can effectively regulate the UHI effect of three 
typical land-use types in Guangzhou, 21 urban 
parks, 23 urban residential districts, and 17 urban 
villages were selected from the urban develop-
ment areas. Owing to the absence of statistical 
data including population and plot ratio, along 
with the lack of scientific planning and manage-
ment, this study merely analyzed the impact of 
the area, perimeter, and the perimeter-to-area ra-
tio of urban villages on their LST characteristics. 
Additionally, it analyzed how the area, perimeter, 
and perimeter-to-area ratio affect the LST char-
acteristics of urban residential districts and urban 

parks. Meanwhile, this study aimed to explore 
how the LST characteristics of urban residential 
districts could be alleviated by planning indica-
tors, including plot ratio, green coverage, building 
number and household number. This study also 
analyzed how the LST both inside and outside 
urban parks would be influenced by the land-use 
landscape characteristics of urban park, aiming 
to reveal the thermal regulation mechanisms of 
these urban parks. The GIS buffer analysis func-
tion was employed to extract the average LST of 
various buffer zones ranging from 0 to 540 meters 
outside the three typical land-use types. The buf-
fer distance interval was set at 30 meters, in ac-
cordance with the spatial resolution of the Land-
sat data. The buffer zone analysis was conducted 
to uncover the correlation relationships between 
the internal and external LST characteristics.

LST extraction

Currently, there are three main LST inversion 
algorithms: the atmospheric correction method 
(also known as the radiative transfer equation), 
the single-channel algorithm, and the split-win-
dow algorithm. However, these algorithms differ 
in their sensitivity to parameters such as atmo-
spheric conditions and surface emissivity, which 
may introduce errors into LST inversion results. 
Despite this, Landsat data remains a critical data 
source for studying the urban heat island effect. 
When atmospheric parameters and surface emis-
sivity are known or can be accurately estimated, 
the radiative transfer equation (RTE) enables 
high-precision retrieval of LST (Xu et al., 2015; 
Windahl and de Beurs, 2016; Wang et al., 2018). 
RTE was utilized to retrieve the LST in this study. 
The main formulas are as follows:
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where:	Lλ represents the land surface radiation 
value, QDN is the grey level value of the 
tenth thermal infrared band of Landsat 8 
images; TB stands for radiant brightness 
temperature; K1 and K2 are default values, 
with values of 774.89 W•m⁻²•sr⁻¹•µm⁻¹ 
and 1321.08 K, respectively. λ represents 
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the central wavelength of the tenth ther-
mal infrared band, valuing 10.9 μm. ρ is 
constant 0.01438 m•K. ε represents sur-
face feature emissivity. The ε calculation 
method is described in Griend and Owe 
(1993) and Weng (2003). 

Calculation of landscape pattern index

Three typical land use types, namely urban 
villages, residential districts, and urban parks, 
were identified based on Baidu Maps and on-
site investigations. Their specific locations and 
spatial areas were meticulously verified with 
the aid of high-resolution Google Earth images. 
Additionally, shape characteristics such as area, 
perimeter, and the ratio between perimeter and 
area for these land use types were calculated by 
ArcGIS 10.2 software. In order to investigate 
the land-use landscape characteristics of urban 
parks, the various land-use types (such as con-
struction land, forest land, water area, and grass-
land) of urban parks were retrieved through man-
ual visual interpretation of Google Earth images. 
The KML files of different land-use types were 
opened in ArcGIS 10.2 software for topology 
checking and the conversion of data format from 
vector to raster. To extract the landscape pattern 
index, the land-use data of urban parks were 
transformed into TIF grid formats. The landscape 
pattern index was calculated using the Fragstats 
4.2 software. Since water areas and grasslands 
do not exist in all urban parks, forest land, water 
areas, and grasslands were aggregated as eco-
logical land. The landscape pattern index of the 
ecological land was also retrieved to analyze the 
thermal regulation functions and mechanisms of 
the ecological land.

