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INTRODUCTION 

Groundwater is an essential element in the 
supply of drinking water worldwide, particularly 
in regions where surface resources are limited. 
However, the quality of this water is increas-
ingly threatened by multiple sources of pollution, 
both anthropogenic and natural. Human activi-
ties, such as industrial discharges, intensive ag-
ricultural practices, and domestic effluents, sig-
nificantly contribute to the degradation of aqui-
fers by introducing contaminants such as heavy 

metals, nitrates, and persistent organic com-
pounds (Aspros Santé, 2022). Moreover, natural 
geochemical processes, such as the dissolution of 
minerals and the alteration of rocks, can also lead 
to the release of toxic elements into groundwater 
(Belkhiri et al., 2017).

Among the most worrying contaminants, 
heavy metals occupy a central position due to 
their toxicity, persistence in the environment and 
propensity for bioaccumulation. Some metals, 
such as iron (Fe), zinc (Zn) and copper (Cu), are 
necessary for human metabolism in low doses. On 
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the other hand, others such as lead (Pb), cadmium 
(Cd), arsenic (As) and mercury (Hg) are highly 
toxic, even at low concentrations (Marshall et al., 
2021; Saha et al., 2022). Their toxicity depends 
not only on their concentration but also on their 
chemical form (speciation), their mobility, their 
bioavailability, and the duration of exposure (Ali 
et al., 2019; Chowdhury et al., 2023). Indeed, 
chemical speciation influences the solubility and 
reactivity of metals, thus affecting their mobility 
in the environment and uptake by living organ-
isms (Du et al., 2017; Qu et al., 2019). Bioavail-
ability, meanwhile, is modulated by factors such 
as pH, organic matter and interactions with other 
ions, determining the fraction of metal actually ac-
cessible for biological uptake (Caporale and Vio-
lante, 2016). In addition, the duration of exposure 
plays a crucial role, as chronic exposure, even at 
low doses, can lead to progressive accumulation 
in biological tissues, increasing the risk of long-
term toxic effects (Chowdhury et al., 2016).

Once released into the environment, these el-
ements can infiltrate aquifers and be absorbed by 
living organisms. They accumulate in biological 
tissues and progressively concentrate through the 
food chain, causing chronic harmful effects such 
as neurological, hepatic, and renal disorders, as 
well as cancer diseases (Zhao et al., 2022; Singh 
et al., 2021). This reality necessitates a rigorous 
assessment of the health risks associated with 
prolonged exposure to these contaminants, both 
in terms of non-carcinogenic and carcinogenic ef-
fects (Barkat et al., 2023).

In this context, the present study aims to ana-
lyze the spatial distribution of heavy metals in the 
groundwater of the Soummam watershed, located 
in the northeast of Algeria, using multivariate 
statistical methods, particularly principal com-
ponent analysis (PCA). This approach allows for 
the identification of the main factors influencing 
water quality and the determination of potential 
sources of pollution, whether natural or resulting 
from human activities (Sanad et al., 2024). The 
data were interpreted by considering eigenvalues 
greater than 1 with Varimax rotation to reduce the 
dimensionality of the factors (Singh et al., 2017).

The level of groundwater contamination was 
assessed using widely recognized indices, includ-
ing the degree of contamination (Cdeg) and the 
heavy metal evaluation index (HEI), to quan-
tify the overall pollutant load (Sbai et al., 2024). 
Moreover, a quantitative health risk assessment 
was conducted for each metal, in accordance 

with the methodology established by the USEPA 
(2016). This approach was based on the calcu-
lation of hazard quotients (HQ) and the hazard 
index (HI), taking into account three main ex-
posure pathways (ingestion, dermal absorption, 
and inhalation), as well as different age groups. 
In order to distinguish between potentially non-
carcinogenic effects (related to systemic toxicity) 
and carcinogenic effects (related to the probabil-
ity of developing cancer) (Khan et al., 2023). This 
analysis was strengthened by the use of Monte 
Carlo probabilistic simulations, in order to incor-
porate the uncertainty and variability of exposure 
parameters and to enhance the robustness of the 
obtained results. This methodology provides a 
comprehensive framework for understanding the 
severity and probability of adverse health effects 
associated with groundwater contamination by 
heavy metals.

The results of this study aim to support in-
formed decision-making by local water manage-
ment authorities, in order to implement targeted 
mitigation strategies and ensure the long-term 
sustainability of groundwater resources.

