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INTRODUCTION

Salinity estimation in deltaic and coastal re-
gions, characterized by the mixing of freshwater 
from rivers and marine water from the sea, has 
received significant attention due to its biode-
gradable propertiess in shaping environmental 
dynamics (Tran et al., 2023), water supply and 
agricultural activities (Nguyen et al., 2019), water 
resources management (Nguyen et al., 2023a), and 
ecosystem development (Pereira et al., 2019). Sa-
linity levels shape the physical properties of wa-
ter, influencing processes like sediment transport 
and erosion (Anthony et al., 2015). Indeed, salinity 
gradients, where freshwater from rivers meets salt-
water from the sea, create diverse habitats that sup-
port a wide range of species, including specialized 

plants like mangroves and salt marsh grasses, and 
animals adapted to varying salinity levels (Vu et 
al., 2024). These gradients also impact primary 
production by affecting nutrient availability, driv-
ing high productivity in estuaries and deltas that 
supports complex food webs. In terms of water 
supply and humain activities in deltaic regions, 
agriculture is heavily influenced by salinity lev-
els in both soil and water (Nguyen et al., 2019). 
High salinity can reduce crop yields and soil fertil-
ity, posing challenges for sustainable farming and 
requiring to manage salinity for maintaining agri-
cultural productivity (Nguyen et al., 2021). Futher-
more, controlling salinity is vital for ensuring the 
availability of fresh water for human consumption 
and irrigation (Nguyen et al., 2019). Deltas and 
coasts are also particularly vulnerable to climate 

Estimating salinity using long short-term memory   
in the Vietnamese Mekong Delta and analyzing its dynamics 

Le Van Chin1, Chien Pham Van1*

1 Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
* Corresponding author’s e-mail: Pchientvct_tv@tlu.edu.vn

ABSTRACT
Accurate estimation of salinity is critical for water resource management in deltas and coasts. Traditional methods 
such as numerical models often rely on physical transport processes, leading to significant uncertainty in model-
ing parameter estimation. Data-driven models like long short-term memory (LSTM) offer an effective alternative. 
This study implements the LSTM model to estimate salinity at multiple locations in the Vietnamese Mekong Delta. 
Hourly tidal data from Vung Tau and discharge data from Chau Doc and Tan Chau were applied as inputs, with 
salinity data from six locations as outputs. The model is trained and tested using data collected from 01/01/2014 
to 30/06/2017, before being applied. The model’s accuracy was evaluated using several statisitcal indicators, in-
cluding Nash-Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (r), mean error (ME), mean absolute 
error (MAE), and using root-mean-square error (RMSE). The findings indicated that the LSTM model accurately 
reproduced salinity, with dimensionless errors between 0.84 and 0.99, and dimensional errors from -0.31 to 0.38 
PSU. These results demonstrate the reliability and generalizability of LSTM models for salinity estimation in the 
Vietnamese Mekong Delta. Moreover, the integration of wavelet and wavelet coherence analyses provided novel 
insights into the temporal structure and multiscale interactions of salinity with key hydrodynamic drivers, such as 
river discharge and tidal forcing. This study contributes to the growing body of literature advocating for hybrid and 
machine learning-based modeling approaches in hydro-environmental science, offering scalable, interpretable, and 
efficient tools for forecasting and decision support in data-scarce coastal regions worldwide.

Keywords: salinity, Vietnamese Mekong Delta, long short-term memory, wavelet analysis, wavelet coherence, 
wavelet power spectrum.

Received: 2025.06.18
Accepted: 2025.08.01
Published: 2025.08.15

Journal of Ecological Engineering, 2025, 26(11), 114–134
https://doi.org/10.12911/22998993/207704
ISSN 2299–8993, License CC-BY 4.0

Journal of Ecological Engineering

https://orcid.org/0000-0002-4502-2081


115

Journal of Ecological Engineering 2025, 26(11) 114–134

change, where rising sea levels increase the risk of 
salt intrusion, altering salinity patterns and further 
stressing ecosystems and water resources (Smajgl 
et al., 2015; Pereira et al., 2019). Thus, accurately 
estimating salinity in deltaic and coastal regions 
still remains challenging, not only for determining 
precise values but also for supporting health and 
functionality of these environments.

Different methods have been applied to mea-
sure and calculate salinity in coastal and deltaic 
regions such as field campaign measurement, nu-
merical models, remote sensing technologies, da-
ta-driven models, etc. Field campaign measure-
ment normally determine salinity using electrical 
conductivity sensors in natural settings, providing 
data for models’ calibration and validation as well 
as related analysis (Vu et al., 2024). Numerical 
models such as one-dimensional models (Tran et 
al., 2023), combination one-and two-dimension-
al models (Tran et al., 2018), two-dimensional 
models (Vu et al., 2024), three-dimensional mod-
els (Tran et al., 2024) are another powerful tool, 
employing mathematical equations to simulate 
salinity variations and intrusion in estuaries and 
coastal regions, based on input data like river 
discharge, tide, and meteorological conditions. 
In addition to field campaign measurement and 
numerical models, remote sensing technologies 
using satellite imagery are employed to monitor 
salinity changes in coastal and deltaic areas, pro-
viding insights into broader spatial patterns (e.g., 
Nguyen et al., 2021; Tran et al., 2023). However, 
it must be noted that these approaches (i.e., filed 
campaign measurement, numerical models, and 
remote sensing techniques) have some limitations 
even though they provide valuable information 
for understanding and managing salinity’s impact 
on ecosystems and human activities. For instance, 
filed campaign measurement cannot provide sa-
linity with a high spatio-temporal resolution over 
a large region since it is time-consuming and la-
bor-intensive (Tran et al., 2023), while numerical 
models require a lot of data including bathymetry, 
hydrological data, infrastructure, and construc-
tions, etc which are often lacking in coastal and 
deltaic regions. Applications of remote sensing 
technologies are also constrained by high costs 
and the need for substantial memory. All of this 
has restricted the use of these approaches in many 
coastal and deltaic regions worldwide. There-
fore, there remains a critical need to refine cur-
rent methodologies or to develop more robust and 