Drawing on previous research on the UHI 
effect, eight landscape pattern indexes for urban 
park land use were calculated at the class met-
rics level in Guangzhou’s urban parks. These 
indexes encompass patch density (PD), largest 
patch index (LPI), total edge (TE), edge density 
(ED), mean area (AREA_MN), mean shape index 
(SHAPE_MN), landscape division index (DIVI-
SION) and aggregation index (AI). Simultane-
ously, ten landscape indexes were computed at 
the landscape metrics level for the same urban 
parks in Guangzhou. This set includes PD, LPI, 
TE, ED, AREA_MN, DIVISION, patch  richness 
(PR), patch  richness density (PRD), Shannon di-
versity index (SHDI) and AI.

Statistical analyses

Correlation analysis was initially employed to 
identify the parameter that could have an impact 
on the LST. Subsequently, linear, logarithmic, 
power, and exponential functions were utilized 
to analyze the differential correlations between 
the minimum, average, and maximum LST val-
ues and the area, perimeter, as well as the perim-
eter-to-area ratio of each typical land-use type in 
Guangzhou. Statistical analyses were predomi-
nantly conducted using SPSS 19.0 and Origin 
9.0 at a 95% confidence level. The key statistical 
methods employed included correlation analysis, 
linear regression analysis, nonlinear regression 
analysis, and stepwise regression analysis. Cor-
relation and stepwise regression analyses were 
executed via SPSS 19.0, whereas linear and non-
linear regression analyses, along with the genera-
tion of their corresponding graphical plots, were 
accomplished using Origin 9.0.

RESULT AND DISCUSSION 

LST differences among three typical land-use 
types

Generally, the LST values of urban villages, 
residential districts, and urban parks differed 
significantly, and their influence ranges on the 
surrounding thermal environment also varied 
distinctly (Figure 2). The results demonstrated 
that the minimum, average, and maximum LST 
values all exhibited a decreasing trend in the fol-
lowing order: urban village > residential district 
> urban park. The average LST of urban vil-
lages, residential districts, and urban parks were 
28.59 °C, 26.95 °C, and 25.09 °C, respectively. 
Cao et al. (2022) reported a similar finding: in 
Wuhan of China, high-density residential areas 
exhibit higher temperatures and drier conditions 
than low-density residential areas with scattered 
layouts and extensive open spaces. Kolokotsa et 
al. (2022) found that in the Sydney Metropolitan 
Area, higher built area ratio of precincts correlat-
ed with lower cooling contribution of mitigation 
measures. LST variations among three typical 
land-use types can be explained by large differ-
ences in ecological land-use types. Firstly, no-
table disparities exist in vegetation cover among 
the three typical land-use types. In Guangzhou, 
urban villages are characterized by a scarcity of 
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ecological land cover, including forest cover, wa-
ter bodies, and grasslands. In contrast, residential 
districts feature a green coverage rate ranging 
from 17% to 50%. Urban parks stand out promi-
nently, with their ecological land cover exceeding 
72%. In some cases in Guangzhou, the ecological 
land cover within urban parks can even reach as 
high as 97.62%. Previous studies have predomi-
nantly shown that ecological land cover can al-
leviate thermal conditions via cooling and hu-
midifying effects. A vast majority of these studies 
have indicated that LST is negatively correlated 
with vegetation cover, forest cover, water area ra-
tio, and ecological land cover (Peng et al., 2016; 
Masoudi et al., 2021; Zhu et al., 2023). In addi-
tion, urban villages are almost entirely covered 
by artificial buildings. They are characterized by 
high population density, a large number of dense-
ly-packed artificial buildings, crowded streets and 
roads, and a lack of ventilated cooling channels 
(Zhang and Meng, 2013; Guo et al., 2015). Thus, 
the urban village exhibited the highest LST. 

Buffer zone analysis showed that due to their 
heat island effects, urban villages significantly 
warmed the surrounding thermal environment. 