The ultimate aim is to help prevent the health 
risks associated with metal pollution and pre-
serve groundwater quality for future generations. 
This study proposes a novel and comprehensive 
approach by combining multivariate statistical 
analysis, pollution indices and deterministic and 
probabilistic human health risk assessment (in-
cluding multiple exposure pathways and popula-
tions of different age groups to obtain an accurate 
assessment) in a region that has been insufficient-
ly studied to date: the Soummam watershed in 
northeastern Algeria.

MATERIALS AND METHODS

Study area and sampling locations 

This study was conducted in the Soummam 
watershed, a large hydrological basin located in 
northeastern Algeria (Figure 1). It spans three ad-
ministrative provinces (wilayas): Bejaia, Setif, and 
Bouira. This basin covers an area of approximately 
9,200 km², with a perimeter of 554 km, between 
latitudes 36°15′ and 36°45′ N and longitudes 4°30′ 
and 5°30′ E (Ould Fah, 2016; Turki et al., 2016). 
It stretches from the highlands of the Tellian At-
las Mountains in the south, where altitudes exceed 
2,000 meters (Djurdjura Mountains), to the coastal 
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plains of Bejaia, where the Soummam River flows 
into the Mediterranean Sea. The region has a wide 
variety of topography and climate, with a humid 
Mediterranean climate on the coast, becoming 
semi-arid to continental in the highlands. Annual 
rainfall varies from over 1.200 mm on the coast to 
around 400 mm inland, contributing significantly 
to the recharge of underground aquifers (Turki et 
al., 2016). Hydrologically, it has a dense and hi-
erarchical hydrographic network, dominated by 
three main watercourses: the Boussellam, Sahel, 
and Soummam wadis. The Boussellam River, 
which drains the high plains of Setif, joins the 

Sahel River in the Akbou region to form the Soum-
mam River, which crosses the valley to the north-
east before flowing into the Mediterranean Sea at 
Bejaia (ANRH, 2009; Ould Fah, 2016).

This region is subject to significant anthropo-
genic pressure, particularly in densely populated 
areas such as Bejaia, where urban, agricultural, 
and industrial development is constantly increas-
ing. Intensive agricultural practices (fertilizers, 
pesticides), domestic and industrial waste, and 
overexploitation of groundwater resources are 
potential sources of contamination, particularly 
by heavy metals (Hamhoum and Aoudia, 2015). 

Figure 1. Geographical location of the study area
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In this context, the Soummam watershed is a 
critical area for assessing groundwater quality 
and health risks associated with contamination 
by trace metals.

The methodology used is based on the appli-
cation of multivariate statistical methods, such as 
ascending hierarchical classification (AHC) and 
standardized PCA, as well as pollution indices 
and health risk assessment approaches to better 
understand the extent of contamination and its 
potential impacts on human health.

To this end, 135 groundwater samples were 
collected throughout the Soummam watershed 
during the dry season of July and August 2023. 
The locations of each sampling point are shown in 
Figure 2. The physicochemical parameters mea-
sured were temperature (T), pH, and electrical 
conductivity (EC), using a portable multiparame-
ter HANNA Instruments model HI991300N, spe-
cifically designed for in situ water quality moni-
toring. The concentrations of heavy metals such 
as Pb, Cd, Cr, Ni, Zn, and Fe were determined by 
graphite furnace atomic absorption spectrometry, 
in accordance with standard analytical protocols.

The reference sample from the World Health 
Organization (WHO, 2022) and the Official Jour-
nal of the Algerian Republic (JORADP, 2011), as 
well as the statistical summary of the water sam-
ples, are compared in Table 1.

Various software programs were used to pro-
cess, analyze, and visualize the data. Descriptive 

statistical analysis (minimum, maximum, and av-
erage values, standard deviations), comparison of 
parameter averages, and verification of their com-
pliance with potability standards were performed 
using Microsoft Excel.

Mapping of the study area, including loca-
tion maps, elevation maps, hydrographic network 
maps, and sampling point maps, was performed 
using ArcGIS 10.8.2 software.

Multivariate statistical analyses, including 
PCA and AHC, were performed using IBM SPSS 
Statistics 26.0, which also enabled the produc-
tion of the graphs required for the multivariate 
statistical study. Finally, the Monte Carlo simula-
tion was coded in Python and executed via the 
PyCharm Community Edition 2023.1.1 develop-
ment environment (Table 2).