automated alternatives capable of overcoming 
these constraints

Among various data-driven models, the long 
short-term memory (LSTM) have recently in-
creased attention from scientific communities 
worldwide for its highly accurate salinity predic-
tion capabilities (Nguyen et al., 2021; Tran et al., 
2022; Saccotelli et al., 2024). Note that LSTM has 
been widely applied to tackle the nonlinear and 
stochastic transport processes of salinity, with less 
emphasis on the physical properties of transport 
processes. This study emphasizes the use of data-
driven, black-box approaches to establish optimal 
mathematical relationships between input and 
output variables. The LSTM model is particularly 
advantageous due to its ability to handle large and 
multi-scale datasets effectively, while maintain-
ing robustness against missing data (Saccotelli et 
al., 2024). Nguyen et al. (2021) used the LSTM 
model combined with remote sensing to predict 
salt intrusion in the Vietnamese Mekong Delta 
(VMD). Tran et al. (2022) compared the perfor-
mances of LSTM with four machine learning al-
gorithms (Simple Linear, K-Nearest Neighbors, 
Random Forest, Support Vector Machine) for pre-
dicting salt intrusion in the Ham Luong river in 
the VMD using limited salinity monitoring data, 
revealing that LSTM was the most accurate and 
efficient model when input data was limited. Sac-
cotelli et al. (2024) employed the LSTM model 
to improve the accuracy of salinity predictions 
in the Po River estuary (Italy), aiming to better 
understand the complex interplay of factors in-
fluencing estuarine salinity dynamics. These ex-
amples demonstrate that the LSTM model can 
be effectively applied to estimate salinity in the 
region examined in this study.

The study is designed to address the follow-
ing objectives: (i) implement the LSTM model 
to estimate hourly salinity at six locations in the 
VMD based on the available discharge at Chau 
Doc and Tan Chau as well as tidal data at Vung 
Tau, (ii) identify suitable hyper-parameters for 
this estimation, and (iii) examine salinity dynam-
ics, periodicity, and the relationship between sa-
linity and discharge/tide using wavelet analysis. 
Besides these objectives, it is worth noting that 
this study is the first to evaluate the performance 
of the LSTM model in estimating salinity at vari-
ous locations within the VMD. To the best of our 
knowledge, this is the first study apply LSTM 
for multi-site salinity estimation in  the VMD 
using available hydrological data from specific 
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upstream and coastal boundary conditions. The 
research uniquely integrates statistical and wave-
let-based approaches to evaluate both the predic-
tive skill and temporal structure of the modeled 
salinity signals. Hydrological data, including 
discharge at Tan Chau and Chau Doc, tidal data 
at Vung Tau, and salinity at six given locations 
within the VMD were collected in the period from 
01/01/2014 to 31/12/2018. To quantitatively com-
pare the estimated results with the observed salin-
ity data, five statistical performance indicators 
are applied, including Nash–Sutcliffe efficiency 
(NSE), Pearson’s correlation coefficient (r), mean 
error (ME), mean absolute error (MAE), and us-
ing root-mean-square error (RMSE).

The novel contribution of the present study 
to existing researches lies not only in its method-
ological implementation but also in its potential 
to provide a transferable, scalable framework for 
salinity monitoring in other vulnerable coastal and 
deltaic regions. The findings from the study are 
also expected to inform water resource managers, 
agricultural planners, and climate adaptation strat-
egies, offering timely support in delatic and coast-
al regions where traditional modeling approaches 
are limited by data scarcity or complexity.

THE VIETNAMESE MEKONG DELTA  
AND DATA COLLECTION

The Vietnamese Mekong Delta

The Mekong River has known as one of the 
ten most crucial deltas globally due to its hydro-
dynamic properties, transport of tracers like salin-
ity and sediment, and its significant vulnerability 
to rising sea levels and climate change (Antho-
ny et al., 2015; Smajgl et al., 2015; Tran et al., 
2022; Tran et al., 2023; Vu et al., 2024; Tran et 
al., 2024). The river originates from the Tibetan 
Plateau in China and traverses through six coun-
tries (i.e., China, Laos, Cambodia, Thailand, 
Myanmar, and Vietnam), spanning a total length 
of 4,350 km (see Figure 1). It discharges into the 
East Sea through the Vietnamese Mekong Delta 
(VMD), which spans an area of about 39,400 
km² (Tran et al., 2023). About 19,000 km² of this 
delta is dedicated to rice cultivation, contributing 
around 50% of Vietnam’s total rice production. 
The delta, home to nearly 20 million people, is vi-
tal for socio-economic growth, particularly in ag-
riculture and food security (Nguyen et al., 2019).

The VMD features a predominantly flat topog-
raphy, with an average elevation ranging from 0 to 
2 meters above sea level. It also indicates a com-
plex network of distributaries and rivers, including 
Tien and Hau Rivers, along with a dense system 
of channels containing thousands of culverts and 
structures used to support water distribution for 
various activities (Tran et al., 2024). The region 
experiences a tropical climate, with a distinct rainy 
season from May to October and a dry season from 
November to April. Annual rainfall in the delta 
varies between 1.400 and 2.200 mm, with 90–95% 
of it occurring during the rainy season.

In terms of tide and flow, the tidal patterns in 
the delta are complex, with semi-diurnal tides in 
the East Sea and diurnal tides in the West Sea. In 
the semi-diurnal regime, high tide lasts around 6 
hours, while low tide lasts approximately 7 hours, 
with tidal heights varying between 3 and 4 meters, 
occasionally reaching a maximum of 4.1 meters. 
The diurnal regime features two high and two low 
tides daily, with tidal ranges of 0.8 to 1.2 meters 
(Tran et al., 2023; Vu et al., 2024). Tides in the 
delta are expected to be particularly vulnerable 
to the effects of climate change, worsening both 
drought conditions and salt intrusion in dry sea-
son. On the other hand, the delta receives an an-
nual flow volume of approximately 500 km³, with 
23 km³ (4.6%) directly from precipitation and the 
remaining 477 km³ from the upstream Mekong 
River. Hourly flow measurements at Tan Chau 
station, collected from 2014 to 2017, ranged from 
-5.000 to 26.000 m³/s. Negative values indicate 
flow from the East Sea back toward the upstream 
Mekong, while positive values indicate flow in 
the opposite direction. Most of the annual flow 
(around 70–80%) occurs during the rainy season, 
while only 20–30% takes place in the dry season 
(Nguyen et al., 2023b). 

