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INTRODUCTION

The United Nations (UN) World Water De-
velopment Report (2021) forecasts a 55% rise in 
freshwater demand by 2050 due to population 
growth, urbanization, and unsustainable con-
sumption practices. Challenges are especially ob-
vious in the areas where climate change results 
in heightened precipitation variability and wors-
ening droughts, compounding pre-existing water 
scarcity problems.

Research by de Fraiture et al. (2007) con-
firms that worldwide water demand has been con-
sistently increasing, mostly due to agricultural 
requirements. Agriculture utilizes around 70% 

of the world’s freshwater, leading to intensified 
competition among agricultural, industrial, and 
domestic demands (Berisha and Goessler, 2013). 
In the regions where infrastructure and gover-
nance systems are inadequate, this competition 
can lead to over-extraction and pollution of water 
resources, further straining availability.

The risk of contaminant intrusion in water 
distribution networks has been documented as a 
prevalent threat. Contamination can result from 
various factors, including accidental incidents or 
infrastructure failures, placing substantial health 
risks on consumers (Zeng et al., 2016), Islam et 
al., 2015). Contaminants may infiltrate distribu-
tion systems during transient events, including 
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water main breaks or pressure fluctuations, result-
ing in harmful chemicals or pathogens reaching 
consumers prior to sufficient treatment (Mahmoud 
et al., 2019). Multiple techniques are available to 
mitigate these risks, including cost-effective sen-
sor placements aimed at the proactive identifica-
tion of contamination events (Zeng et al., 2016).

There is a significant reliance on outdated in-
frastructure that hinders effective management, 
as many water utilities face challenges in system 
maintenance due to financial constraints and lim-
ited resources (Tariq et al., 2023). The public’s 
comprehension of drinking water issues is essen-
tial for shaping responses and management strate-
gies. Research indicates that locals usually lack the 
knowledge of the dangers related to their drinking 
water quality (Zahid et al., 2022; Li et al., 2018). 
Empowering communities to fight for improved 
water safety standards and engage actively in local 
water governance depends on good communica-
tion and community education (Zahid et al., 2022). 
Improving consumer confidence in the safety of 
drinking water sources calls for a thorough strat-
egy to match public perception with factual water 
quality data (Li et al., 2018; Shahra et al., 2021). 

Berisha and Goessler’s study (2013) reveals 
that levels of several dangerous trace elements 
in Kosovo’s drinking water frequently surpass 
EU and WHO recommendations. Manganese 
(Mn), arsenic (As), and uranium (U) are pres-
ent at alarming concentrations, underscoring the 
urgent necessity for improved monitoring and 
management of regional water resources (Berisha 
and Goessler, 2013). Furthermore, wastewater 
management systems are critically deficient, with 
merely 0.7% of wastewater undergoing treatment 
prior to its discharge into natural water bodies, in-
cluding rivers.

Reports indicate a significant gap in the nec-
essary infrastructure for wastewater treatment, 
which has detrimental effects on both surface and 
groundwater quality (Kajtazi and Floqi, 2021; (Ka-
jtazi, 2021). For instance, untreated discharge from 
urban areas, along with industrial pollutants from 
facilities such as the Kosovo B power plant, heav-
ily impacts the local hydrological systems, particu-
larly the Sitnica River (Kajtazi and Floqi, 2021).

The Rural Water and Sanitation Support 
Program (RWSSP) in Kosovo, however, has 
achieved progress in increasing the access to pub-
lic water supply for rural populations by means 
of improved groundwater protection policies (Os-
manaj et al., 2021). Still, to guarantee the safety 

and sustainability of Kosovo’s drinking water 
sources, more thorough and methodical strategies 
are needed. This calls for more stringent pollution 
control policies as well as building controlled and 
monitored wastewater treatment plants to protect 
public health and the environment. Furthermore, 
the waste management systems are deficient; just 
0.7% of waste is processed before being released 
into natural water bodies including rivers.

