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INTRODUCTION

Coastal regions generally have high popula-
tion density and agricultural yields due to their 
rich ecosystems (Khosravi et al., 2024, Raheli et 
al., 2024). However, these regions face important 
changes mainly related to climate change and sea 
level rise, as well as human activities such as de-
forestation and changes in land use (Kraiem et al., 
2024, Yu et al., 2024). These changes can affect the 
stability of coastal areas by altering carbon cycles, 
soil degradation, and reducing biological diversity. 
Additionally, these changes also affect natural re-
sources through salinity intrusion (Nguyen et al., 
2019). According to FAO estimates, salinity intru-
sion affects about 20% of the world’s agricultural 
land, and this figure is expected to increase in the 

future. Among the regions affected by salinity 
intrusion, the Red River Delta is considered one 
of the most affected by this problem, causing sig-
nificant damage to agricultural activities and food 
security (Yuen et al., 2021). Although this region 
plays an important role, it is characterised by a 
high population density (1.450 people/km²) and 
contains approximately 1,079,407 hectares of agri-
cultural land (accounting for 51.2% of the region’s 
area), with an annual rice yield of 6.2 million tons 
– representing about 15% of the national produc-
tion. To reduce the effects of salinity intrusion,
several structural and nonstructural measures have
been explored and studied in recent years, includ-
ing groundwater exploitation reduction, dike sys-
tems development, etc. (Tran et al., 2021). Which
water quality prediction is considered one of the
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most effective and recommended approaches to re-
duce the effects of salinity intrusion, especially in 
coastal zone.. However, the effectiveness of these 
measures depends on several factors, such as pre-
cipitation, geological conditions, and hydrological 
regimes (Gül et al., 2010, Zhang et al., 2017). 

Historically, numerical simulation models in 
hydrology have been used to explore complex 
flow dynamics (Simons et al., 1996, Geng and 
Boufadel, 2015, Wang et al., 2017). Although 
these models have been proven to be effective, 
these traditional models require diverse data sets, 
which are rarely available in several regions of 
the world. Additionally, the hydrological model 
requires the expertise of the modeler, which 
makes it less usable to capture complex salinity 
dynamics. In recent years, remote sensing tech-
niques have been used to observe water quality 
in regions around the world (Chong et al., 2014, 
Elhag, 2016). The available satellite images with 
various resolutions allow to observe of coastal 
and the estuary regions. The success of satel-
lite imagery in monitoring salinity intrusion has 
been justified in different studies using Landsat 
(Mishra et al., 2023), and Sentinel (Sakai et al., 
2021). However, due to the complex phenomenon 
of salinity intrusion, the remote sensing approach 
has been limited by spatial and temporal resolu-
tion. Moreover, with the development of the vol-
ume and quality of satellite images, it is necessary 
to integrate satellite image data into power mod-
els to explore useful information from these data.

Machine learning models provide a promis-
ing solution for improving modelling through their 
ability to efficiently interpret linear and non-linear 
problems and process large datasets (Nasir et al., 
2022, Rajeev et al., 2025). Unlike traditional mod-
els that simulate through physical parameters such 
as terrain and hydrometeorology, machine learning 
methods rely on available data and the relationship 
between water quality and dependent factors. This 
reduces the reliance on difficult-to-collect manual 
field measurements. Once trained, machine learn-
ing models can predict salinity quickly and ef-
ficiently with large datasets, allowing machine 
learning models to predict more scenarios than 
traditional models (Wang et al., 2022, Tran et al., 
2025). Furthermore, machine learning models of-
fer high adaptability, as they can be continuously 
updated with new data, ensuring that predictions 
remain directly linked and responsive to envi-
ronmental changes. They can also support high-
throughput analytics, allowing decision-makers 

and local authorities to assess multiple scenarios 
related to environmental changes and land use 
planning (Ireland et al., 2015). However, individ-
ual machine learning models are often affected by 
the overfitting and underfitting problems, so many 
scientists have used ensemble and optimisation 
methods to increase the accuracy and avoid above 
problems (Nguyen et al., 2025). 