In the VMD, salinity is a critical factor for 
water quality, influencing various aspects and 
purposes of water use, such as drinking water 
supply and irrigation for rice cultivation (Nguyen 
et al., 2019; Nguyen et al., 2021). The temporal 
and spatial distribution of salinity, as well as salt 
intrusion and salinity dynamics in the region, are 
heavily influenced by both tidal patterns and the 
flow of the upstream Mekong River. Additional-
ly, the VMD is significantly impacted by climate 
change and rising sea levels. A number of efforts 
have been made to investigate salinity and salt 
intrusion in the VMD as consequences of glob-
al warming (Smajgl et al., 2015) and intensive 
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human activities (Anthony et al., 2015). How-
ever, accurate prediction of salinity in the VMD 
is still critical not only for understanding salinity 
dynamics but also for developing suitable adapta-
tion measures in agricultural and aquaculture pro-
duction as well as freshwater supplies within the 
VMD while safeguarding its environment.

Data collection

Regarding data collection, hourly tidal data at 
Vung Tau station (downstream of the delta, see Fig-
ure 1) and water discharge at Tan Chau and Chau 
Doc stations (upstream of the delta, see Figure 1) 
were collected in the period from 01/01/2014 to 
31/12/2018. Salinity data at six monitoring loca-
tions (i.e., Ca Mau, Phuoc Long, Dai Ngai, Tra 
Vinh, My Tho, and Vam Kenh, see Figure 1) were 
collected from 01/01/2014 to 30/06/2017. Flow, 
tidal, and salinity data were collected during the 
aforementioned periods because they were the 

only available datasets.  Figure 2 shows the time-
series of these data, while various statistical char-
acteristics (e.g., range, mean, standard deviation, 
skewness, and kurtosis) of tide, discharge as well 
as salinity in the considered period are summarized 
in Table 1. Discharge (at Tan Chau and Chau Doc) 
and tide (at Vung Tau) versus salinity at six col-
lected locations are shown in Figure 3 to Figure 5. 
Within each figure panel, the solid line represents 
the linear trend of salinity variation, which is a first-
order polynomial. The correlation coefficients be-
tween discharge, tide and salinity are summarized 
in Table 2. Most salinity locations show a nega-
tive correlation, with values ranging from -0.455 to 
-0.023, except for the Vam Kenh location.

Salinity at collected locations was mostly 
measured from January to June of each year on an 
hourly timescale. However, it must be noted that 
these time-series data of salinity are still discontin-
uous throughout the entire period and across differ-
ent years due to various factors, such as limitations 

Figure 1. Map of the Vietnamese Mekong Delta, together with the hydrological stations
and estimated salinity locations 
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in sampling equipments and the extreme large 
studied region. In addition, due to the fragmented 
information-sharing policies and the absence of re-
al-time salinity monitoring systems, users in differ-
ent provinces within the VMD are unable to moni-
tor and collect salinity data in real-time. This has 
negatively impacted the region’s socio-economic 
development, particularly in agriculture and water 

supply. In this study, tidal data from Vung Tau, dis-
charge data from the Tan Chau and Chau Doc sta-
tions, and salinity data from six locations between 
01/01/2014 and 30/06/2017 were used to train and 
test the LSTM model.

In terms of data processing, missing values of 
salinity in the collected period from 2014–2017 
were interpolated linearly to create hourly time 

Figure 2. Hourly time series of: a) discharge and water level at collected stations and salinity at b) Ca Mau,
c) Phuoc Long, d) Dai Ngai, e) Tra Vinh, f) My Tho, and g) Vam Kenh locations
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series, in order to render the data processing as 
simple as possible. The hydrological and salinity 
data exhibit strong non-linearity, leading to numer-
ical challenges during the training process of the 
LSTM model and significantly affecting estimation 
accuracy (Niu et al., 2020). Therefore, normalizing 
the data is essential to mitigate these issues. In this 
study, the hydrological and salinity datasets (water 
level, discharge, and salinity) at each station were 
normalized to a range between zero and unity.

METHOD

Long short–term memory model 

The LSTM model, a prominent variant of re-
current neural networks (RNN) designed to retain 
information over extended time periods, has been 
employed for predicting salinity levels (Tran et 
al., 2022; Saccotelli et al., 2024). The model was 
first presented by Hochreiter and Schmidhuber 
(1997) to address a common issue such as the 

vanishing gradient problem in training traditional 
RNN, where gradients shrink exponentially dur-
ing backpropagation. The fundamental element 
of the LSTM is the memory cell, which plays a 
role analogous to that of a hidden layer in con-
ventional neural networks. Each memory cell is 
equipped with a recurrent connection character-
ized by a specific set of weights, purposefully 
designed to mitigate issues related to vanishing 
and exploding gradients. This recurrent pathway 
maintains a value known as the cell state, which 
serves as a conduit for information flow across 
time steps. The cell state from the previous time 
step (denoted as Ct-1) is transmitted to the current 
time step, allowing the network to retain long-
term dependencies. Importantly, this state is up-
dated to form the current cell state (denoted as Ct) 
through controlled mechanisms, rather than being 
directly scaled by weight multipliers. An LSTM 
cell contains three specialized gating mechanisms 
(namely the input gate, forget gate, and output 
gate) which collectively control the flow and re-
tention of information within the network.