Although earlier studies draws attention to 
the water quality problems of Kosovo, none have 
methodically connected local relief characteris-
tics, slope, soil permeability and vineyard runoff 
to groundwater pollution. This study intended 
to (1) measure the degree that water quality is 
affected by slope-driven agricultural runoff and 
(2) find the pollution trends related to geologi-
cal and anthropogenic influences in the Rrezina 
region. Hypothesis: Enhanced pollutant move-
ment on steeper slopes and closer vineyard vicin-
ity relates to greater Pb, Fe, and microbiological 
contamination. 

METHODS AND MATERIAL

The selection of wells, was based on the dis-
tribution of wells and the natural relief of the re-
searched area. The study area is in the Rrezina 
(area of Xhavit Syla), northeast of the munici-
pality of Suharekë (Figure 1a and 1b-42.36°N, 
20.85°E). It is bordered to the west by the Priz-
ren-Prishtinë highway and to the south by the Su-
harekë-Reqan road. The geological composition 
of the terrain consists of sedimentary rocks of 
fluvial and lacustrine origin, represented by sand, 
clay, and gravel. The terrain slopes southward to-
ward Toplluha and exhibits southern as well as 
southwestern exposures.

Four depressions (gully-like formations) are 
present on the terrain. The slope gradient ranges 
between 4–8° (Figure 1c), predominantly ori-
ented southward. No surface watercourses exist 
in the area, while groundwater drains toward the 
southern part. The groundwater table is deeper in 
the upper section compared to the southern por-
tion (proluvium deposits).

The lower section features loamy diluvial 
soils, whereas most of the locality is character-
ized by reddish-brown leached soils overlying 
reddish sediments. Shrub vegetation has devel-
oped within the depressions, while the remaining 
area is covered by vineyards.
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The area chosen in this study includes areas 
that are under the influence of vineyards which is 
directly related to the authors’ interest to see the 
possibility of pollution from vineyard runoff.

Methodology

Sampling locations were pre-identified using a 
map-based approach, ensuring a wider spatial dis-
tribution across the area influenced by runoff pat-
terns from surrounding vineyards. In total 20 wells 
or 14% (142 in total) of all private wells were part 
of the study. The wells selected in this study are the 
wells privately built by the residents and are not un-
der the supervision of the water supply authority or 
the Institute of Public Health (Figure 2).

All the researched wells were also selected 
based on their usability, that is, only those that are 

used as a primary or alternative source of water. 
For the collection and storage during transporta-
tion of well water samples, the water sampling 
procedure was followed in accordance with the 
standard methods for water examination accord-
ing to EPA 2016, and ISO 5667-1:2010, ISO 
5667-3:2010.

The water sampling was carried out in 1L 
glass bottles, pre-sterilized in an autoclave at 
121 °C for 20 minutes (Borrell Fontelles and 
Winkler, 2006), wrapped in aluminum foil to 
prevent contamination after sterilization. Water 
extraction was carried out by submersible pumps 
that were installed in the wells by their owners, 
the pipe from which the water flowed was disin-
fected, then the water flow was released for 2–3 
minutes (EPA 2016). Transport of the sample to 

Figure 1. Map of the location of the sample collection (1a Terrain view, 1b Satellite view
and 1c Terrain-slope view)
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the laboratory was made in ice packs to maintain a 
temperature lower than 10 °C (EPA 2016).

Chemical parameters, such as the temperature 
and conductivity were measured at the sampling 
site, the measurements were taken with the rel-
evant equipment (Seven Compact S210, Toledo, 
USA), in a separate glass from the bottles where 
the samples were taken (ISO 5667-3:2010).

The samples were analyzed on the same 
day they were taken (Figueras and Borrego, 
2000). The analysis of the samples for chemical 

indicators was carried out no later than 24 hours 
after their collection.

The analysis of the iron parameter was per-
formed in the laboratory with the UV-VIS Spec-
trophotometry equipment type UV/1800, using 
the standard methods recommended for analyz-
ing drinking water. Lead tracer analyses were 
performed in the Laboratory with AAS 7000 
type Atomic Absorber equipment using standard 
methods. The determination of the Total Micro-
bial Load was carried out with the vacuum pres-
sure equipment of the type: Vacuum PR, pump 
4 bar, using the filtration method, where from 
each sample, 100 ml of water was filtered indi-
vidually through the 0.47μm pore diameter ster-
ile membrane filters using the vacuum pressure 
pump. For the TAMC identification, the used 
filters were each placed in R2A media plates of 
the BioMérieux manufacturer. The samples were 
incubated at 35 °C ≤ 5 days.