This warming was mainly confined to the 0–150 
m buffer zones; beyond this distance, the warm-
ing effects of urban villages dissipated. The max-
imum LST difference between urban villages 
and their surrounding buffer zones was 0.83 °C. 
Unlike urban villages, residential districts and 
urban parks cooled the surrounding areas. Aram 
et al. (2019) found that a 125-hectare urban park 
in Madrid, Spain, reduced air temperatures by an 
average of 0.63 °C at a distance of 150 meters 
from the park, with the cooling effect decreasing 
to 1.28°C at distances of 380 meters and 665 me-
ters. A study by Zhang et al. (2024) on 33 urban 
parks in Harbin, China, revealed that the parks 
had an average cooling range of 277 meters and 
achieved an average cooling effect of 3.27 °C. 
In Guangzhou, average cooling ranges of resi-
dential districts and urban parks are 90 m and 
150 m, respectively, both decreasing with the 
increasing buffer distance. The maximum LST 
differences were 0.67 °C for residential districts 
and 2.45 °C for urban parks compared to their 
buffer zones. In conclusion, urban parks have a 
more pronounced cooling effect than residential 
districts. Regression analysis indicated that in 

Figure 2. LST differences among three typical land-use types in Guangzhou
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both urban villages and urban parks, there were 
robust power- function relationships between 
LST and buffer distance, with determination co-
efficients (R2) exceeding 0.98. Conversely, no 
such fitting function relationship was established 
between LST and buffer distance in residential 
districts (Figure 2).

LST variations affected by basic 
characteristics of three typical land-use types

Recent studies mainly examined how an 
urban park’s area, perimeter, and ratio between 
perimeter and area affect LST, but few have in-
vestigated urban residential districts and urban 
villages. Previous studies showed that the area 
and perimeter of urban parks were negatively 
correlated with LST, whereas the ratio between 
perimeter and area was positively correlated with 
LST (Liu et al., 2017; Algretawee, 2022; Cai et 
al., 2023; Liao et al., 2023). Moreover, the area, 
perimeter, and ratio between perimeter and area 
of urban parks did not exhibit simple linear cor-
relations with LST. Instead, they were correlated 
with LST following exponential, logarithmic, and 
power functions, respectively. This study cor-
roborated the conclusions of previous research 
(Meng et al., 2010; Li and Pan, 2017). As shown 
in Table 1, the maximum LST was positively cor-
related with the area and perimeter of urban vil-
lages while it was negatively correlated with the 
ratio between perimeter and area. This result can 
be attributed to several factors. In urban villages 
of Guangzhou, there is a high building density 
and a large contiguous building distribution area 
(Zhang et al., 2016; Zhou and Chen, 2018; Wei 
et al., 2024). Additionally, the absence of cool-
ing corridors in these urban villages makes it 
difficult for thermal exchange to occur between 
the interior of the urban villages and the outside 

environment (Guo et al., 2015). A higher ratio 
between perimeter and area implies greater shape 
complexity of land use patches, which promotes 
energy flow, matter cycling, and information ex-
change between urban village interiors and ex-
teriors. As this ratio rises, more frequent energy 
exchanges help reduce internal LST differences. 
There was a significant power-function correla-
tion relationship between the LST and the ratio 
between perimeter and area of urban villages in 
Guangzhou (R2 = 0.615, Figure 3).

Unlike urban villages, residential districts 
showed distinct relationships between LST and 
geometric characteristics, as presented in Table 
1. Specifically, both the minimum and average 
LST values of residential districts were nega-
tively correlated with their area and perimeter. 
Conversely, these LST values were positively 
correlated with the inner LST difference within 
the residential districts. Additionally, the inner 
LST difference of residential districts exhibited 
a negative correlation with the ratio of perim-
eter to area. Regression analysis revealed a sig-
nificant power-function relationship between the 
inner LST difference and the perimeter- to- area 
ratio of residential districts (R2 = 0.456, Figure 
4). These results showed that in urban residential 
districts, scientific building plans to increase area 
and perimeter can lower LST. Larger areas and 
perimeters enhance energy exchange between 
the inside and outside of districts, directly reduc-
ing the minimum LST and inner LST difference. 
Moreover, larger residential districts with greater 
perimeters mean more ecological land, helping 
to lower internal LST. Additionally, the inner 
LST difference decreases as the ratio between pe-
rimeter and area of residential districts increases. 
For residential districts in high UHI-effect ar-
eas, this suggests appropriately decreasing the 
perimeter-to-area ratio to limit energy exchange 

Table 1. Correlational relationship between LST and perimeter, area and ratio between perimeter and area of three 
typical land-use types in Guangzhou