By applying some well-known methods, wa-
ter quality prediction models, especially water sa-
linity based on advanced machine learning mod-
els, can overcome the limitations of traditional 
models, leading to more accurate predictions and 
better interpretation, and can help policymakers 
and farmers take timely measures in water re-
source management for agricultural development. 
These models promise to be able to learn synthet-
ic features, have high interpretability, and account 
for the variability of salinity intrusion phenomena 
(Khullar and Singh, 2022, Zhu et al., 2022, Yan 
et al., 2024). This research focuses on develop-
ing highly accurate and applicable synthetic mod-
els that can be applied in the real world that help 
managers, policymakers, and farmers effectively 
manage irrigation water resources and minimise 
the impact of salinity intrusion on agriculture, es-
pecially in the context of climate change.

The novel contribution of this paper to existing 
studies lies in the integration of unique machine 
learning models to create highly accurate ensemble 
models to accurately predict saltwater intrusion. 
The combined approach proposed in this paper 
can exploit the strengths of each distinct algorithm 
while minimising errors in the forecasting process 
through the ability of continuous learning and flex-
ible correction. This study is particularly applied 
in the Red River Delta, which is highly affected by 
climate change and sea level rise, resulting in an 
increasingly severe saltwater intrusion and has not 
been investigated in previous studies. The results 
of this study can help policymakers and popula-
tions optimise irrigation water management, mini-
mise the impact of saline intrusion on agriculture, 
and contribute to ensuring food security.

STUDY AREA AND MATERIAL

Study area

The Red River Delta is located in the north 
of Vietnam, extending from latitude 21°34 N to 
alluvial plains around 19°5 N, from 105°17 E to 
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107°7 E, with a natural area of   21,253 km2, which 
represents 6.42% of the area (Figure 1). The Red 
River Delta is a low-lying area, mainly a plain, 
with a dense river system with main river systems 
such as the Red River, Duong River, Luoc River, 
and Thai Binh River. The water regime of the Red 
River Delta depends on the flow from the source 
of the Red River and is distributed seasonally. The 
water regime of the Red River Delta is divided 
into different seasons. The flood season lasts from 
June to October, accounting for 70–80% of the 
total annual water volume, while the dry season 
lasts from November to May next year, with low 
flow. The Red River Delta has rich and diverse 
land resources. In particular, alluvial soil accounts 
for most of the area, with 70%, suitable for grow-
ing many types of crops, especially rice and other 
crops. In addition, acidic and saline sulphate soils 
are concentrated in coastal areas, which are suit-
able for the development of aquaculture. 

The Ba Lat estuary area, located between Thai 
Binh and Nam Dinh provinces, is considered an 
area heavily affected by salinity intrusion, espe-
cially during the dry season, when the water level 
of the Red River Delta upstream is reduced. Spe-
cifically, according to monitoring the salinity at the 
Ba Lat station can reach 15.1 at the peak of the tide 

and about 7 km from the mouth of the river. There-
fore, monitoring and forecasting saline intrusion 
play an important role in supporting local authori-
ties and farmers in establishing effective measures 
to minimise the impact of saline intrusion. 

In recent years, salinity in the Red River Delta 
has caused significant damage to agricultural de-
velopment. According to a report by the Ministry 
of Agriculture and Environment, between 2015 
and 2017, rice yields in salt-contaminated fields 
decreased by approximately 0.9 tonnes per hect-
are, from 6.49 tonnes per hectare to 5.58 tonnes 
per hectare, a decrease of approximately 14% due 
to the direct impact of salinity in field water. This 
has a direct impact on food security in the region.

Materials

Salinity intrusion is considered a serious prob-
lem, causing significant damage to agricultural ac-
tivities and food security in the country, particular-
ly during the dry season, when discharge decreas-
es and tides increase to their maximum, as well 
as rain decreases. Therefore, in this study, these 
factors were used to observe and predict salinity 
intrusion in the Red River Delta.Field data include 
salinity measurements, tide levels, temperature 