For the determination of the Total Load of 
Coliform Bacteria from each sample, 100 ml 
of water was filtered individually through the 
0.47 μm pore diameter sterile membrane filters 
using the vacuum pressure pump. The used fil-
ters were each placed in VRBA (Violet Red Bile 
Glucos Agar-Figure 3) media plates. The samples 
were incubated at 35 °C for 24 h.

For the E. coli identification, from each 
sample, 100 ml of water was filtered individu-
ally through the 0.47 μm pore diameter sterile 
membrane filters using the vacuum pressure 
pump. The used filters were each placed in MCA 

Figure 2. A sampling private built well
(photo by Kukalaj)

Figure 3. Violet red bile glucose agar (left) and MacConkey Agar (right)-(Photo by Kukalaj)
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(MacConkey Agar) media plates. The samples 
were incubated at 35 °C for 24 h.

For the determination of Pseudomonas, from 
each sample, 100 ml of water was filtered indi-
vidually through the 0.47 μm pore diameter ster-
ile membrane filters using the vacuum pressure 
pump. The used filters were each placed in CA 
(Cetrimide Agar) media plates of the BioLife 
Manufacturer. The samples were incubated at 
35 °C for 24 h.

RESULTS

The study of physical parameters over the 
20 examined wells reveals a stable groundwater 
system with little environmental stress. The av-
erage depth of the wells was 16.2 ± 3.2 meters. 
With a mean of 15.54 °C and a relative standard 
deviation (RSD%) of 5.86, water temperature 
measurements varied from 14.10 °C to 18.60 °C. 
These small differences in temperature range in-
dicate that the groundwater is drawn from deep or 
well protected aquifers, less affected by seasonal 
changes or atmospheric temperature variations. 
Stable temperatures during seasons are also good 
for maintaining consistent chemical and biologi-
cal water quality throughout time.

With an average of 1691.75 µS/cm, electrical 
conductivity, a measurement of the capacity of 
water to conduct electricity from dissolved ions. 
Though the conductivity measurements differed 
slightly (RSD% = 16.99), but all were below the 
upper limit of 2.500 U.S. EPA. This suggests ab-
sence of salinity-related to pollution from indus-
trial discharge, agriculture, or seawater incursion. 
Typical of groundwater with considerable mineral 
concentration, the conductivity values are prob-
ably the result of natural geochemical interactions 
between water and subsurface rock formations.

Ranging from 7.05 to 7.47 (mean = 7.22), 
the groundwater pH was typically slightly alka-
line. These figures fit both WHO and EPA sug-
gested values, implying that the water is chemi-
cally balanced and does not risk metal leaching or 

corrosion in distribution systems. The low RSD% 
of 1.72 for pH strengthens the consistency and 
stability of groundwater chemistry in the research 
region (Table 1).

Some of the main toxic chemical compo-
nents were also measured. Chemical analysis 
showed notable contamination, especially with 
lead (Pb) and iron (Fe). Nineteen of the twenty 
analyzed wells had lead levels over the U.S. EPA 
standard of 0.015 mg/L; the average was 0.0359 
mg/L (RSD% = 45.6). The noted high lead lev-
els are troubling given that lead is a well-known 
neurotoxic with notably strong negative effects in 
children. Historical usage of pesticides and fertil-
izers in surrounding vineyards, which sometimes 
include lead-based chemicals, may explain the 
higher lead levels. Especially in the areas where 
farming operations include the use of such chem-
icals, these pollutants can seep over time into 
groundwater supplies. The great variation in lead 
levels among the wells supports the idea that the 
problem may be caused by localized sources of 
pollution or changes in aquifer conditions.