Table 1. Discharge, water level and salinity collection at monitoring stations throughout the VMD

Name
Locations Statistical characteristics

Quantity
Data 

collected 
periodLongitude Latitude Range* Mean Standard 

deviation Skewness Kurtosis

Chau Doc 105o07’00” 10o42’00” -1850 ÷ 7210 2244.0 2040.6 0.2 2.5
Discharge

(m3/s) 2014–
2018

Tan Chau 105o51’00” 10o50’00” -4780 ÷ 
26200 10225.6 6887.7 0.1 2.2

Vung Tau 107o06’00’’ 10o18’00’’ -3.08 ÷ 1.41 -0.2 0.8 -0.6 2.7 Water level
(m)

Ca Mau 105o09’00’’ 9o10’00’’ 4.9 ÷ 39.4 24.05 5.83 -0.12 2.85

Salinity
(PSU)

2014–
2017

Phuoc Long 105o27’40’’ 9o26’00’’ 0.1 ÷ 37.8 16.10 10.46 -0.35 1.70

Dai Ngai 106o02’40’’ 9o47’30’’ 0 ÷ 13.8 1.44 2.01 2.35 9.83

Tra Vinh 106o21’00’’ 9o58’40’’ 0.1 ÷ 14.6 2.05 2.32 1.78 6.64

My Tho 106o22’00’’ 10o21’00’’ 0 ÷ 3.4 0.72 0.70 1.30 4.08

Vam Kenh 106o45’00’’ 10o16’00’’ 0.1 ÷ 27.1 11.27 5.30 0.37 2.43

Note: * A negative discharge value indicates flow direction from the East Sea to river.

Table 2. Correlation coefficients between salinity at different locations and discharge at Tan Chau and Chau Doc 
or water level at Vung Tau

Salinity at Total number of hourly 
salinity data

Discharge at Water level at

Vung Tau
Note

Chau Doc Tan Chau

Ca Mau 4740 -0.288 -0.455 -0.066

Negative correlation

Phuoc Long 4692 -0.204 -0.323 -0.126

Dai Ngai 4884 -0.221 -0.297 -0.027

Tra Vinh 9168 -0.296 -0.387 -0.023

My Tho 1523 -0.235 -0.268 -0.105

Vam Kenh 4440 0.106 -0.001 0.509 Negative and positive
correlations
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The input gate (it ) and the input node (gt ) play 
a key role in updating the cell state. Their values 
are calculated using the following expressions 
(Pham Van and Nguyen-Ngoc, 2022).
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 is 
represents element-wise multiplication, 
and ft is the forget gate.

The forget gate (ft) plays a crucial role in 
controlling the retention and removal of informa-
tion in the memory cell, thereby preventing the 
unboundaed accumulation of the cell state. The 
computation of the forget gate is expressed as 
follows:
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The output gate, denoted by ot, governs the 
updating process of the hidden state. It integrates 
the current input xt, the hidden state from the 

Figure 3. Discharge at Chau Doc versus salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh,
e) My Tho, and f) Vam Kenh locations
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previous time step ht-1, and the corresponding bias 
term bo to compute the output as follows:
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It is noteworthy that the hidden state at the 
current time step is determined using the follow-
ing expression:
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The number of epochs, the number of hidden 
units, and the learning rate are three key hyper-
parameters that are optimized through a trial and 
error approach during the training phase. For 
model development at each location, 70% of the 
salinity dataset is used for training, while the re-
maining 30% is reserved for testing.

Performance metrics

Performance evaluation plays a critical role in 
the development and validation of LSTM model. 
In this study, five commonly used statistical in-
dicators, i.e., Nash-Sutcliffe efficiency (NSE), 
Pearson’s correlation coefficient (r), mean error 
(ME), mean absolute error (MAE), and using 
root-mean-square error (RMSE) are employed to 
quantitatively assess the correspondence between 
simulated and observed salinity values across 
various locations in the VMD.. The mathematic 
expression of these statistical indicators are re-
ported in the following:
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Figure 4. Discharge at Tan Chau versus salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh,
e) My Tho, and f) Vam Kenh locations
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where: Sobs and Ssim present observed and estimat-
ed salinity, respectively; i and N indicate 
the time step and total length of the data, 
respectively; and Sobs,m and Ssim,m  stand for 
mean observed and simulated salinity, 
respectively.

Notably, RMSE, MAE, and ME report errors 
in the same units as the target variable, there-
by enabling direct and intuitive interpretation 
of model accuracy (Pham Van et al., 2023). In 
contrast, the Pearson correlation coefficient (r) 
and Nash-Sutcliffe efficiency (NSE) assess the 
proportion of variance in the residuals relative 
to that in the observations, offering a compre-
hensive measure of agreement between simu-
lated and measured values. By combining these 

Figure 5. Water level at Vung Tau versus salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh,
e) My Tho, and f) Vam Kenh locations
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complementary metrics, a more nuanced evalua-
tion of model performance is achieved, guiding 
further refinement of the predictive framework.

Wavelet analysis

Wavelet analysis is a versatile technique for 
examining signals and has found extensive use in 
fields such as environmental data interpretation 
(Torrence and Compo, 1998; Addison, 2017; Grin-
sted et al., 2004). It is commonly employed to ex-
plore the wavelet power spectrum of time series at 
specific sites or locations. By decomposing time se-
ries data, this approach reveals key patterns of vari-
ability and tracks their evolution across multiple 
time scales (Addison, 2017). A central component 
of this method is the continuous wavelet transform, 
which involves projecting the data series (e.g., river 
discharge) into a wavelet domain through convolu-
tion with a scaled and shifted Morlet wavelet.

Let x(t) represent the time series of the vari-
able. Its continuous wavelet transform is ex-
pressed in Equation 12:
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where: ν and ψ(t) are the scale parameter and 
complex conjugate of the Morlet wavelet, 
respectively. The ψ(t) is defined as:
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In this study, the central frequency fo  of the 
Morlet wavelet is set to 0.85, a value commonly 
adopted in practical applications (Addison, 2017).

