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INTRODUCTION

Landfills are significant contributors to meth-
ane emissions, accounting for approximately 18 
percent of global anthropogenic methane emissions 
and 3.8 percent of total greenhouse gas (GHG) 
emissions (Intergovernmental Panel on Climate 

Change). Methane (CH₄) has a global warming po-
tential 28 times higher than carbon dioxide (CO₂) 
over a 100-year period. Despite its relatively short 
atmospheric lifetime (around 9.1 years), it exerts 
strong radiative forcing and plays a significant role 
in global climate change and local environmental 
degradation. (Olaguer et al., 2022; Scharff et al., 
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2024; UNFCCC, 2021; Wu et al., 2023). Beyond 
global effects, methane emissions influence micro-
climates by increasing local temperatures and de-
grading air quality (Cusworth et al., 2024). Meth-
ane also acts as a precursor to ground-level ozone 
(O₃), produced through photochemical reactions 
with hydroxyl radicals (OH), carbon monoxide 
(CO), and formaldehyde (HCHO), contributing to 
urban air pollution (Mønster et al., 2019). In In-
donesia, methane emissions from landfills remain 
largely unmonitored due to the absence of landfill 
gas (LFG) collection systems, minimal compac-
tion, and non-engineered infrastructure. As waste 
generation rises, landfill expansion continues, yet 
emission monitoring and mitigation strategies re-
main limited. Methane emissions from landfills 
can reach up to 3000 kg/h and disperse beyond site 
boundaries due to meteorological and topographic 
influences (Balogun-Adeleye et al., 2019; Delkash 
et al., 2022; Mønster et al., 2019; Olaguer et al., 
2022). Understanding the spatial and temporal dis-
persion patterns of methane emissions is crucial 
for effective landfill management, reducing green-
house gas (GHG) emissions, and aligning with na-
tional climate goals.

A few studies have simulated landfill meth-
ane dispersion at the site level, but most research 
in Indonesia remains fragmented (Wijaya et al., 
2021). A recent national also confirmed that meth-
ane emissions from landfills are under-monitored 
and rarely linked to spatial exposure modeling 
(Citrasari et al., 2025). This study addresses that 
gap by integrating four emission estimation mod-
els—IPCC, LandGEM, Afvalzorg, and Thailand 
Model—with AERMOD (air quality dispersion mod-
eling) simulations for two contrasting landfill sites. 
It is the first to compare multi-model dispersion 
across sites and visualize exposure at the settle-
ment level, supporting early warning and targeted 
mitigation planning. This study aims to enhance 
the understanding and management of methane 
emissions from Indonesian landfills by utilizing 
the AERMOD dispersion model. Specifically, 
the objectives are threefold. First, to analyze the 
spatial distribution of methane emissions, includ-
ing the extent and direction of dispersion influ-
enced by local meteorological conditions. Second, 
to evaluate the temporal variation by simulating 
different operational years, thereby identifying 
changes in dispersion behavior over time. Third, 
to compare emission dispersion patterns between 
Griyomulyo and Sekoto landfills, which differ in 
scale and site conditions, in order to inform more 

effective, site-specific mitigation strategies. Un-
like studies that focus solely on methane genera-
tion estimation, this research integrates four estab-
lished models: the IPCC, LandGEM, Afvalzorg, 
and the Thailand Model, along with AERMOD, 
to simulate methane dispersion more accurately 
(Afvalzorg, 2023; Alexander et al., 2005; Bartram 
and Towprayoon, 2019; Global Methane Initiative 
(GMI), 2004; Intergovernmental Panel On Cli-
mate Change (IPCC), 2023; P.E. and Lloyd, 2009; 
Wang, Fang, et al., 2024). AERMOD incorporates 
meteorological parameters, source characteristics, 
and terrain features to predict both short- and long-
term dispersion patterns (U.S. Environmental Pro-
tection Agency, 2024a, 2024b). 