Groundwater iron levels were also an issue, as 
every well surpassed the World Health Organiza-
tion (WHO) standard of 0.03 mg/L. Ranging from 
0.0381 mg/L to a worrisome maximum of 0.755 
mg/L, the average iron content was 0.093 mg/L 
with a considerable degree of variability (RSD% 
= 110.37). Extreme fluctuations in iron levels 
point to major geochemical interactions, perhaps 
caused by geological leaching from neighboring 
rock formations or agricultural runoff. Though 
not directly harmful, high iron levels can cause 
cosmetic problems like laundry and plumbing 
stains and change water flavor. Furthermore, high 
iron levels in groundwater can indicate a more 
general problem with the chemical quality of the 
aquifer, which might potentially affect other wa-
ter characteristics (Table 2).

The distance from closest point of vineyard 
and wells was calculated using data from ArcGIS 
Online software. It was found that there is a high 
correlation (-0.81) between distance from the 
vineyard and the concentration of lead in water. 

Table 1. Physical parameters summary
Parameter Mean SD RSD% Min Max Exceedances (EPA/WHO)

Temperature (°C) 15.54 0.91 5.86 14.10 18.60 None

Conductivity (µS/cm) 1691.7 287.34 16.99 1059 2000 None

pH 7.22 0.12 1.72 7.05 7.47 None
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The slope in degree between the closest point of 
vineyard and wells was calculated and found that 
mean slope value 4.16° ± 2.05°. When the corre-
lation analyses between slope and lead concentra-
tion were performed, weak positive values were 
found (0.35). We can conclude that the distance 
is better predictor of contamination compared to 
slope of the terrain. 

Significant pollution (Figure 4) was found in 
the groundwater of the study area by microbio-
logical examination, which raises concerns about 
water safety and public health. Averaging 1.314 
CFU/100 mL, the Total Aerobic Microbial Count 
(TAMC) ranged from 24 to 2.922 CFU/100 mL. 
These high values point to significant organic pol-
lution and imply that the groundwater is tainted 
with a wide range of bacteria. Although TAMC is 
not officially controlled, high numbers may indi-
cate the presence of additional dangerous micro-
organisms such coliforms and fecal bacteria.

With an average concentration of 220.45 
CFU/100 mL, total coliforms were found in all 20 
wells, well over the U.S. EPA and WHO standards 
for drinking water (which call for 0 CFU/100 
mL). Often connected to defective sanitation in-
frastructure or direct pollution from agricultural 
runoff, the presence of total coliforms is a sig-
nificant signal of fecal contamination. Given that 
these bacteria are frequently employed as a broad 
indicator of water quality, particularly for evalu-
ating possible health concerns, the widespread 
finding of total coliforms in all investigated wells 
is concerning.

Seventy percent of the wells had E. coli, a 
more particular marker of fecal contamination, 
with an average concentration of 13.55 CFU/100 
mL. Although E. coli levels in several wells were 
rather low in comparison to total coliforms, its 
presence in more than two-thirds of the wells is 
quite troubling. Finding E. coli directly corre-
lates to a higher chance of waterborne diseases 
like diarrhea, gastroenteritis, and other gastroin-
testinal infections.

The presence of Pseudomonas aerugino-
sa, a bacterium often associated with environ-
mental pollution and poor sanitation, was also 

noted in 65% of the wells, with an average of 
7.60 CFU/100mL. Pseudomonas species are op-
portunistic pathogens, particularly dangerous for 
individuals with compromised immune systems 
(Gellatly and Hancock, 2013). Its presence fur-
ther underscores the environmental pollution 
risks, potentially exacerbated by agricultural run-
off or inadequate wastewater treatment.

DISCUSSION

The results from this study demonstrate sig-
nificant contamination of groundwater, with con-
cerning levels of both chemical and microbiologi-
cal pollutants across the 20 sampled wells. These 
findings underscore the need for urgent interven-
tion to safeguard public health and improve water 
quality management in the region.