To evaluate the relationship between rainfall 
and water discharge over time and frequency, 
wavelet coherence analysis is applied. Given 
two time series y(t) and x(t), with their respec-
tive wavelet transforms wy(ν,t) and wx(ν,t), the 
wavelet coherence between them is calculated as 
shown in Equation 14:

 

( )1t xi t hi t ii W x W h b −= + +  

 
 

( )1tanht xg t hg t gg W x W h b−= + +  

 

𝐶𝐶𝑡𝑡 = (𝐶𝐶𝑡𝑡−1 ⊙ 𝑓𝑓𝑡𝑡)⊕ (𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡) 

 

 

( )1t xf t hf t ff W x W h b −= + +  

( )1t xo t ho t oo W x W h b −= + +  

 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) 

 

( )2
, ,

1

1  
N

obs i sim i
i

RMSE S S
N =

= −  

 

, ,
1

1  
N

obs i sim i
i

MAE S S
N =

= −  

 

( ), ,
1

1  
N

sim i obs i
i

ME S S
N =

= −  

 

( )( )

( ) ( )

, , , ,
1

2 2
, , , ,

1 1

 .

N

obs i obs m sim i sim m
i

N N

obs i obs m sim i sim m
i i

S S S S
r

S S S S

=

= =

− −
=

− −



 
 

 

( )

( )

2
, ,

1

2
, ,

1

1  

N

sim i obs i
i
N

obs i obs m
i

S S
NSE

S S

=

=

−
= −

−




 

 

( ) ( )1,x
tw t x d

vv
   

+

−

− =  
   

 

( ) ( )( )2 2
00 2 /221/4 /2fi f t tt e e e  −− −= −  

 

( )
( ) ( )

( ) ( )
2
, 22

, ,
,

, ,

x y
x y

x y

w v t w v t
WCH t

w v t w v t
 =  

 

 (14)

where: ⟨⋅⟩ denotes a localized smoothing function 
applied in both time and scale domains to 
the wavelet transform components.

Wavelet analysis involves two components: 
the wavelet power spectrum and wavelet coher-
ence. The wavelet power spectrum identifies areas 

of high energy in the time-frequency domain, 
thereby exposing the primary modes of variabil-
ity in a time series. In contrast, wavelet coherence 
measures how strongly two time series co-vary 
across both time and frequency, offering insights 
into their dynamic relationships (Torrence and 
Compo, 1998). To assess the statistical signifi-
cance of these findings, the wavelet power spec-
trum is typically compared to a red noise back-
ground, which helps distinguish genuine signals 
from stochastic variability. Significance thresh-
olds for wavelet coherence are typically deter-
mined through Monte Carlo simulations, in which 
surrogate datasets are generated to establish con-
fidence intervals for the observed coherence val-
ues.. These analytical tools are particularly effec-
tive in detecting complex temporal structures and 
interrelations in time series data – for example, 
in salinity studies, where understanding the tem-
poral patterns and shifts in dominant frequencies 
is crucial for analyzing transport dynamics (Grin-
sted et al., 2004).

RESULTS AND DISCUSSION

Training results of LSTM

At each location, the input data (i.e., discharge 
at Chau Doc and Tan Chau, and tide at Vung Tau) 
and output data (i.e., salinity at collected locations) 
were normalized firstly, and then normalized data-
bases are split into 70% and 30% for the training 
and testing steps, respectively. In the training step, 
the appropriate values of hyper-parameters in the 
LSTM model are determined by trial-and-error 
method, resulting a total of 350 epochs, a dimen-
sionality of 128 for the hidden units, and a learn-
ing rate set at 0.001. The trial-and-error approach 
was adopted due to its flexibility and practical ef-
fectiveness. Other methods liked grid search or 
Bayesian optimization offer comprehensive pa-
rameter tuning, however, they are computation-
ally expensive (Nguyen et al., 2021). The chosen 
configuration demonstrated stable convergence 
and high predictive accuracy based on both di-
mensionless and dimensional evaluation metrics, 
supporting the adequacy chosing the trial-and-
error approach in the context of the present study.

Figure 6 presents the comparison between ob-
served and LSTM-estimated salinity at six select-
ed locations during the training phase. The results 
indicate that the LSTM model effectively captures 
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the observed salinity patterns. The dimensional 
error metrics (including RMSE, MAE, and ME) 
range from -0.05 to 2.76 PSU (as reported in Table 
3), corresponding to less than 8.01% of the ob-
served salinity values at the monitoring stations. 
The correlation coefficient (r) between observed 
and predicted salinity exceeds 0.96 across all loca-
tions, demonstrating the model’s strong ability to 
replicate temporal variations in salinity. Further-
more, the NSE values range from 0.93 to 0.98, 
underscoring the model’s high predictive perfor-
mance at all sites considered (Figure 7).

Regarding the estimated salinity in detail, 
among six locations of interest in the VMD, the 

plot of observations versus estimations of sa-
linity at Phuoc Long shows apparent scatters, 
revealing complex transport processes of salin-
ity at this location. The latter is result from the 
complex flow dynamics caused by multiple riv-
ers and channels networks, interaction between 
river flow and tide, human activities, and local 
construction operations like culverts. The val-
ues of dimensional errors (i.e., RMSE, MAE, 
and ME) of estimated salinity range from 0.26 
to 2.76 PSU (see Table 3 and Figure 7). The di-
mensionless errors (i.e., r and NSE) vary from 
0.93 to 0.96, indicating a slight smaller value in 
comparison with other locations. 