Evidence from both Indonesian and inter-
national studies underscores the need for spatial 
dispersion modeling that extends beyond static 
emission estimates. At Sarimukti Landfill, pro-
jected methane emissions were 11,462 Mg/year 
(IPCC) and 14,810 Mg/year (LandGEM) by 2025 
(Wijaya et al., 2021). At Winongo, 45,667 tons of 
waste disposed of in 2024 generated up to 15,190 
kg of CH₄ (Sumarlin et al., 2023). Internationally, 
drone-based Gaussian modeling at two landfills in 
Michigan, USA, showed methane fluxes of ~500 
kg/h (~4,380 Mg/year) (Matacchiera et al., 2019; 
Olaguer et al., 2022). These examples emphasize 
the importance of dispersion modeling for effec-
tive landfill gas management. Effective methane 
management is crucial for mitigating environmen-
tal and health impacts. Strategies such as landfill 
gas (LFG) collection systems, waste compac-
tion, engineered covers, and microbial methane 
oxidation can reduce emissions. For example, 
the Klintholm Landfill in Denmark successfully 
used gas trenches and compost bio-covers to 
limit methane release (M. A. Budihardjo, 2012; 
Scheutz et al., 2022). Identifying high-emission 
zones through dispersion modeling supports more 
resilient landfill planning and contributes to both 
climate action and sustainable waste management 
(Barlaz et al., 2009; Budihardjo et al., 2021; Bu-
dihardjo, 2012; Cao and Staszewska, 2013; Chan 
et al., 2023; Fraser-McDonald et al., 2022; Meyer-
Dombard et al., 2020; Scheutz et al., 2014). This 
approach contributes to achieving sustainable 
development goals (SDGs) 11 (Sustainable Cit-
ies and Communities) and 13 (Climate Action) 
through integrated waste and emission manage-
ment (Dagnachew et al., 2021; Gusheva et al., 
2022). A case study from the Deonar dumpsite 
in Mumbai demonstrated that landfill gas (LFG) 
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flaring could be implemented as early as the sec-
ond year of landfill operation. The pre-feasibility 
study indicated that gas could be collected from 
a 40-hectare area with a maximum flow rate of 
3.900 m³/h, and the system was planned to operate 
for 44 years (Yaashikaa et al., 2022).

MATERIALS AND METHODS

Study location

This study was conducted at two municipal 
landfills in East Java Province, Indonesia: Gri-
yomulyo Landfill in Sidoarjo Regency and the 
Sekoto Landfill in Kediri Regency. Griyomulyo 
underwent an expansion in 2020, while Sekoto 
began operating a new disposal cell in 2021. Both 
sites function as controlled landfills, with Gri-
yomulyo receiving approximately 450 Mg/day 
of waste and Sekoto handling 100–105 Mg/day 
(DLH-Kediri Regency & ITS, 2022, 2023; Rama-
dhaningsih, 2021). These expansions were driven 
by increasing waste generation and the limited 
remaining capacity of the original landfill zones.

Landfill area delineation 

Landfill boundaries were manually delineated 
using annual satellite imagery from Google Earth 
Pro (2006–2024), following a five-step approach 
(Gage et al., 2020). This included data acquisition, 
georeferencing to WGS 1984 UTM Zone 49S, on-
screen digitization (ArcGIS 10.8 and QGIS 3.22), 
area calculation (hectares), and consistency vali-
dation across the time series. Multi-year imagery 
enabled temporal tracking of disposal zone chang-
es, supported by ground-truth validation through 
direct coordination with landfill operators (Pa-
pale et al., 2023). Surface differences were visu-
ally identified using color changes, and final maps 
were enhanced with scale bars, north arrows, and 
legends. All spatial data were projected to UTM 
Zone 49S (EPSG: 32749), which is the appropri-
ate coordinate system for East Java. Year-on-year 
percentage changes in disposal areas were calcu-
lated to identify growth, stagnation, or decline. 
Method limitations include manual tracing sub-
jectivity, image resolution variability, and cloud 
cover interference (Balogun-Adeleye et al., 2019; 
Gage et al., 2020; Kumar et al., 2023; Papale et al., 
2023; Scheutz et al., 2022; Wijaya et al., 2021).