Multivariate statistical methods 

Factor analysis 

Factor analysis was applied with the aim of 
identifying and modeling the underlying structure 
of the data by reducing it to a limited set of orthog-
onal variables (which are not correlated), called 
principal components (PCs), ranked according to 
their decreasing contribution to the total variance. 
This method not only allows for a significant re-
duction in dimensionality but also ensures optimal 
preservation of the initial information contained 
in the multidimensional data. In order to improve 

Figure 2. Spatial distribution of groundwater sampling points
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the interpretability of the results, an orthogonal 
Varimax rotation was applied to the standardized 
factor loadings. The selection of the retained com-
ponents was based on the Kaiser criterion, which 
considers only the components with an eigenvalue 
greater than 1 as significant (Goretzko et al., 2021). 
Moreover, the quality of the sampling was veri-
fied using the Kaiser-Meyer-Olkin (KMO) index, 
whose value exceeding 0.7 indicates a satisfactory 
adequacy, and Bartlett’s test of sphericity, whose 
significant result (p < 0.05) confirms the sufficient 
correlation between the variables to justify the 
analysis. This factorial approach thus helps to ex-
tract latent structures while ensuring the indepen-
dence of the factors, making it a powerful tool for 
the analysis of complex environmental data (Rohe 
and Zeng, 2023).

Cluster analysis

Cluster analysis (CA) was applied to group 
objects (cases) into categories or clusters on the 
basis of similarities within a group and dissimi-
larities between different groups as a function of 

distance between objects. Agglomerative hierar-
chical analysis of all standardized data was per-
formed using Euclidean distances as similarity 
and Ward’s method to formulate the dendrograms. 

Pollution assessment indices

Assessment of groundwater quality in terms 
of metal pollution is based on indices such as the 
degree of contamination (Cdeg) and the heavy met-
al assessment index (HEI). 

The contamination index (Cdeg ) is based on 
the recognition of pollution diffusion, and quan-
tifies the degree of contamination as a function 
of measured concentrations in relation to permis-
sible standards. Generally, Cdeg is classified into 
three levels: low (Cdeg < 1), medium (1 ≤ Cdeg ˂ 3) 
and high (Cdeg > 3) (Backman et al., 1998). It was 
calculated from the following equations: 

	 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝐶𝐶𝑓𝑓𝑓𝑓
𝑛𝑛
𝑖𝑖=1  

 
 

𝐶𝐶𝑓𝑓𝑓𝑓 = 𝐶𝐶𝐴𝐴𝐴𝐴
𝐶𝐶𝑁𝑁𝑁𝑁

− 1 

 

𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ 𝐻𝐻𝑐𝑐
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Table 1. Descriptive statistics for the parameters studied

Parameters Units Min Max Mean SD
Algerian 
standard 
(2011)

WHO 
standard 
(2022)

T°C °C 12.2 18.6 14.66 1.31 25 25

pH 6.1 8.3 7.41 0.36 6.5–8.5 6.5–8.5

EC µS/cm 368 1567 966.29 277.13 2800 1000

Pb mg/L 0.0008 0.683 0.129 0.154 0.01 0.01

Cd mg/L 0.0006 0.258 0.027 0.041 0.003 0.003

Cr mg/L 0.0007 0.163 0.028 0.039 0.05 0.05

Ni mg/L 0.0005 0.361 0.019 0.051 0.07 0.07

Zn mg/L 0.0009 0.256 0.041 0.057 3 3

Fe mg/L 0.0011 0.68 0.091 0.119 0.3 0.3

Table 2. Pearson correlation matrix
Parameters T° EC pH Pb Cd Cr Ni Zn Fe

T° 1

EC 0.04 1

pH -0.24 0.24 1

Pb 0.45 0.01 -0.41 1

Cd 0.30 0.06 -0.38 0.50 1

Cr 0.31 -0.07 -0.38 0.70 0.57 1

Ni 0.17 -0.25 -0.10 0.28 0.31 0.29 1

Zn 0.49 0.01 -0.44 0.72 0.51 0.71 -0.002 1

Fe 0.46 -0.10 -0.33 0.70 0.47 0.58 0.31 0.62 1
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where:	Cfi is the contamination factor for the ith 
component, CAi is the analytical value for 
the ith component, et CNi is the maximum 
permissible concentration of the ith com-
ponent (N is the normative value).