Figure 1. Location of the study area in this study
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and hourly precipitation at the Ba Lat hydrological 
station from 2014 to 2023 (Figure 2). In this con-
text, tides significantly affect the salinity of the Ba 
Lat River. When the tide rises, the seawater moves 
further inland, leading to an increase in salinity. 
Meanwhile, when the tide is low, freshwater from 
upstream pushes the seawater out to sea, reducing 
the water’s salinity. During the dry season, river 
flow is significantly reduced, weakening the abil-
ity of rivers to push saltwater back to sea, allow-
ing saltwater to penetrate further inland. Rainfall 
plays an important role in mitigating the effects of 
saltwater intrusion, as it provides additional fresh-
water to the river system, increases flow, and helps 
push saltwater back out to sea. Temperature is also 
another factor that greatly affects the level of salin-
ity intrusion. High temperatures increase the rate 
of evaporation, especially during the dry season, 
causing a decrease in river flow. This increases 
saltwater intrusion. For all the models proposed in 
this study (XGBoost, Random Forest, LightGBM 
and their hybrids with decision tree or Linear Re-
gression), this study uses the salinity value mea-
sured one day before (lag = 1) to predict one day 
ahead because several studies have pointed out 
that the salinity series depends from day to day; 
therefore, the best information to predict tomor-
row’s salinity is often today’s information. In ad-
dition, model optimisation is mainly based on the 
one-day change, which allows us to reconcile the 
complexity and performance of the model. This 
avoids the dependency of parameter adjustment 
while preserving sequential variability. Therefore, 
this one-day delay allows all models to effectively 
exploit hydrological memory and temporal cor-
relation to provide the salinity prediction on the 
following day.

METHODOLOGY

The objective of this study is to build machine 
learning models, namely XGB, RF, LightGBM, 
XGB-DT, RF-DT, LightGBM-DT, XGB-LR, RF-
LR, LightGBM-LR, to monitor and predict salin-
ity intrusion in the Ba Lat estuary in the Red River 
Delta of Vietnam. Therefore, this process was di-
vided into four main steps: (i) the data collection 
and processing process; (ii) the machine learning 
model construction process; (iii) assessment of the 
accuracy of the proposed model; (iv) the analysis 
of salinity intrusion in the study area (Figure 3).
1. Data collection and processing – in this study, 

we used river discharge, water level, precipi-
tation, and temperature from 2014 to 2023 to 
predict the EC value at the Ba Lat station. The 
data set was divided into two parts: the first 
part was used to build the prediction model 
with 80% of the data, while the second part 
was used to validate the proposed model with 
20% of the data. The division of the data rate 
depends on the available data and the nature of 
the relationship between EC values and their 
influencing factors. This study tested several 
different ratios; however, ultimately, this ratio 
presented the best accuracy.

2. The machine learning model building process –
was carried out in two main stages. The first is 
the base model and the hybrid model building. 
The second is the development of L2 regularisa-
tion. That is, the prediction of the base model 
and the hybrid model was used as input to the 
L2 regularisation technique The performance 
of the base model depends on the tuning of the 
parameters. In this study, the parameters were 
optimised using the trial-and-error method. 

Figure 2. Dataset for the prediction of water salinity at the Ba Lat station in the Red River Delta
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This method is chosen due to its flexibility and 
ease of implementation, especially in the early 
stages of model building and when the search 
space of parameters is still small. Compared to 
other methods such as Grid Search or Bayesian 
Optimisation, the trial and error method is more 
time-saving because it does not have to evaluate 
all possible parameter combinations, and this 
method also does not require the setup of a com-
plex probability model and is more controllable 
when working with a limited number of input 
variables (Bianchi and Monbaliu 2024, Tran, 
Nguyen et al. 2025). In the end, XGBoost is con-
figured with objective=’reg:squarederror’, n_es-
timators=200, learning_rate=0.2, max_depth=7, 
subsample=0.8, and colsample_bytree=0.8. 
Meanwhile, RandomForest is optimised with 

n_estimators=200, random_state=42, and 
max_depth=15. The LightGBM model, with 
the parameter objective=’regression’, also 
uses n_estimators=200, learning_rate=0.2 and 
max_depth=15, subsample=0.8, colsample_by-
tree=0.8. However, the hybrid model was de-
veloped by integrating between the base mod-
els and the algorithms (DT and LR) allows one 
to optimise the prediction capacity of the base 
model. The parameters of DT and LR are as 
follows: max_depth=15, min_samples_split=2, 
min_samples_leaf=1, splitter=’best’ for DT and 
fit_intercept: True, copy_X: True, n_jobs: None, 
positive: False for LR. Finally, to improve the 
prediction ability of the proposed models, 
this study used the Ridge Regression tech-
nique. Ridge regression is an L2 regularisation 

Figure 3. Methodology used for the assessment of water quality in this study
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technique that reduces the overfitting problem 
and improves the performance of the model. 
Ridge regression works by adding an L2 pen-
alty to the model’s loss function. This balances 
learning from the training data while maintain-
ing model simplicity. The final result of Ridge 
Regression presents the best performance.