Methane dispersion modeling and spatial 
interpretation using AERMOD and GIS

Methane dispersion was modeled using AER-
MOD, with meteorological input derived from 
the ERA5 reanalysis dataset (Climate Data Stor-
age, 2024). Key parameters included total cloud 
cover, temperature, relative humidity, pressure, 
wind speed and direction, ceiling height, precipi-
tation, and solar radiation. These were processed 
using AERMET to produce the.SFC and.PFL files 
representing surface and upper-air conditions (Ho 
and Nguyen, 2025; Kalhor and Bajoghli, 2017; 
Kumar et al., 2021; Matacchiera et al., 2019; 
U.S. Environmental Protection Agency, 2024a, 
2024b). Methane emission inputs were estimated 
using four models: IPCC, LandGEM, Afvalzorg, 
and the Thailand Model. Each landfill was mod-
eled as an area source with a Cartesian grid of 
receptors. Emission source coordinates were 
placed at multiple representative points within 
each landfill and applied consistently across all 
model simulations. The receptor grid was fixed 
at 30 × 30 km across all scenarios. All spatial 
components—including source and receptor lo-
cations—were projected using UTM Zone 49S 
(EPSG:32749), based on WGS 84. Simulations 
were conducted for two durations, 24 hours (24H) 
and 1 month (1M), to reflect short-term accumu-
lation and longer-term exposure (Matacchiera 
et al., 2019; Olaguer et al., 2022; Scheutz and 
Kjeldsen, 2019; Wijaya et al., 2021). A total of 32 
AERMOD scenarios were modeled, covering two 
sites (Griyomulyo and Sekoto), two years per site 
(2021 and 2025 for Griyomulyo; 2022 and 2025 
for Sekoto), four emission models, and two dura-
tions. Post-processing was conducted in ArcGIS 
by overlaying AERMOD contour maps (µg/m³) 
onto georeferenced base layers, including village 
boundaries, roads, and rivers (Liu and Nijhuis, 
2020). Areas exceeding 500 µg/m³ were delin-
eated and measured in hectares using the measure 
area tool. Maximum dispersion distances were 
recorded from the central point of each landfill to 
the furthest edge of the contour. 

RESULTS AND DISCUSSION

Landfill expansion and its relationship to 
potential methane emission

Figure 1 shows the annual delineation of 
Griyomulyo and Sekoto Landfills from 2006 to 
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2024, highlighting growth trends based on spatial 
expansion. Griyomulyo experienced rapid early 
expansion, with the highest annual increase of 
+86.38% in 2011, the most significant decrease of 
-21.36% in 2019, and a peak area of 9,535.00 Ha 
in 2018, up from 1,806.00 Ha in 2010. In contrast, 
Sekoto exhibited slower initial growth but record-
ed a sharp increase of 60.13% in 2023, reaching 
3,803.00 Ha, compared to under 1,300.00 Ha from 
2006 to 2012. After 2021, Griyomulyo followed a 
more stable expansion pattern, while Sekoto re-
mained in an active growth phase through 2023, 
reflecting a newer stage of development.

These contrasting delineation results suggest 
a correlation between increasing waste volume 
and the expansion of landfills (Bahraini, 2022; 
Hasjanah, 2023). Due to limited land, most land-
fills apply cell and lift systems to optimize space. 
(Construction, 2022; Environment Protection 
Authority Victoria, 2015). In Griyomulyo, the 
negative value in 2019 reflects operational shifts 
between lifts within existing zones rather than 
actual area reduction. Similar transitions occur in 
landfills using one-lift-per-year systems, such as 
Tara-tara landfill or vertical expansion, as seen in 
Xi’an, China, causing fluctuations in delineation 
due to internal reallocation rather than external 
expansion (Panagiotakopoulos and Dokas, 2001; 
Polii et al., 2020; Sheng et al., 2021). 

Indonesia’s growing waste generation, driv-
en by population growth, urbanization, the pan-
demic, and modern lifestyles, explains the recent 
acceleration at the Sekoto landfill (Muis et al., 
2024; Muis et al., 2024; Olawade et al., 2024; 
Ruslinda et al., 2021). These patterns provide in-
sights into the potential for methane emissions, 

primarily from the anaerobic decomposition of 
organic waste in active cells (Bains et al., 2023; 
Olaguer et al., 2022; Oonk, 2010). As landfills 
age, surface exposure and methane release in-
crease (Sheng et al., 2021). New, uncapped zones 
emit more, while capped areas emit less. For ex-
ample, Winongo emitted 15,190 kg CH₄ in 2024 
from 45,667 tons of waste, while Toisapu is pro-
jected to release 6,800 tons of CH₄ between 2008 
and 2026 (Sumarlin et al., 2023). These findings 
underscore the importance of understanding op-
erational dynamics when interpreting delineation. 
Spatial delineation is a crucial input for AER-
MOD-based methane dispersion modeling, sup-
porting sustainable, site-specific landfill manage-
ment strategies.