Chemical contamination

Lead (Pb) concentrations exceeded the U.S. 
EPA’s limit of 0.015 mg/L (also WHO limit of 
0.01 mg/L) in 19 of the 20 wells, with an average 
concentration of 0.0359 mg/L (RSD% = 45.46). 
The presence of lead in groundwater at these 
levels is alarming due to its neurotoxic effects, 
particularly in children (Lidsky and Schnei-
der, 2003). Neurodevelopmental impairments 
in children, even at low exposure levels, are 
strongly linked to lead contamination in drink-
ing water, with population and toxicokinetic 
studies confirming a direct correlation between 
waterborne lead concentrations and elevated 
blood lead levels, though targeted mitigation 
strategies can effectively reduce the exposure 
risks (Lanphear et al., 2005). Lead is known to 
have toxic effects in multiple organ systems like 
liver, spleen, pancreas, brain, etc., by increasing 
oxidative stress (Mazreku, 2017). Lead contami-
nation in agricultural regions is often linked to 
historical pesticide and fertilizer use (Alloway, 
2013). Lead has also a very high translocation 
factor in the plants exposed to the contamina-
tion (Bici, 2021). Lead is found in vegetables 

Table 2. Summary of chemical contaminants detected in well water samples
Parameter Mean (mg/L) SD RSD% Min Max Exceedances (EPA/WHO)

Lead (Pb) 0.0359 0.0163 45.46 0.0115 0.0633 19 wells* > 0.015 mg/L

Iron (Fe) 0.093 0.052 110.37 0.0381 0.755 All wells** > 0.03 mg/L
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farmed in regions with contaminated water with 
lead (Ngoc, 2020). Elevated iron (Fe) concentra-
tions (mean = 0.093 mg/L) exceeded the WHO 
limit (0.03 mg/L) in all wells. High iron levels in 
groundwater are frequently associated with geo-
logical leaching processes or anthropogenic ac-
tivities such as agricultural runoff (Neidhardt et 
al., 2013). The findings of these measurements 
show that the water from these sources should 
not be used as a drinking water for humans or 
animals. Usage of these water sources for water-
ing plants should also reconsidered, because of 
the biomagnification effect of lead. 

Microbiological contamination

Mean values 1.314 CFU/100 mL of total 
aerobic microbial count (TAMC) showed gen-
eral organic contamination. The WHO standards 
(2017) potentiate that high TAMC values (> 
500 CFU/mL) suggest organic contamination 
and possible biofilm development in water sys-
tems, thereby corresponding with the obtained 
TAMC = 1.314 CFU/100 mL results, organic 
contamination of groundwater can be conclud-
ed. Total coliforms in all wells (mean = 220.45 
CFU/100 mL) and E. coli in 70% of wells (mean 
= 13.55 CFU/100 mL) indicate fecal contamina-
tion, hence increasing the possibility of water-
borne illnesses (Cabral, 2010). Total coliforms 
in groundwater (mean = 220.45 CFU/100 mL) 
are consistent indications of fecal contamination 

even in the absence of E. coli, according to this 
study (Edberg, 2000). Pseudomonas (mean = 6.8 
CFU/100 mL) in 65% of wells draws even more 
attention to environmental contamination prob-
ably connected to biofilm development in water 
systems (Kämpfer et al., 2010).

The pollution detected in the conducted study 
underlines the need for better land-use practices 
since it fits with the trends of agricultural runoff 
reported by Schipper et al. (2010). Groundwater 
monitoring should follow WHO (2017) recom-
mendations to reduce hazards; infrastructure im-
provements such as well sealing, and disinfection 
systems should be given priority. 

CONCLUSIONS

Al measurements indicate that water source 
from private wells near vineyards in Rrezina, Su-
hareka, is significantly polluted. Chemical and 
microbiological measurements show that these 
sources of water should not be used for drinking 
or watering. The limitation of the study is the size 
of the area, which limits the possibility to make 
a direct connection between the vineyard agri-
culture activity and groundwater pollution. The 
studies that will measure the possible pollution of 
water near vineyard cultivation should be carried 
throughout the territory of the country, to moni-
tor and to measure the effects of the agriculture 
activities in groundwater. 

Figure 4. Summary of microbiological parameters detected in well water samples and their exceedances
based on EPA/WHO standards
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