3. Assessment of the accuracy of the proposed 
model – three statistical indices, namely RMSE, 
MAE, and R², were used to evaluate the perfor-
mance of the proposed models. 

4. The analysis of salinity intrusion in the study 
area – after evaluating the proposed machine 
learning models, these models are used to fore-
cast the salinity of the water 1 day in advance. 
The analysis focuses on determining the pattern 
of variation in salinity over years and seasons, 
based on the relationship between salinity and 
water level, precipitation, and temperature. 

Xgboost

Xgboost is considered a widely popular ma-
chine learning model with high speed, superior 
accuracy, and enhanced flexibility. This model is 
an improved version of the Gradient Boost algo-
rithm and was initially released in 2014 by Chen 
et al., 2022. XGBoost is an assembly of decision 
trees (weak learners) that allow predicting residu-
als and correcting errors from previous decision 
trees. This algorithm was designed to work in 
parallel and have the capability to process a large 
volume of structured datasets in a short period. 
XGBoost was integrated with L1 and L2 regu-
larisation mechanisms that allow avoidance of 
overfitting problems in the model (Niazkar et al., 
2024). In addition, this algorithm can repeatedly 
improve observations by combining several weak 
learners sequentially. It allows XGBoost to reduce 
the high biases that can sometimes be recurrent in 
machine learning models (Liu et al., 2024). Dur-
ing the execution process, XBoost could handle 
missing data efficiently by automatically learning 
the best imputation direction. The performance of 
XGBoost was proven by defeating other machine 
learning models in various computer science 
competitions (Mantena et al., 2023).

Random forest

Random forest (RF) is a machine learning al-
gorithm proposed by Leo Breiman in 2001 that 
can solve both classification and regression tasks 

(Breiman, 2001). The idea of this algorithm is 
to combine multiple decision trees to make the 
predictions more accurate. RF constructs several 
independent decision trees, does separate training 
on each tree using a random sample dataset, and 
compares between outputs to select the best one 
(Hidayat and Astsauri, 2022, Khan et al., 2022). 
The RF working process was divided into three 
main steps. First, a replacement random sample 
is drawn from the data. Second, a random feature 
selection process was applied for each tree using 
the datasets from step one. During the construc-
tion of each tree, some random features are used 
to make decisions at each node. The last is the 
prediction process (Liu et al., 2013, Wang et al., 
2021). Almost all parameters of RF are the same 
as the parameters of the decision tree algorithm, 
including max_depth, min_samples_split, and 
min_samples_leaf. However, it has two new pa-
rameters, including n_estimators and bootstrap. 
Which n_estimators are the number of trees in the 
forest, and bootstrap was used to increase diversi-
ty among trees, thereby improving the generalis-
ability of the model and reducing overfitting (Su-
leymanov, Gabbasova et al. 2023). For classifica-
tion, the prediction model was chosen from the 
individual trees. For regression, the model pre-
dicts the expected values of each tree on average.

LightGBM

LightGBM is a machine learning library that 
uses gradient boosting in decision trees (Ke et 
al., 2017). As a ‘light’ term, LightGBM was de-
signed to solve problems on a large scale with 
high speed and low memory. LightGBM uses a 
technique called histogram-based to classify data 
into containers based on the value of the feature 
to reduce computational complexity and speed up 
training (Wang et al., 2020). The LightGBM es-
tablishes trees using the top-down method, limit-
ing depth to control complexity. In addition, the 
leaf-wise mechanism was also applied to decision 
trees in depth by choosing to expand the leaf with 
the largest error reduction at each step (Dong et 
al., 2022). Thus, the decision trees are combined 
so that each new tree learns by adjusting for the 
differences between the current model’s predic-
tions and the actual values, helping to improve 
the model’s overall performance. LightGBM 
used two techniques to process sample data, 
including gradient-based one-sided sampling 
(GOSS) and exclusive feature bundle (EFB). In 
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this case, GOSS allows samples with large gradi-
ents to be retained to focus on data instances with 
smaller gradients (Ke et al., 2017). On the other 
hand, EFB allows merging of less interactive fea-
tures into a new feature (Ke et al., 2017, Shaker 
et al., 2021). From this, XGBoost could reduce 
the number of features to process without losing 
much information, reduce the amount of data to 
be processed, and increase efficiency. LightGBM 
could work well in the environment of parallel 
and distributed computing in big systems.