Spatial distribution of methane emissions

Figures 2a and 2b illustrate methane disper-
sion patterns across multiple simulation years, 
specifically the first year after landfill operation 
and the most recent year (2025), where methane 
emissions are assumed to have already been gen-
erated under anaerobic decomposition conditions. 
The 2025 scenarios consistently exhibit broader 
plumes, higher concentrations, and wider expo-
sure zones, particularly at Griyomulyo, reflecting 
cumulative effects of waste accumulation, landfill 
expansion, and operational age. Based on these 
findings, Figures 3 through 6 focus on the 2025 
simulations as the most relevant representation of 
present-day methane dispersion at both sites.

Figure 3a shows the relationship between 
methane concentration thresholds and exposed 
areas in Griyomulyo and Sekoto. As thresholds 

Figure 1. Annual delineation of Griyomulyo and Sekoto Landfills (2006 to 2024)
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Figure 2. (a) Methane dispersion maps for Griyomulyo Landfill were generated using AERMOD, based on 
four emission estimation models (IPCC, LandGEM, Afvalzorg, and Thailand) across two simulation years 

(2021 and 2025) and two durations (24 hours and 1 month). Labels (a–d) represent IPCC-based simulations, 
(e–h) LandGEM, (i–l) Afvalzorg, and (m–p) Thailand model. (b) Methane dispersion maps for Sekoto Landfill 
were generated using AERMOD, based on four emission estimation models (IPCC, LandGEM, Afvalzorg, and 
Thailand) across two simulation years (2022 and 2025) and two durations (24 hours and 1 month). Labels (a–d) 

represent IPCC-based simulations, (e–h) LandGEM, (i–l) Afvalzorg, and (m–p) Thailand model

increase, the exposed area decreases, ranging from 
over 54,000 hectares at 500 µg/m³ (Griyomulyo, 
IPCC 24H) to under 1.000 hectares near 90,000 
µg/m³. Griyomulyo consistently exhibits a broader 
spread, particularly in 24-hour simulations using 

the IPCC and Thailand models. Its lower topog-
raphy and location nearer the coast may influence 
this pattern, allowing for the lateral expansion of 
affected zones. In contrast, 1-month durations, 
particularly with Afvalzorg and Thailand, produce 
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more confined areas, generally below 10.000 hect-
ares. Sekoto exhibits similar trends, with most re-
sults below 5.000 hectares and above 5.000 µg/
m³. These findings confirm that the exposed area 
is inversely related to the threshold level and var-
ies across models and simulation durations.

Figure 3b shows the relationship between 
methane concentration thresholds and dispersion 
distances in Griyomulyo and Sekoto. As thresh-
olds increase, distances decrease, from up to 
20,269 meters at 500 µg/m³ (Griyomulyo, Thai-
land 24H) to below 650 meters near 90,000 µg/
m³. Griyomulyo shows a more extended reach, 
with IPCC and Thailand (24H) exceeding 18,000 
meters. In contrast, Sekoto’s elevated setting may 
contribute to shorter dispersion distances despite 
similar modeling inputs. One-month durations, 
particularly with Afvalzorg and Thailand, remain 
below 8.000 meters across thresholds. Sekoto 
follows a similar pattern, with most results under 
15,000 meters at low thresholds and below 5000 
meters at concentrations above 10.000 µg/m³. 
These findings confirm that dispersion distance is 

inversely related to concentration level and influ-
enced by model type and simulation duration.

Temporal variation of methane emissions

Temporal variation in methane emissions is 
evident across all models, with 24-hour simula-
tions consistently producing higher peak con-
centrations than 1-month durations. Maximum 
concentrations ranged from 500 to 90,000 µg/m³, 
depending on the model and landfill site. Griyo-
mulyo showed stronger contrasts, reflecting sus-
tained methane generation and a larger emission 
baseline, while Sekoto’s outputs remained more 
stable over time.