Factor
Urban village Residential district Urban park

Perimeter Area RPA Perimeter Area RPA Perimeter Area RPA

LSTMin -0.347 -0.349 0.378 -0.559** -0.610** 0.366 -0.315 -0.541* 0.560**

LSTMax 0.657** 0.669** -0.298 0.196 0.230 -0.283 -0.173 -0.146 -0.091
LSTMean 0.084 0.076 0.041 -0.414* -0.440* 0.213 -0.747** -0.697** 0.578**

LSTD 0.837** 0.849** -0.534* 0.566** 0.631** -0.503* 0.156 0.363 -0.529*

Note: **P < 0.01; *P < 0.05; LSTMin, LSTMax and LSTMean signify the minimum, maximum and average LST of each 
urban land-use types, respectively; LSTD stands for the inner LST difference of each urban land-use types; RPA 
stands for ratio between perimeter and area of each typical land-use type.
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and manage LST. Furthermore, correlation anal-
ysis results showed that the thermal environment 
of residential districts could be mitigated by a 
change in green coverage, building number and 
household number (Table 2). It is widely recog-
nized that green coverage is a crucial ecological 
factor influencing the thermal environment of 
residential districts (Yue and Xue, 2016; Zhu et 
al., 2023). Liao et al. (2021) reported that within 
residential districts in Changsha, China, trees ex-
hibit the most pronounced cooling effect with su-
perior vertical cooling performance, followed by 
shrubs, while grassland shows the least effective 
cooling. To enhance thermal environmental com-
fort, the cooling effects of both green coverage 
and its shading attributes should be comprehen-
sively considered (Liao et al., 2021). Zheng et al. 
(2024) revealed in Changsha that increasing the 
green plot ratio (GPR) in residential districts can 
effectively mitigate UHI intensity and enhance 
thermal comfort. When the GPR reaches 3.5, all 
four types of spaces exhibit “moderate” UHI in-
tensity. This study further revealed that in Guang-
zhou, southern China, green coverage positively 
correlated with both the minimum and average 
LST. Additionally, there exists a quadratic func-
tion fitting relationship between the inner LST 
difference and green coverage (R2 = 0.365, Fig-
ure 4). The findings suggested that augmenting 
green coverage could, to some extent, ameliorate 
the thermal environment of residential districts. 
Yet, Figure 4 revealed a nuanced relationship: 

when green coverage was below 30%, the inner 
LST difference diminished as greenery expand-
ed; conversely, once green coverage surpassed 
30%, the inner LST difference escalated with ad-
ditional greening. This dichotomy stemmed from 
the cooling mechanisms of green spaces. When 
green coverage was below 30%, more greenery 
significantly boosted ventilated cooling efficien-
cy. But once it exceeded 30%, this efficiency no 
longer increased linearly. Meanwhile, as green 
coverage grew, the energy exchange efficiency 
between inner construction and green areas in 
residential districts decreased, leading to the rise 
in the inner LST difference. In addition, corre-
lation analysis revealed that both the maximum 
LST and the inner LST difference of residen-
tial districts were positively correlated with the 
building number (Table 2). This indicates that 
an increase in building number would deterio-
rate the thermal comfort conditions. The analysis 
found that the minimum LST was negatively cor-
related with the household number, whereas the 
inner LST difference was positively correlated 
with it. However, this does not imply that an in-
crease in household number would directly lead 
to a decrease in the minimum LST and the inner 
LST difference within residential districts. No-
tably, the household number was strongly posi-
tively correlated with the area and perimeter of 
residential districts (R > 0.7). Consequently, the 
expansion of green coverage accompanying the 
growth in the number of households could lower 

Figure 3. Correlation relationship between inner LST difference and ratio between perimeter and area of urban 
villages in Guangzhou
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the minimum LST, which in turn would increase 
the inner LST difference of residential districts. 
Like residential districts, urban parks’ average 
LST correlated negatively with perimeter and 
area, while minimum LST correlated negative-
ly with area (Table 2). Increasing the perimeter 
and area of urban parks significantly reduced 
their average and minimum LST values, enhanc-
ing the parks’ cooling effect. Further, Figure 5 
showed power function relationships between 
the mean LST and urban park area (R2 = 0.588), 
as well as between the mean LST and perimeter 
(R2 = 0.549). A power function relationship be-
tween the minimum LST and perimeter was also 
detected in urban parks (R2 = 0.262). Meanwhile, 
Table 2 revealed that the perimeter-to-area ratio 
had a significant positive correlation with both 
the minimum and average LST of urban parks. 
Additionally, a power function fitting relation-
ship existed between the minimum LST and the 
perimeter-to-area ratio (R2 = 0.397). These results 
indicated that as the ratio between perimeter and 
area increased, the more complex boundaries of 
urban parks facilitated energy exchange between 
the internal and external environments. Frequent 