Decision tree

A decision tree is a simple supervised learn-
ing algorithm that was developed in the 1960s 
with various versions such as ID3, C4.5, or CART 
(Rokach and Maimon, 2005). The main idea of 
the Decision Tree algorithm is to build a tree of 
nodes, where each node decides to split the data 
based on a certain feature, in order to optimise dis-
crimination or prediction (Kotsiantis, 2013). The 
structure of a decision tree includes a root node, 
branches, internal nodes, and leaf nodes. Based on 
available features, types of nodes perform evalu-
ations to form homogeneous subsets, which are 
referred to as leaf nodes or terminal nodes. The 
leaf nodes represent all possible outcomes in the 
dataset. The algorithm selects the best feature and 
threshold to split the data in a way that increases 
the purity or homogeneity of the resulting subsets 
in relation to the target variable at each node. This 
splitting process is then repeated top-down and 
recursively until a stopping criterion is met, such 
as reaching a maximum depth, having a minimum 
number of samples in a node, or obtaining pure 
leaf nodes (Elnaggar and Noller, 2009, Efeoglu 
and Tuna, 2022). To make a prediction for a new 
data point, the tree is traversed from the root to 
a leaf node based on the results of the feature 
tests, and the prediction is the majority class or 
average value in that leaf. This algorithm has four 
main parameters that help to control the model, 
including max_depth, min_samples_split, and 
min_samples_leaf. In this case, max_depth (or 
maximum depth of the tree) helps to control com-
plexity, and avoid overfitting. Min_samples_split 
(or a minimum number of samples for a node to 
split) helps to reduce overfitting by increasing this 
value. Min_samples_leaf (or a minimum number 
of samples in leaves) helps to smooth the model. 
The criterion parameter (or criteria for choosing 
the type of splits Gini and Entropy) affects how 

the tree splits. Decision trees can also maintain 
their accuracy by forming an ensemble using a 
random forest algorithm.

Linear regression

Linear regression (LR) is a continuous value 
prediction model that finds the linear relationship 
between the value of unknown data using anoth-
er related, known data value. This model is the 
result of the study of Francis Galton in the late 
nineteenth century (Su et al., 2012). Basically, the 
core idea of LR is to plot a best-fit straight line 
between two data variables, x and y. As the inde-
pendent variable, x is plotted along the horizontal 
axis. The dependent variable, y, is plotted on the 
vertical axis. Ultimately, predictions can prove 
accurate for calculating unknown dependent vari-
ables from known independent variables. This 
algorithm uses the ordinary least squares (OLS) 
method to estimate parameters (Uyanık and Güler, 
2013). Unlike other machine learning algorithms, 
LR is simple to deploy, easy to understand, easy to 
implement, and very effective when the relation-
ship between variables is linear. That is why it is 
one of the most popular algorithms that is selected 
to solve regression problems at the beginning.

RESULTS

Model performance assessment

Figure 4 presents the R² value of the models 
proposed in this study. In general, all proposed 
models performed well in predicting the EC one 
day ahead, such as the Ba Lat station in the Red 
River Delta. For detail, the Xgboost-DT model 
was more accurate than other models with an R2 
score of 0.86, followed by the Xgboost-LR model 
with an R2 score of 0.85, the LightGBM-DT mod-
el with an R2 score of 0.84, the LightGBM-LR 
model with an R2 score of 0.84, the LightGBM 
model with an R2 score of 0.84, the Xgboost mod-
el with an R2 score of 0.838, the RF-DT model 
with an R2 score of 0.837, the RF-LR model with 
an R2 score of 0.827 and RF model with an R2 
score of 0.825, respectively.

Table 1 presents the RMSE and MAE values 
of the proposed models. In general, hybrid mod-
els demonstrate higher accuracy than the individ-
ual model. More accurately, for the XGB model 
and its hybrid, with RMSE and MAE scores of 
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Figure 4. R² value for the model proposed in this study
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1.65 and 0.87, the performance of the XGB-DT 
model was higher than that of the XGB mod-
el (RMSE=1.8 and MAE=0.93) and XGB-LR 
(RMSE 1.71 and MAE 0.89). For the RF model 
and its hybrid, the RF-DT model performed better 
with an RMSE score of 1.8, MAE of 0.98, fol-
lowed by the RF-LR with an RMSE score of 1.86 
and an MAE of 1.05, respectively. For the Light-
GBM model and its hybrid, the LightGBM-DT 
model exhibited a better prediction performance 
compared to the other models with an RMSE 
score of 1.7 and an MAE of 0.93, followed by 