Figures 4 and 5 present methane dispersion 
across surrounding villages. In Griyomulyo, 11 
villages were affected in 2025. Kupang, Balo-
ngtani, and Tambak Kalisogo lie in the highest 
concentration zone (≥ 10,000 µg/m³), followed 
by Puhjarak, Kemiri, Kedungbendo, and Kedung 
Peluk (5000–7500 µg/m³), and Permisan, Semam-
bung, Plumbon, and Banjarsari (500–1200 µg/m³). 

Figure 3. Methane concentration thresholds (2025) in Griyomulyo and Sekoto Landfills: (a) exposed area, 
(b) dispersion distances
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Figure 4. Methane dispersion contours for Griyomulyo Landfill in 2025 (Afvalzorg Model, 500 µg/m³). The 24-
hour (top) contour shows a broader spread, and the 1-month (bottom) contour shows a more confined pattern
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Figure 5. Methane dispersion contours for Sekoto Landfill in 2025 (Afvalzorg Model, 500 µg/m³). The 24-hour 
(top) contour shows a broader spread, and the 1-month (bottom) contour shows a more confined pattern
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Penatarsewu, located northeast, is only impacted in 
extended dispersion cases. In Sekoto, seven villag-
es appear in the exposure zones. Sekoto and Puhja-
rak fall within 5000–10,000 µg/m³, Sidowarek and 
Selet within 2500–5000 µg/m³, and Tunglur, Ring-
inpitu, and Blaru within 500–1200 µg/m³, though 
the last two are simulation-dependent. The patterns 
confirm that landfills are significant sources of 
methane, with dispersion influenced by emission 
strength, wind direction, and topography.

Comparison between Griyomulyo and Sekoto 
landfills

Methane dispersion differences between Gri-
yomulyo and Sekoto stem from three factors: 
landfill siza, waste age, and cumulative organic 
accumulation (Toha et al., 2025; Yeşiller et al., 
2022). Larger landfills, such as Griyomulyo, with 
broader active zones and more organic input, tend 
to produce wider and more intense plumes. In 
contrast, Sekoto’s smaller size and lower input 
result in more localized emissions. Emission lev-
els also depend on the anaerobic decomposition 
stage; methane typically begins forming about six 
months after disposal, peaks within 1–10 years, 
and declines thereafter, highlighting the role of 
waste age in shaping emission behavior and sup-
porting the choice of 2021 and 2022 as simulation 
baselines. (Jensen and Pipatti, 2023; Krause et al., 
2023; U.S. EPA, 2023).

The AERMOD simulations revealed distinct 
differences between Griyomulyo and Sekoto in 
terms of methane dispersion intensity, spatial ex-
tent, and the number of affected villages. Griyo-
mulyo exhibited broader plumes and longer dis-
persion distances, with exposed areas exceeding 
24,000 hectares and dispersion reaching over 18 
kilometers, particularly under IPCC and Thailand 
24-hour simulations. These outcomes are attrib-
uted to higher waste generation, older decompo-
sition profiles, and flat coastal topography, which 
allowed horizontal plume expansion. In contrast, 
Sekoto’s emissions were more concentrated and 
spatially contained, shaped by its smaller size and 
surrounding elevated terrain (Balogun-Adeleye et 
al., 2019; Bingemer and Crutzen, 1987; Chiem-
chaisri et al., 2005; Delgado et al., 2023; Talaiek-
hozani et al., 2018). Simulation duration also 
played a role: short-term runs produced wider 
plumes due to peak concentration loads and limit-
ed atmospheric decay. At the same time, 1-month 

durations resulted in narrower contours due to 
temporal averaging effects (U.S. EPA, 2024).

AERMOD simulations made these model-
based distinctions visible by translating methane 
generation estimates into measurable spatial im-
pacts. Model type further shaped dispersion out-
comes. IPCC and LandGEM generated the wid-
est impact zones based on global assumptions and 
high-end projections. In contrast, the Thailand 
Model consistently produced shorter plumes, par-
ticularly in 1-month simulations, aligning with 
tropical decay rates and reducing emissions dur-
ing the landfill’s late operational phase. Afvalzorg 
yielded balanced results, integrating conservative 
assumptions with regional adjustments (Delkash 
et al., 2016; Jittra et al., 2015; Matacchiera et al., 
2019; Popoola et al., 2022; U.S. Environmental 
Protection Agency, 2024a, 2024b; Vaverková, 
2019; Wang et al., 2024; Wang, Zhou, et al., 2024; 
Wangyao, 2010). These outcomes underscore the 
need to select estimation models based on site-
specific conditions and data availability, support-
ing effective national methane monitoring and 
planning (Dagnachew et al., 2021; Toha et al., 
2025; Zhang et al., 2024; Zimnoch et al., 2019).