Figure 6. Observed versus estimated salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh,
e) My Tho, and f) Vam Kenh locations for training step of the LSTM
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Table 3. Statistical indicator values of hourly salinity in the training phase

Locations
RMSE MAE ME

r NSE
PSU % PSU % PSU %

Ca Mau 0.75 1.92 0.57 1.46 0.042 0.11 0.992 0.984

Phuoc Long 2.76 8.01 2.00 5.79 0.261 0.76 0.965 0.930

Dai Ngai 0.49 3.56 0.33 2.39 0.015 0.11 0.975 0.950

Tra Vinh 0.49 3.35 0.35 2.38 -0.002 -0.01 0.981 0.962

My Tho 0.13 3.77 0.09 2.73 -0.002 -0.05 0.977 0.954

Vam Kenh 1.33 4.92 1.02 3.78 0.059 0.22 0.968 0.937

Figure 7. Radar plots for: a) dimensional and b) dimensionless performance metrics of hourly salinity
for training step of the LSTM
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Testing results of LSTM

In the testing step, the observed versus esti-
mated salinity is shown Figure 8, while Figure 9 
displays radar plots representing RMSE, MAE, 
ME, r and NSE indicators. A good agreement 
between observations and estimations of salinity 
is obtained for most locations. Overall, a strong 
agreement between observed and estimated salin-
ity is observed across most locations. The RMSE 
values range from 0.14 to 3.80 PSU, whereas 
MAE varies between 0.10 and 2.40 PSU (Table 
4). These error magnitudes represent approxi-
mately 10% of the observed salinity values at 
the measurement sites. Notably, the ME remains 
small, accounting for less than 0.5% of the ob-
served values. The correlation coefficient r ranges 
from 0.92 to 0.98, indicating a very strong lin-
ear relationship between observed and estimated 
salinity. Additionally, the NSE values span from 
0.84 to 0.97, reflecting the model’s high capabili-
ty in capturing the temporal variability of salinity. 
These findings demonstrate that the LSTM model 
is effective for estimating salinity at various loca-
tions within the VMD, using tidal data from Vung 
Tau and river discharge data from Tan Chau and 
Chau Doc as inputs.

Applications of LSTM model    
for estimating hourly salinity

Figure 10 shows the hourly time-series salin-
ity at six locations in the period from 01/01/2024 
to 30/06/2017. It is clearly observed that the 
LSTM model represents well the temporal varia-
tion of salinity in different hydrological condi-
tions as well as in different seasons. In each 
year, large values of salinity are obtained in the 
period from January to May, while small values 
of salinity are archived in the period from June 
to December. In addition, the estimated salinity 

shows clearly impact of the tide, especially at 
Vam Kenh location, where salinity discrepancies 
can reach up to over 10 PSU during neap-spring 
tidal cycles. Tide also has a strong influence at 
four locations named Dai Ngai, Tra Vinh, My 
Tho, Vam Kenh since all of which are close to 
the East Sea. High salinity is observed during 
spring tides, with the values ranging from 0 to 25 
PSU at these four locations. In neap tides, small 
values of salinity are obtained. At Ca Mau and 
Phuoc Long locations lied in land areas, river 
flow (or discharge) and local conditions mainly 
drive the variation of salinity in time.

Salinity periodicity

At six selected locations in the VMD, the 
combined observed and modeled hourly salin-
ity records were analyzed via wavelet transform 
to identify temporal periodicities, producing the 
wavelet power spectrum depicted.in Figure 11.  
Within each figure panel, the solid black line 
delineates the cone of influence, highlighting 
edge-affected regions where variance or spectral 
power is diminished. The solid black contours 
enclose areas of the wavelet power spectrum 
that exceed the 95% confidence level under a 
yellow-noise null hypothesis. The amplitude of 
the wavelet power directly indicates the intensity 
of periodic fluctuations within the salinity data. 
These results illuminate the principal variability 
modes and reveal significant temporal patterns in 
the salinity time series..

Figure 11a-b reveal the hourly salinity records 
at Ca Mau and Phuoc Long, respectively that exhib-
it significant diurnal oscillations at the 95% confi-
dence level. By contrast, the wavelet power associ-
ated with the annual cycle is markedly weaker. The 
inter-daily oscillations range from 4 to 32 hours in 
the period from January to May, while they shorten 
to approximately 2 to 16 hours during in the period 

Table 4. Statistical indicator values of hourly salinity in the testing phase 

Locations
RMSE MAE ME

r NSE
PSU % PSU % PSU %

Ca Mau 1.09 2.77 0.85 2.16 -0.069 -0.18 0.980 0.961

Phuoc Long 3.80 10.04 2.40 6.36 -0.305 -0.81 0.920 0.839

Dai Ngai 0.40 5.57 0.27 3.80 -0.031 -0.43 0.956 0.913

Tra Vinh 0.41 4.28 0.27 2.77 0.006 0.07 0.965 0.931

My Tho 0.14 4.06 0.10 2.90 0.000 -0.01 0.986 0.973

Vam Kenh 1.26 5.47 0.98 4.25 -0.094 -0.41 0.961 0.924
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from June to December. At Dai Ngai, Tra Vinh, and 
My Tho locations (Figure 11c-e), oscillations with 
a four-months period are observed, with significant 
peaks around 2016, also at the 95% confidence lev-
el. At Vam Kenh location (Figure 11f), inter-daily 
oscillations of 2 days are evident throughout the 
entire year. The wavelet power spectrum of hourly 
salinity also clearly illustrates the impact of tidal 
forces on salinity variations in time. Indeed, strong 
tidal impacts are observed from January to May, 
while weaker impacts occur from June to Decem-
ber. This pattern corresponds to the low and high 
discharges at Tan Chau and Chau Doc, respectively.

Wavelet coherence between    
salinity and discharge 

Salinity at the selected VMD locations is 
governed by a combination of upstream dis-
charge, East Sea tidal forcing, local anthropo-
genic activities, and intrinsic salinity transport 
mechanisms. To elucidate the time–frequency 
characteristics of the discharge – salinity rela-
tionship, a wavelet coherence analysis was per-
formed, with results presented in Figure 12 and 
Figure 13. This approach enables the identifica-
tion of nonstationary associations between river 
discharge and salinity at Tan Chau and Chau 

Figure 8. Observed versus estimated salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh,
e) My Tho, and f) Vam Kenh locations for testing step of the LSTM
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Doc, offering detailed insights into how varia-
tions in flow regime propagate through to salin-
ity fluctuations. The findings thereby advance 
our understanding of salinity dynamics at these 
critical monitoring locations.