Table 1. The value RMSE, MAE of the models 
proposed

Model RMSE MAE R²

B 1.8 0.93 0.83

RF 1.87 1.1 0.82

LightGBM 1.78 1.05 0.84

XGB-DT 1.65 0.87 0.86

RF-DT 1.8 0.98 0.83

LightGBM-DT 1.77 0.93 0.84

XGB-LR 1.71 0.89 0.85

RF-LR 1.86 1.05 0.82

LightGBM-LR 1.77 1.03 0.84

Figure 4. Cont. R² value for the model proposed in this study
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LightGBM-LR (RMSE=1.77, MAE=1.03) and 
LightGBM (RMSE=1.78 and MAE=1.05).

Compared to the proposed models, the XGB-
DT model was more accurate with RMSE and 
MAE scores of 1.65 and 1.05. The XGB-LR 
model was second, with RMSE (1.71) and MAE 
(0.89) slightly higher than the XGB-DT model. 
The LightGBM-LR model was third with RMSE 
and MAE scores of 1.77 and 1.03, respectively. 
The LightGBM-DT model was ranked fourth 
with an RMSE score of 1.77 and an MAE of 0.93. 
The LightGBM model was ranked fifth with an 
RMSE score of 1.78 and an MAE of 1.05. The 

RF-DT model was ranked sixth with an RMSE 
score of 1.8 and an MAE of 0.98. The Xgboost 
model was ranked seventh with an RMSE score 
of 1.8 and an MAE of 0.93. The RF-LR model 
was ranked eighth with an RMSE score of 1.86 
and an MAE of 1.05. The Random Forest model 
was ranked lower with an RMSE score of 1.87 
and an MAE of 1.1. 

Salinity intrusion analysis

Figure 5 presents the EC value at the Ba Lat 
station by the XGB, RF, and LightGBM models 

Figure 5. Salinity prediction using the models proposed
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and their hybrids with the Decision tree and LR. 
Specifically, during high tide days, the salinity 
(EC) at Ba Lat station reaches a very high peak, up 
to approximately 23–24 g/L. All models correctly 
captured the general trend of salinity fluctuations, 
but there were clear differences in amplitude and 
timing, especially the XGB model, which accu-
rately captured the locations of salinity peaks but 
often predicted them 1–2 days earlier and overes-
timated the peak amplitude by 0.5–1 g/L. On the 
contrary, the RF model tended to respond approx-
imately 1–2 days later than observed and reduced 
the amplitude of salinity peaks compared to the 
actual values, usually 1–2 g/L less. LightGBM 
yielded the most accurate results, with the predic-
tion curve matching the timing and amplitude of 
salinity peaks almost perfectly, including the larg-
est peak around 23–24 g/L.

For the group of hybrid models combined 
with the decision tree (DT), XGB-DT main-
tained the correct timing of the salinity peaks but 
still underestimated the amplitude by approxi-
mately 0.5–1 g/L compared to observations; 
RF-DT again correctly captured large peaks 
but exaggerated small peaks (< 5 g/L). Mean-
while, LightGBM-DT was the best choice, as it 
matched both the timing and the amplitude of 
the high and low peaks with an error of less than 
0.3 g/L. Moving to the hybrid group with linear 
regression (LR), XGB-LR, RF-LR, and LightG-
BM-LR accurately reproduce the general trend, 
but all exhibit a lag of about 1 to 3 days com-
pared to the observed value, which is particular-
ly evident in RF-LR and XGB-LR. In this case, 
LightGBM-LR, although still closely following 
the general fluctuations, underestimates the sa-
linity peaks by more than 1 g/L, thus having dif-
ficulty catching up with the actual amplitude. 

DISCUSSION

Salinity intrusion is considered a major envi-
ronmental problem, negatively influencing agri-
cultural development and affecting food security 
in the country. This problem is increasingly seri-
ous in the context of climate change and rising 
sea levels (Vineis et al., 2011, Katende and Sa-
gala, 2019, Musie and Gonfa, 2023). Therefore, 
monitoring and predicting salinity intrusion is an 
essential task, helping policymakers and farmers 
propose appropriate measures to reduce the ef-
fects of salinity intrusion. The objective of this 

study is to develop a machine learning model to 
predict the intrusion of salinity of the Ba Lat sta-
tion in the Red River Delta of Vietnam.