energy exchange between the inner and outside 
environment would raise the minimum LST, 
which would subsequently lead to an increase 
in the average LST. Correlation analysis further 
showed that thermal environment of urban parks 
was affected by internal land-use types. Average 
and minimum LSTs negatively correlated with 
ecological and construction land areas, and av-
erage LST also negatively correlated with forest 
land area (Table 2). Ecological land cover could 
mitigate LST through vegetation photosynthe-
sis, transpiration, evapotranspiration and water 
evaporation, etc. Figure 5 showed significant 
power function relationships between LSTs and 
forest, water, and ecological land areas. Zou et 
al. (2021) found that in Shenzhen, South China, a 
10% increase in natural underlying surface cov-
erage—including woodland, lawn, water bodies, 
and bare land—led to a 0.38–0.39 °C decrease 
in nighttime UHI intensity. It was indicated that 
ecological land-use adjustment would be effec-
tive in mitigating urban parks’ LST. However, 
urban parks’ cooling effect efficiency would be 
in a decreasing trend as ecological land area in-
creased (Figure 5).

Table 2. Correlational relationship between LST and other parameters of both residential district and urban park 
in Guangzhou

Factor
Residential district Urban park

Plot ratio Green 
coverage

Building 
number

Household 
number Forest land Ecological land Construction 

land
LSTMin 0.126 -0.608** -0.307 -0.425* -0.302 -0.527* -0.456*

LSTMax -0.261 -0.084 0.460* 0.337 -0.146 -0.157 -0.045

LSTMean 0.036 -0.637** -0.114 -0.255 -0.750** -0.708** -0.443*

LSTD -0.314 0.359 0.613** 0.591** 0.161 0.344 0.355

Note: **P < 0.01; *P < 0.05; LSTMin, LSTMax and LSTMean signify the minimum, maximum and average LST of each 
urban land-use types, respectively; LSTD stands for the inner LST difference of each urban land-use types.

Figure 4. Correlation relationships between ratio between perimeter and area, green coverage and inner LST 
difference of residential districts
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Figure 5. Correlation relationships between LST and parameters of urban parks in Guangzhou
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Cooling effects affected by landscape 
patterns of inner-urban parks

In urban developing areas, thermal landscape 
dynamics are significantly determined by the ex-
tent of interaction between land use patterns and 
related processes (Silva et al., 2018; Nastran et 
al., 2019; Cai et al., 2023; Liao et al., 2023). Most 
studies focused on the impact of land-use land-
scapes on urban LST. They have revealed that 
urban land-use patterns exert a crucial influence 
on the UHI effect at a regional level (Wang and 
Guan, 2012; Wang, et al., 2017b; Liu et al., 2024). 
However, few studies have delved into the influ-
ence of internal land-use pattern of urban parks 
on LST. Hence, this study aims to explore how 
the internal land-use landscape of urban parks in 
Guangzhou impacts LST, considering both class-
level and landscape-level metrics (Table 3). From 
the perspective of landscape metrics, landscape 
pattern indices such as PD, TE, and PDR were 
significantly correlated with the minimum LST, 
average LST, and the inner LST difference of ur-
ban parks. AREA_MN was negatively correlated 
with the minimum LST and average LST. ED and 
AI were significantly correlated with the average 
LST, while PR was positively correlated with the 
inner LST difference of urban parks. In particu-
lar, PD was employed to depict the land-use patch 
fragmentation, ED was utilized to illustrate the 
landscape heterogeneity, PRD was used to char-
acterize patch abundance and density. Moreover, 
PD, ED, and PRD all exhibited a positive correla-
tion with the mean LST. PD and PRD were also 
positively correlated with the minimum LST but 
negatively correlated with the inner LST differ-
ence. The increase in PD, ED, and PRD led to an 
elevation in LST and a reduction in the cooling 
effect of urban parks. In other words, the cooling 
capabilities of urban parks would be diminished, 
and the average LST of urban parks would rise 