Within each panel, the horizontal axis corre-
sponds to the temporal span of the observations, 
while the vertical axis represents the oscillation 
period. To address edge effects, a lightly shaded 
cone of influence delineates regions where spec-
tral estimates may be unreliable. Solid black 

contours mark zones of significant coherence 
between discharge and salinity (p < 0.05). Direc-
tional arrows depict the phase relationship (θ) be-
tween the two signals, with arrows pointing right 
(θ = 0) indicating in-phase behavior and arrows 
pointing left (θ = π) indicating anti-phase. Wavelet 
coherence serves as a localized correlation metric: 
values near unity denote strong synchronization of 
discharge and salinity, whereas values approach-
ing zero reflect a lack of association. This wavelet-
based analysis therefore provides detailed insights 

Figure 9. Radar plots for: a) dimensional and b) dimensionless performance metrics of hourly salinity
for testing step of the LSTM
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Figure 10. Time series of observed versus estimated salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai,
d) Tra Vinh, e) My Tho, and f) Vam Kenh locations in the period from 2014–2017

Figure 11. Wavelet power spectrum of hourly salinity, at: a) Ca Mau, b) Phuoc Long, c) Dai Ngai, d) Tra Vinh, 
e) My Tho, and f) Vam Kenh locations
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into the time – frequency coupling of flow and sa-
linity dynamics at the study locations.

Figure 12 and Figure 13 demonstrate a sta-
tistically significant coherence between river 
discharge and salinity at all examined sites. 
The coherence analysis reveals scale-dependent 

behavior: it remains significant over longer pe-
riods (approximately one to four months), with 
the most stable and robust multi-scale coherence 
occurring at seasonal time scales, thereby under-
scoring the strong linkage between seasonal dis-
charge patterns and salinity variations. At shorter 

Figure 12. Wavelet coherence between hourly discharge at Chau Doc and salinity, at a) Ca Mau, b) Phuoc Long, 
c) Dai Ngai, d) Tra Vinh, e) My Tho, and f) Vam Kenh locations

Figure 13. Wavelet coherence between hourly discharge at Tan Chau and salinity, at a) Ca Mau, b) Phuoc Long, 
c) Dai Ngai, d) Tra Vinh, e) My Tho, and f) Vam Kenh locations
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time scales, the coherence exhibits more complex 
and variable structures, suggesting that daily dis-
charge contributions to salinity fluctuations are 
less consistent. These results highlight the dy-
namic, multi-scale coupling between discharge 
and salinity and emphasize the need to consider 
diverse temporal scales when characterizing sa-
linity dynamics in the VMD.

Wavelet coherence between salinity and tide

Figure 14 shows the wavelet coherence be-
tween tide at Vung Tau and salinity at six stud-
ied locations. The coherence analysis reveals that 
the relationship between salinity and tidal signals 
exhibits complex scale-dependent behavior, sug-
gesting considerable variability in tidal contribu-
tions to salinity fluctuations. These results empha-
size the dynamic and multi-scale nature of tide–
salinity interactions, highlighting the need to ac-
count for such variability when assessing salinity 
dynamics at specific locations within the VMD. 
As shown in Figure 14a-b  for Ca Mau and Phuoc 
Long locations, salinity changes in response to 
tidal changes with a few hours to a day. In addi-
tion, coherence is high in the period from June to 
December of years, revealing that seasonal flow 
also influences both the magnitude and temporal 
patterns of salinity. At Dai Ngai, Tra Vinh, My 
Tho, and Vam Kenh locations (in Figure 14c-f), 
salinity vary in response to tidal variations with 
a couple of days, depending on the locations of 
interest. The value and variability of salinity in 
time also clearly depict significant tidal impacts. 
In addition, the wavelet coherence results also 
show spatial variability of salinity caused by lo-
cal conditions and factors.

A comprehensive evaluation of salinity fluc-
tuations, short-term variability, and the wavelet 
coherence between salinity and both river dis-
charge and tidal signals at multiple VMD loca-
tions is expected to yield a detailed characteriza-
tion of salinity dynamics. These insights will sup-
port: (i) the development of salinity early-warning 
systems, (ii) investigation of salinity alterations 
driven by upstream discharge fluctuations and 
downstream tidal influences, and (iii) adaptation 
of agricultural management practices to accom-
modate salinity variability. Moreover, wavelet 
cohenrence analysis enables the detection and 
characterization of salinity intrusion responses to 
changes in external forcings (e.g., tide, river dis-
charge), capturing both the magnitude and time 

lag of these responses (Gong et al., 2022). This 
tool is particularly valuable for analyzing highly 
dynamic processes in transient systems far from 
equilibrium, providing an  unified  time frequency 
framework to investigate salinity processes across 
different timescales in deltas and coastal regions. 
Salinity variations across the VMD exhibit par-
ticularly strong correlations with river discharge 
at Tan Chau and Chau Doc, as well as with tidal 
fluctuations at Vung Tau. This spatial heterogene-
ity underscores the role of seasonal forcing and 
location-specific factors in modulating the inter-
play between fluvial and marine influences. A 
clear understanding of these linkages is essential 
for optimizing water supply strategies and man-
aging water resources throughout the delta when 
using numerical or data-driven models for pre-
dicting salinity associated with different riverine 
and marine forcing.

Traditional methods, such as numerical mod-
els, have been used to simulate salinity in the 
VMD. Tran Anh et al. (2018) applied one- and 
two-dimensional hydrodynamic models to predict 
future salinity intrusion in the Hau river, a main 
branch in the VMD.  Tran et al. (2023) combined 
the one-dimensional model with remote sensing 
images to quantify saltwater intrusion in the re-
gion. Vu et al. (2024) implemented two-dimen-
sional model to simulate hydrodynamic changes 
and salinity intrusion in the lower VMD under cli-
mate change-induced sea level rise and upstream 
river discharge. However, compared to the model 
presented in this study, traditional methods require 
extensive data, including bathymetry, river flow, 
tides, and salinity to determinine appropriate val-
ues of parameters in the both hydrodynamic and 
salinity transport modules. Moreover, they are of-
ten suffered from errors due to uncertainties in in-
puts, model structures, and parameterization (Tran 
et al., 2023). In contrast, the proposed approach is 
highly effective and practical as it relies only on 
available datasets of flow and tide as inputs. This 
makes the approach a valuable tool that can be 
easily applied to other deltas and coastal regions. 