The Red River Delta is considered the second 
most productive agricultural region in Vietnam, 
providing approximately 18% of Vietnam’s rice 
production, 26% of its vegetable production, and 
20% of its seafood production. With its vast area, 
the Red River Delta not only ensures food secu-
rity for the entire country but also provides a live-
lihood for millions of people, who rely mainly on 
agricultural and livestock activities (Yuen et al., 
2021, Phung and Dao, 2024). However, this area 
is currently considered one of the most affected 
by saltwater intrusion, especially in the context 
of climate change and sea level rise. The decline 
in the dry season flow of the Red River due to the 
impact of the construction of the upstream dam, 
combined with the rise in sea level, has made sa-
line intrusion increasingly serious in coastal estu-
aries such as Ba Lat (Nguyen et al., 2017, Hien et 
al., 2023). According to previous studies, salinity 
in the Ba Lat estuary has increased beyond the 
threshold of 4 during peak tide hours. This thresh-
old exceeds the tolerance of rice plants (Phan and 
Kamoshita, 2020, Do et al., 2024). Previous stud-
ies have also reported that in some coastal locali-
ties in Nam Dinh and Thai Binh provinces, ap-
proximately 15–20% of rice yield in winter and 
spring crops was affected by saline intrusion 
(Nguyen et al., 2017). In the context of increasing 
saline intrusion in this region, the development 
of a warning system is essential, which can help 
planners and managers make decisions to mi-
nimise the impact of saline intrusion on agricul-
tural production and water resource management. 
However, currently, studies on saltwater intrusion 
prediction in the Red River Delta are still limited, 
focusing mainly on the use of traditional models, 
while few studies use machine learning models. 
This approach is considered promising and has 
the potential to solve non-linear problems, espe-
cially in the current context of climate change and 
sea level rise.

In this study, all proposed models have high 
accuracy (R2 > 0.8) in predicting saline intrusion 
in the Ba Lat Estuary, Red River Delta. It can be 
seen that hybrid models have higher accuracy 
than simple models because each model has its 
own strengths and weaknesses. For example, the 
Xgboost model is able to solve nonlinear prob-
lems and problems related to overfitting (Kiriaki-
dou et al., 2024), while the DT model is composed 
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of weak learners to become stronger learners, but 
the DT model also often encounters the problem 
of overfitting when the data has large fluctuations 
and noise (Huang, 2024, Parhi and Patro, 2024, 
Saputra et al., 2024). Thus, when these models are 
combined with each other, they can complement 
each other and limit the weaknesses of each mod-
el. This allows the hybrid model to have higher 
accuracy and avoid overfitting problems. In addi-
tion, hybrid models have the ability to reduce bias 
and variance, which allows hybrid models to per-
form better than simple models. Hybrid models 
also have higher generalisation ability than sim-
ple models. Specifically, linear regression mod-
els often exhibit high bias, especially in complex 
data sets and nonlinear relationships (Azevedo et 
al., 2024, Fan et al., 2024). Therefore, combin-
ing the Xgboost, Random Forest, or LightGBM 
models with LR models can help reduce bias and 
variance, and hybrid models have greater stabil-
ity than simple models, especially in cases where 
the data contain noise and are not continuous, 
such as in saltwater intrusion prediction (Priyad-
harshini and Karpagam, 2024, Wu et al., 2024). In 
the case of random forest models, although they 
have good classification and prediction capabili-
ties, they often encounter overfitting problems, 
especially in cases of very complex data such as 
salinity intrusion data (Khan et al., 2024, Salman 
et al., 2024). Therefore, by combining the random 
forest model with LR or DT models, the hybrid 
models can reduce the overfitting problem and 
the random forest models can also take advan-
tage of the generalisability of LR and DT models. 
Finally, one of the notable advantages of hybrid 
models is their ability to globalise and generalise 
the prediction of problems based on linear and 
non-linear relationships between independent and 
dependent variables. This allows the hybrid mod-
el to produce more accurate forecasts and to more 
accurately reflect the complexity of the data.