when land-use fragmentation, patch density, and 
landscape heterogeneity increased within urban 
parks. Gao et al. (2023) similarly found in a study 
of 36 urban parks in Zhengzhou, Central China, 
that green space ED and PD within parks showed 
significant negative correlations with cooling 
effect indicators. However, in Zhengzhou, Cai 
et al. (2023) found that perimeter, area, internal 
green coverage, and landscape shape index of 
urban parks were the primary factors correlated 
with maintaining a low LST in urban parks. Fur-
thermore, TE represented the total edge length, 
AREA_MN indicated the average landscape 
patch area, and AI reflected the landscape patch 
aggregation. TE, AREA_MN, and AI were all 
negatively correlated with the mean LST. Mean-
while, both TE and AREA_MN, which were cor-
related with each other, were negatively correlat-
ed with the minimum LST, and TE was positively 
correlated with the inner LST difference. These 
results implied that an increase in the landscape 
patch area and the patch aggregation level could 
significantly reduce the LST, thereby enhancing 
the cooling effects of urban parks.

Correlation analysis results also demonstrated 
that urban park’s LST was regulated by the land-
scape patterns of different internal land-use types 
at a class metric level (Table 4). Both PD and ED 
of ecological land were positively correlated with 
mean LST. Additionally, ED of ecological land 
was positively correlated with the minimum LST 
and negatively correlated with the inner LST dif-
ference. This result indicated that in urban parks, 
when patch fragmentation and edge density in-
creased, the processes of energy flow, material 
cycle, and information exchange between eco-
logical patches and the surrounding construction 
patches would become more efficient, leading 
to an increase in LST of ecological land. Both 
LPI and AREA_MN of ecological land nega-
tively correlated with mean LST. AREA_MN of 

Table 3. Correlational relationship between LST and landscape indexes of urban-park land use at the landscape 
metrics in Guangzhou

Factor PD LPI TE ED AREA_
MN DIVISION PR PRD SHDI AI

LSTMin 0.673** 0.28 -0.686** 0.373 -0.589** -0.195 -0.373 0.887** -0.261 -0.418

LSTMax 0.157 -0.178 -0.107 -0.007 -0.213 0.204 0.326 0.087 0.214 0.016

LSTMean 0.646** -0.145 -0.552** 0.442* -0.438* 0.210 -0.311 0.825** 0.121 -0.469*

LSTD -0.466* -0.35 0.509* -0.319 0.36 0.294 0.522* -0.691** 0.356 0.362

Note: **P < 0.01; *P < 0.05; LSTMin, LSTMax and LSTMean signify the minimum, maximum and average LST of each 
urban land-use types, respectively; LSTD stands for the inner LST difference of each urban land-use types.
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ecological land also negatively correlated with 
the minimum LST but positively with inner the 
LST difference. This result indicated that larger 
ecological land patches could partially reduce 
energy exchange with the surroundings, thereby 
decreasing ecological land LST and enhancing 
urban parks’ cooling effects. Table 4 indicated 
that AI of ecological land had a negative correla-
tion with both the mean and minimum LST, and 
a positive correlation with the inner LST differ-
ence. Meanwhile, DIVISION of ecological land 
was positively correlated with mean LST. This 
implied that the cooling effect of urban parks 
could be enhanced as the aggregation level of 
ecological land increased. Since ecological land 
in urban parks was mainly composed of forest 
land, these correlation relationships between LST 
and landscape indexes of forest land were similar 
to that of ecological land in urban parks (Table 
4). However, both DIVISION and AI were not 
significantly correlated with LST, while TE was 
significantly correlated with the minimum LST, 
average LST and inner LST difference. More-
over, the proportion of ecological land exhibits a 
negative correlation with mean LST, whereas the 
proportion of forest land shows a positive corre-
lation with the minimum LST. This phenomenon 
can be attributed to the fact that in Guangzhou, 
when these selected urban parks are smaller, the 
proportion of forest land is relatively higher, and 
these smaller urban parks are more susceptible to 
the surrounding thermal conditions. Consequent-
ly, the proportion of forest land was positively as-
sociated with the minimum LST.