Several factors such as temperature, rainfall, 
and upstream human activities can influence sa-
linity. Land-use and land-cover changes (e.g., 
urban expansion, deforestation) alter hydrologi-
cal processes including runoff generation, evapo-
transpiration, and infiltration. These changes, 
in turn, affect discharge patterns and salinity 
regimes. Human-induced modifications within 
or upstream of the delta (e.g., dam operations, 
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canal construction or the implementation of rice-
shrimp farming systems) can significantly influ-
ence flow pathways and the extent of saltwater 
intrusion(Anthony et al., 2015). Incorporating 
land-use change data also enables the simulation 
of alternative development scenarios, thereby al-
lowing for the evaluation of the potential salinity 
impacts associated with future land management 
policies or conservation efforts. This enhances the 
model’s capacity to represent deltaic hydrology 
more accurately, identify anthropogenic drivers, 
and support scenario-based planning.

Rainfall variability (both spatial and tempo-
ral) can influence freshwater inputs and deltaic 
salinity dynamics. Satellite-derived precipitation 
products (e.g., CHIRPS, IMERG, CMORPH) 
can improve the model’s performance by pro-
viding high-resolution input data and enabling a 
more dynamic representation of freshwater in-
flows (Vu et al., 2024). These datasets offer exten-
sive spatiotemporal coverage, which is particular-
ly valuable in extensive regions liked the VMD. 
Integrating rainfall data into the model allows for 
capturing both direct and indirect freshwater con-
tributions to salinity variations, including over-
land flow and river discharge. Indeed, real-time or 
near-real-time satellite precipitation data can be 
assimilated to improve short-term salinity fore-
casting, supporting operational decision-making 
in water resources management.

Outputs from climate models (e.g., CMIP6) 
enables the salinity model to simulate future 

scenarios under various climate change trajecto-
ries. This capability is essential for developing 
effective adaptation strategies in deltaic regions 
that are highly susceptible to sea-level rise and 
changes in hydrological regimes (Smajgl et al., 
2015; Nguyen et al., 2023a). Climate change in-
troduces nonstationary trends in key variables 
such as temperature, precipitation, and runoff. By 
utilizing climate projections, the model can ac-
count for these evolving conditions, thereby over-
coming the limitations of assuming a static cli-
mate. Furthermore, such projections facilitate the 
assessment of salinity dynamics under extreme 
events, including prolonged droughts and intensi-
fied wet seasons, thereby enhancing the model’s 
robustness and resilience.

In summary, integrating climate model projec-
tions, satellite-derived precipitation, and land-use 
change datasets can substantially improve the sa-
linity model by (i) providing a more comprehen-
sive representation of both environmental and an-
thropogenic drivers, (ii) enhancing its transferabil-
ity and generalizability within delta and temporal 
scales, and (iii) increasing its utility for long-term 
planning, climate adaptation, and integrated wa-
ter resources management. The exclusion of these 
factors may introduce uncertainty or constrain the 
model’s ability to capture certain hydrological 
events. These factors were not incorporated in this 
study due to limited data availability. However, 
they can be integrated into the calculations once 
the necessary datasets become available.

Figure 14. Wavelet coherence between hourly water level at Vung Tau and salinity, at a) Ca Mau,
b) Phuoc Long, c) Dai Ngai, d) Tra Vinh, e) My Tho, and f) Vam Kenh locations
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CONCLUSIONS

This study proposed a method for estimating 
salinity in the VMD based on the LSTM model 
and combines wave transformation analysis to 
examine periodic changes. Salinity at six loca-
tions in the period 01/01/2014 to 30/06/2017 
and available hydrological data (i.e., discharge at 
Tan Chau and Chau Doc and water level at Vung 
Tau) in the period from 01/01/2024 to 31/12/2018 
were collected and used for different calculations 
and analyses. The principal findings of this study 
can be summarized as follows: 
 • The LSTM model, a widely used variant of 

RNN, was first implemented to simulate salini-
ty at six selected locations before being applied 
to the given period. In the training and testing 
steps, the model demonstrated a high degree 
of fidelity in replicating the observed salinity 
values at six locations in the VMD during both 
training and testing steps. The correlation co-
efficient r and NSE exceeded 0.92 and 0.84, 
respectively in both steps. Dimensional errors 
including RMSE, MAE, and ME remained be-
low 10% of the observed salinity magnitude at 
the investigated locations. In the application 
phase, the model also effectively captured the 
temporal variation of salinity under different 
hydrological conditions and seasons.

 • Wavelet analysis was applied to hourly time 
series of salinity data from both observa-
tions and estimations from 01/01/2014 to 
31/12/2018 for investigating its periodic char-
acteristics. The study revealed that dominant 
oscillatory modes in salinity were concentrat-
ed at time scales of approximately two hours 
to two days.

 • At all six examined locations, salinity and dis-
charge exhibit statistically significant coher-
ence with complex, scale-dependent behavior. 
Notably, this coherence persists over extended 
periods, particularly within the one-to-four-
month band. In addition, seasonal flow influ-
enced both the magnitude and temporal pat-
terns of salinity in a coupled manner.

 • Using the wavelet analysis, wavelet coherence 
between water level at Vung Tau and salinity 
at six locations were also examined, revealing 
that salinity varies in response to water level 
variations with a couple of hours to a couple 
of days. Analyzing salinity fluctuations, long-
term trends, and short-term variability across 
multiple sites in the VMD is anticipated to 

yield comprehensive insights into the spatial 
and temporal dynamics that influence salinity 
distribution throughout the delta.

 • The proposed approach used only available 
flow and tide datasets to estimate salinity, mak-
ing it a valuable tool for application in other 
deltas and coastal regions. The resuls from the 
case study of the VMD clearly demonstrated 
good predictive performance and the periodic 
characteristics of salinity. Thus, it is strongly 
believed that the proposed approach is highly 
effective and practical compared to traditional 
methods like numerical models.
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