Furthermore, the HEI provides a comprehen-
sive assessment of the metal load in groundwater, 
thereby facilitating the classification of pollution 
levels. According to the established criteria, HEI 
values are generally interpreted as follows: HEI < 
10 indicates low pollution (Good quality water), 
10 ≤ HEI < 20: Moderately contaminated water, 
and HEI ≥ 20: Highly contaminated water (Edet 
and Offiong, 2002). The index was determined 
based on the following relationship: 

	

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝐶𝐶𝑓𝑓𝑓𝑓
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𝑖𝑖=1  
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𝐶𝐶𝑁𝑁𝑁𝑁

− 1 
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where:	Hc and HMAC are the measured value and 
the maximum allowable concentration 
(MAC) of the ith parameter, respectively.

Recent studies have confirmed the effective-
ness of these indices in various regions, particularly 
in assessing heavy metal contamination of ground-
water (Rajkumar et al., 2020; Verma et al., 2021).

Human health risk assessment

In the context of the present study, the as-
sessment of health risks associated with heavy 
metals in the groundwater of the Soummam wa-
tershed was conducted in accordance with the 
methodological recommendations of the United 
States Environmental Protection Agency (USE-
PA, 1989, 2004). This approach distinguishes 
non-carcinogenic effects, assessed using the 
hazard quotient (HQ) and the hazard index (HI), 
and carcinogenic effects, estimated by the indi-
vidual risk (CR).

The HQ and HI values were calculated by 
comparing the estimated daily exposure (via in-
gestion, skin contact, or inhalation) to the refer-
ence doses (RfD) considered as having no ob-
servable adverse effect for humans (Table 3). For 
carcinogenic substances, the risk is determined 
based on slope factors (SF) that translate the prob-
ability of cancer occurrence as a function of the 
cumulative dose (Table 4). All calculation equa-
tions are derived from the framework established 
in the Risk Assessment Guidance for Superfund 
(USEPA, 1989), supplemented by the updated 

guidelines of the Human Health Risk Assessment 
Framework (USEPA, 2004; USEPA, 2016).

This integrated method allows for a differ-
entiated quantification of health risks by taking 
into account multiple exposure pathways, the 
variability of population groups, and the inherent 
uncertainty of exposure parameters, particularly 
through the application of Monte Carlo probabi-
listic simulations. It proves particularly relevant 
in a complex hydrogeochemical context and un-
der strong anthropogenic pressure, such as that of 
the studied region.

Assessment of non-carcinogenic risks

The assessment of non-carcinogenic risks as-
sociated with exposure to heavy metals in ground-
water is based on three main exposure routes: 
ingestion, inhalation and dermal absorption. Of 
these, ingestion and dermal absorption are the 
most common in the context of contaminated wa-
ter (USEPA, 2016). The numerical formulas used 
to estimate exposure doses were derived from 
U.S. Environmental Protection Agency’s Risk 
Assessment Guidance for Superfund (RAGS) 
method (USEPA, 2016).
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where:	Expingestion – water ingestion exposure dose 
(kg/day), Expdermal – exposure dose by 
skin absorption, Expinhalation – inhalation 
exposure dose, Cwater estimated concen-
tration of metals in groundwater (μg/l), 
IR – ingestion rate (2.2 l/day), EF – ex-
posure frequency (365 days/year), ED – 
exposure time (30 years), BW – average 
body weight (kg), AT – average length 
of exposure (25,550 days), SA – exposed 
skin surface (18 cm2), ET – exposure time 
(0.58 h/day), CF – unit conversion factor 
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(0.0001 l/cm3), Kp   – skin permeability 
coefficient (0.35), InhR – inhalation rate, 
PEF – particle emission factor.

Parameters used for non-carcinogenic risk as-
sessment, such as HQ and HI, are established in ac-
cordance with USEPA guidelines (USEPA, 2016).
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where:	 HQing/derm/inh – ingestion/dermal/inhalation 
hazard quotient (unitless), HIing/derm/inh – in-
gestion/dermal/inhalation hazard index 
(without unit), RfDing/derm/inh – ingestion/der-
mal/inhalation reference dose (μg/kg/day).

It is generally considered that an HI less than 
1 indicates the absence of significant risk of non-
carcinogenic effects, and if HI ˃ 1 Possibility of 
adverse effects.