The use of machine learning models to pre-
dict saltwater intrusion is becoming increasingly 
popular in countries around the world, particu-
larly as these phenomena become increasingly 
severe due to the impact of climate change and 
human activities (Nguyen et al., 2025, Yu et al., 
2025). Machine learning models are capable of 
handling complex and nonlinear problems, which 
is particularly important in the case of salinity 
intrusion prediction. Saltwater intrusion is influ-
enced by many different factors, such as tides, 
currents, precipitation, and human activities such 

as dam construction and groundwater exploita-
tion (Barzegar and Moghaddam, 2016, Mahmoud 
et al., 2025). Therefore, machine learning models 
can integrate climate change scenarios into the 
prediction of future saltwater intrusion (Zennaro 
et al., 2021). However, even though the proposed 
model can successfully predict salinity intrusion 
in the study area, this result may be related to the 
random selection of samples in the study area and 
may not be accurate in other areas. For example, 
the Red River Delta is less affected by upstream 
dam systems than other regions, such as the Me-
kong Delta. In these areas, salinity intrusion data 
are often closely correlated with inflow and tides. 
For areas heavily impacted by upstream dam sys-
tems, the effectiveness of machine learning mod-
els in accurately predicting salinity intrusion may 
be questionable, and more specific and detailed 
information is required to train the models. This 
is because the performance of a machine learn-
ing model is largely dependent on the quality and 
quantity of data on which it is trained. Therefore, 
data collection is of great importance in building 
machine learning models, especially information 
related to human impacts.

In recent years, local authorities and the people 
of the Red River Delta have implemented many 
strategies to minimize the impact of saline intrusion 
on agriculture. These strategies include strengthen-
ing the dyke system and saline barriers, adjusting 
the seasonal farming schedule to avoid periods of 
high salinity, and searching for plant varieties that 
are more resistant to saline intrusion. Addition-
ally, local authorities have also actively deployed 
real-time monitoring and warning technology for 
saline intrusion, helping people adjust their pepper 
planting schedules appropriately (Nguyen et al., 
2017, Nguyen et al., 2019). The Ministry of Ag-
riculture and Environment has also issued many 
programmes and techniques to guide farmers in 
adapting to saline intrusion and integrating these 
contents into national programmes such as the 
“National Target Programme on Climate Change 
Response” and the “New Rural Development Pro-
gramme”. Therefore, integrating advanced tools 
such as machine learning into water resource fore-
casting and planning plays an important role in en-
hancing resilience to salinity intrusion, especially 
in the context of climate change.

Although this study successfully predicted sa-
linity intrusion, it also had data limitations. Cur-
rently, saline intrusion in the Red River Delta is 
affected by the upstream dam system. However, 
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due to the limited funding and data sharing poli-
cies of the relevant regions, this study is limited 
in integrating activity-related data into the saline 
intrusion prediction model. Furthermore, sa-
line intrusion is significantly affected by climate 
change and the rise in sea level. Therefore, future 
research will attempt to integrate the impacts of 
dam systems, climate change and sea level rise 
scenarios into the assessment and prediction of 
saline intrusion. The results of this study play an 
important role in supporting policy-makers or 
farmers in establishing effective measures to re-
duce the effects of salinity intrusion. 

CONCLUSIONS

Salinity intrusion is considered significant en-
vironmental degradation, influencing agricultural 
development and food security in the country, 
particularly in the context of climate change and 
rising sea levels. The Red River Delta is consid-
ered one of the regions most affected by the salin-
ity intrusion problem, a problem that is increas-
ingly serious under the effects of climate change 
and rising sea levels. Therefore, assessing salinity 
intrusion is one of the essential tasks to support 
decision makers or farmers in optimising water 
resource management to reduce negative effects 
on agricultural development. This study presents 
the following results:
1) This study demonstrates the capacity of ma-

chine learning and hybrid machine learning in 
the assessment of salinity intrusion. This is one 
of the tools that helps local authorities and farm-
ers quickly assess and predict salinity intrusion. 

2) All the models proposed in this study per-
formed well in predicting salinity intrusion in 
the Red River Delta with the value of R² plus 
0.8. Among them, the Xgboost-DT model was 
more accurate than the other models, with an 
R2 score of 0.86. This model can be applicable 
to other estuarine or coastal regions with simi-
lar hydrological and climatic conditions.

Moreover, this study contributes to the advance-
ment of technology to predict water quality in gen-
eral, specifically, its salinity. The developed models 
in this study can be deployed to predict water sa-
linity in different regions of the world. The results 
of this study can help decision-makers or farmers 
build the necessary activities to reduce the effects of 
water salinity on agricultural development.
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