Evidently, the minimum LST of water area is 
negatively correlated with both TE and AREA_
MN, while it is positively correlated with DIVI-
SION. In other words, when water area expands, 
edge length increases, and the distance between 
water patches shortens, the minimum LST of urban 
parks will significantly decline, mainly because 
water has the highest heat capacity among the dif-
ferent internal land-use types of urban parks. Ad-
ditionally, it has been found that water area propor-
tion in urban parks in Guangzhou was also nega-
tively correlated with the minimum LST (Table 4). 
Compared with the cooling effects exerted by the 
ecological land, forest land, and water area with-
in urban parks, construction land in urban parks 
shows obvious warming effects (Table 4). This 
could be underlined as follows: (1) The construc-
tion land proportion was positively correlated with 
average LST; (2) Both PD and ED of construction 

land were positively correlated with the minimum 
LST and average LST, but negatively correlated 
with the inner LST difference; (3) LPI was posi-
tively correlated with average LST, while DIVI-
SION was positively correlated with the maximum 
LST and average LST, and AI has a significant 
positive correlation with the inner LST difference. 
These results indicated that when the patch frag-
mentation of construction land increased, along 
with an increase in the maximum patch area and a 
decrease in the distance between construction land 
patches, LST of urban parks would tend to rise, 
and their cooling effects would weaken.

Decisive landscape indexes correlated with 
urban parks’ LST 

As Table 4 shows, landscape indexes’ cor-
relations with urban park LST are complex and 
variable. Thus, stepwise regression analysis was 
conducted to identify the decisive factors. The 
results of these models are presented in Table 5. 
It can be seen from Table 5 that these influence 
degrees of different decisive landscape indexes 
on the minimum LST of urban parks were: PRD 
at a landscape metric > water area ratio > PD of 
construction land. A higher PRD partly implies 
a greater fragmentation of landscape patches in 
urban parks. This finding suggests that a higher 
PRD, a smaller proportion of the water area, and 
a higher density of construction patches will lead 
to a higher minimum LST in urban parks. At the 
same time, these influence degrees of different 
decisive landscape indexes on the maximum LST 
of urban parks were as follows: DIVISION of 
construction land > SHAPE_MN of construction 
land > PD of water area. This result indicated that 
a lower patch fragmentation of construction land, 
a more intricate morphological structure of con-
struction land, and a higher patch density of water 
area would give rise to a higher maximum LST 
in urban parks. In other words, construction land 
with high aggregation and morphological struc-
tures is unable to contribute to the LST reduction 
in urban parks. The decisive influencing factors of 
average LST in urban parks were shown as PRD 
at a landscape metric > DIVISION of construc-
tion land. This result suggests that greater land-
scape patch fragmentation, along with a shorter 
distance between construction land patches, will 
lead to a higher average LST in urban parks. In 
contrast with the minimum LST, mean LST and 
maximum LST, the inner LST difference of urban 
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parks were only determined by PRD at a land-
scape metric (Table 5). As stated above, LST of 
urban parks and their associated cooling effects 
are significantly influenced by the landscape 

patch fragmentation, the morphological structure 
and patch fragmentation of construction land, as 
well as the proportion of water area and its cor-
responding patch fragmentation.

Table 4. Correlational relationship between LST and landscape indexes of urban-park land use at the class metrics 
in Guangzhou