The results reinforce the value of threshold-
based mapping as an early warning tool for gas 
accumulation risks (Barlaz et al., 2009; Chandra 
and Ganguly, 2023; Citrasari et al., 2025; Kumar 
et al., 2023; Manheim et al., 2021, 2024; Nisbet 
et al., 2020). These findings highlight the need 
for location-specific, risk-based strategies that 
combine continuous monitoring, gas capture or 
flaring, and adaptive controls such as bio-covers, 
passive venting, and perimeter gas barriers (Bian 
et al., 2018; Cao and Staszewska, 2013; Chan et 
al., 2023; Moshkal et al., 2024; Thompson et al., 
2009; Warmadewanthi et al., 2021). Gas capture 
enables energy recovery but requires higher costs 
and technical capacity while flaring is more af-
fordable, highly efficient (> 99% for enclosed 
flares), and suitable for smaller or low-infrastruc-
ture sites (CED engineering, 2020; Krause et 
al., 2023; Mor et al., 2024; Wang et al., 2024). 
Complementary practices such as daily cover and 
organic waste diversion can further reduce emis-
sions by 70–90%, improve safety, and support en-
ergy utilization (Rudd et al., 2024; Scharff et al., 
2024). These mitigation options should be tailored 
to site conditions—for instance, perimeter gas 
barriers and passive venting may be suitable for 
Sekoto’s localized emissions. In contrast, adap-
tive flaring and gas capture are more applicable to 
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Griyomulyo’s broader and more intense disper-
sion patterns (Garland and Frankiewicz, 2023). 
Flaring remains cost-effective (US$1.921/kW; 
US$5/ton CO₂-eq; approximately US$4.500/
year) and is becoming increasingly viable in de-
veloping countries through carbon credit mecha-
nisms. (Project Drawdown, 2025; Thunder Said 
Energy, 2025; World Bank, 2020).

LIMITATION OF THE STUDY

This study was limited in scope to modeling 
methane dispersion from only two landfill sites 
using selected emission models and available 
meteorological inputs. These findings represent 
a temporal snapshot shaped by evolving landfill 
operations and climatic conditions, underscor-
ing the need for periodic monitoring and model 
refinement to ensure sustained accuracy and reli-
ability. Additionally, the spatial interpretation was 
operationally limited to the year 2025, selected 
for its relevance to current landfill planning and 
as the maximum projection year supported by all 
emission models used, ensuring consistency and 
comparability of the results.

CONCLUSIONS

Methane emissions from Indonesian landfills 
can affect areas exceeding 54,000 hectares, dis-
persed over 20 kilometers, and impact up to 11 
surrounding villages, reaching concentrations as 
high as 90,000 µg/m³—indicating the need for 
spatially targeted mitigation strategies. These 
findings represent a temporal snapshot shaped by 
evolving landfill operations and climatic condi-
tions, underscoring the importance of periodic 
monitoring and model refinement to ensure ac-
curacy and relevance. AERMOD simulations 
have proven effective in translating methane 
generation estimates into spatial exposure pat-
terns, enabling evidence-based decision-making 
in emission control. Among mitigation options, 
flaring systems have been reported as a cost-ef-
fective solution (US$ 1.921/kW; US$ 5/ton CO₂-
equivalent; approximately US$ 4.500 per year) 
and are increasingly viable in developing coun-
tries through carbon credit mechanisms. Thresh-
old-based mapping, combined with site-specific 
mitigation measures such as flaring, gas capture, 
bio-covers, and organic waste separation, offers 

an efficient, scalable, and energy-recoverable ap-
proach that also enhances environmental safety 
and early warning capabilities. However, the lim-
ited national data infrastructure and the absence 
of locally calibrated models remain significant 
barriers, underscoring the need to strengthen an 
integrated mitigation framework that is aligned 
with technological capacity, socio-economic 
conditions, and site-specific characteristics in 
Indonesia.
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