Land use 
type LST Land use 

cover (%) PD LPI TE ED AREA_MN DIVISION AI

Forest land

LSTMin 0.437* 0.615** 0.327 -0.678** 0.446* -0.497* -0.286 -0.184

LSTMax -0.061 0.133 -0.189 -0.134 -0.039 -0.159 0.204 -0.064

LSTMean 0.005 0.676** -0.117 -0.577** 0.460* -0.681** 0.153 -0.417

LSTD -0.406 -0.432 -0.396 0.485* -0.401 0.317 0.371 0.114

Water area

LSTMin -0.593* 0.371 -0.467 -0.717** -0.204 -0.541* 0.514* -0.426

LSTMax -0.274 0.400 -0.330 -0.291 -0.122 -0.342 0.255 -0.276

LSTMean -0.167 0.468 -0.124 -0.407 0.129 -0.305 0.186 -0.180

LSTD 0.372 -0.056 0.204 0.476 0.105 0.266 -0.306 0.205

Construction 
land

LSTMin 0.342 0.645** 0.344 -0.393 0.720** -0.336 -0.288 -0.359

LSTMax 0.216 0.023 0.364 -0.057 -0.057 0.070 -0.453* 0.301

LSTMean 0.496* 0.482* 0.579** -0.430 0.607** -0.083 -0.560* 0.002

LSTD -0.15 -0.529* -0.058 0.296 -0.643** 0.327 -0.047 0.497*

Ecological 
land

LSTMin -0.342 0.667** -0.293 -0.393 0.720** -0.707** 0.341 -0.743**

LSTMax -0.216 -0.059 -0.323 -0.057 -0.057 -0.192 0.284 -0.044

LSTMean -0.496* 0.631** -0.483* -0.430 0.607** -0.701** 0.524* -0.663**

LSTD 0.150 -0.599** 0.041 0.296 -0.643** 0.473* -0.106 0.597**

Note: **P < 0.01; *P < 0.05; LSTMin, LSTMax and LSTMean signify the minimum, maximum and average LST of each 
urban land-use types, respectively; LSTD stands for the inner LST difference of each urban land-use types.

Table 5. Stepwise regression models between LST and landscape pattern indexes of urban park in Guangzhou
Predicted dependent 

variable Predicted model Predicted variable Standardized 
coefficients

Determination coefficient 
R2

LSTMin

Model I PRDa 0.879 0.772

Model II
PRDa 0.768

0.882
Percent of water area -0.349

Model III

PRDa 0.617

0.916Percent of water area -0.501

PDb -0.256

LSTMax

Model I DIVISIONb -0.518 0.268

Model II
DIVISIONb -0.824

0.508
SHAPE_MNb -0.577

Model III

DIVISIONb -0.809

0.656SHAPE_MNb -0.589

PDc 0.385

LSTMean

Model I PRDa 0.853 0.728

Model II
PRDa 0.759

0.844
DIVISIONb -0.354

LSTD Model I PRDa -0.579 0.335

Note: *superscript lower-case letter a indicate that landscape indexes are calculated at landscape metrics; 
Superscript lower-case letter b and c signify landscape indexes of construction land and water area at class metrics, 
respectively.
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CONCLUSIONS

Investigating ecological approaches to miti-
gate the UHI effect has become a crucial area 
of research. In this study, urban villages, resi-
dential districts and urban parks in Guangzhou 
were selected to analyze their differences in ther-
mal characteristics and regulation mechanisms. 
The result showed that the minimum, maximum 
and average LST values were accordance with 
the decreasing tendency: urban village > resi-
dential district > urban park. Urban villages ex-
hibit a noticeable warming effect, leading to an 
increase in the surrounding LST. On the other 
hand, both residential districts and urban parks 
demonstrate cooling effects, helping to reduce the 
ambient LST. LST characteristics of three typi-
cal land-use types were unevenly influenced by 
the perimeter, area, and the ratio of perimeter to 
area of each typical land type. LST typically had 
a nonlinear correlation with perimeter, area, and 
the perimeter-to-area ratio. When the perimeter 
and area increased while the perimeter-to-area 
ratio decreased, UHI effect was exacerbated, and 
the internal LST difference increased in urban 
villages. LST of residential districts was signifi-
cantly affected by the green coverage, building 
number, and household number. Green coverage 
was a key ecological factor influencing the LST, 
and there was a power function relationship be-
tween the LST and the green coverage in residen-
tial districts. These factors that affected the LST 
of urban parks were complex and changeable. 
Among these factors, the area and proportion of 
ecological land (such as forest land, water area 
and grassland) had an important influence on the 
LST of urban parks. Urban parks’ inner land-use 
landscape also affected LST. Stepwise regression 
analysis showed that these key factors affecting 
LST include PRD at a landscape metric, DIVI-
SION and SHAPE_MN of construction land, PD 
of water area and water area ratio. Cooling effects 
of urban parks could be significantly influenced 
by the landscape fragmentation, the morphologi-
cal structure and patch fragmentation of construc-
tion land, as well as the proportion of the water 
area and its patch fragmentation.
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