Assessment of carcinogenic risk

The ingestion route was used to characterize 
the carcinogenic risk in the present study, since 

it is identified as the main route of exposure for 
heavy metals present in the groundwater of our 
basin. Exposure doses show that ingestion leads 
to higher levels of contamination than inhalation 
and dermal exposure. Carcinogenic risk assess-
ment enables us to effectively guide, manage and 
protect populations at risk.

The carcinogenic risk (CR) can be deter-
mined by multiplying CDIing by the carcinogen-
ic slope factor (CSFing), measured in mg/kg/day 
(Equation 9).
	 CRing = CDIing × CSFing	 (9)

According to the USEPA: CRing ˂ 10-6: Neg-
ligible risk; 10-6 ≤ CRing ≤ 10-4: Acceptable risk 
according to certain regulations; CRing ˃ 10-4: 
Risk of concern, requiring management measures. 

CSFing values for all the heavy metals stud-
ied are listed in Table 4, while CRing values 
describing the carcinogenic risk are recorded in 
Table 10.

Monte Carlo simulation techniques

The deterministic approach is not capable of 
examining risk accurately, due to natural variabil-
ities and measurement uncertainties. Monte Carlo 
simulation is used as a solution for this problem, 
as it generates a large number of possible scenari-
os and serves to model data variability.

This method makes it possible to evaluate the 
probable distribution of HI and CR (for modeling 
non-carcinogenic/carcinogenic risk assessments), 
calculate the probability of exceeding the critical 
threshold and visualize the uncertainty of the re-
sults, thus providing a decision-support tool for 
environmental risk management. 

In addition, in order to obtain a reliable simu-
lation of the non-carcinogenic and probable car-
cinogenic risk distribution estimate, we generated 
10.000 iterations using Python code (PyCharm 
Community Edition 2023.1.1). We chose a 

Table 3. Reference dose factor (USEPA, 2016)
Chemical elements RfD Ingestion RfD Dermal RfD Inhalation

Pb 1.4 0.42 14

Cd 0.5 0.2 0.5

Cr 0.5 0.3 3

Ni 0.02 0.02 0.025

Zn 0.3 0.3 0.35

Fe 0.7 0.7 0.8

Table 4. Carcinogenic slope factor of selected 	
heavy metals

Heavy metal Cancer slope factor (CSF;kg/day/mg)

Pb 0.085

Cd 6.1 (CALEPA)

Cr 0.5 (CALEPA)

Ni 1.7 (CALEPA)

Zn Not considered toxic by USEPA

Fe Not considered toxic by USEPA
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lognormal distribution because environmental 
risk indices often have skewed distributions.

Taking into account oral, dermal and inha-
lation exposure modes in five communities of 
various age groups. The 95th and 5th percentile 
risk exposures were indicative of best-case and 
worst-case scenarios, respectively. Consistency 
between actual and simulated values was used to 
calibrate model performance.

By integrating this simulation with the USE-
PA’s health risk assessment framework, we can as-
sess the adverse effects of heavy metal exposure, 
estimating probability distributions of non-carci-
nogenic risk using the HI risk index (Figure 5), 
and probability distributions of carcinogenic risk 
using the CR carcinogenic risk index (Figure 6).

RESULTS AND DISCUSSION 

The descriptive statistics for the study area, 
presented in Table 1, indicate that the quality of 
groundwater in the Soummam watershed var-
ies significantly, reflecting the complexity of 
local hydrogeochemical conditions. The EC of 
the samples varies between 368 and 1567 µS/
cm, with an average of 966.29 µS/cm, reflecting 
a degree of mineralization ranging from low to 
high. This wide range reflects marked heteroge-
neity in hydrochemical conditions within the ba-
sin, suggesting the combined influence of several 
processes affecting the chemical composition of 
groundwater. Among natural factors, the dissolu-
tion of carbonate formations (calcite, dolomite) 
and evaporite minerals (gypsum, halite) plays 
a major role in the ionic enrichment of water. 
However, the highest values could also reflect 
anthropogenic inputs, particularly in densely 
populated areas or areas of intensive agricultural 
use, where domestic discharges, industrial efflu-
ents, and fertilizer use can increase salinization. 
Thus, the relatively high average EC highlights 
a complex interaction between geogenic and an-
thropogenic sources, illustrating the duality of the 
mechanisms responsible for the mineralization 
observed in the basin’s groundwater. The water 
temperature ranges from 12.2 °C to 18.6 °C, with 
an average of 14.66 °C, which is consistent with 
a shallow aquifer influenced by seasonal varia-
tions. The pH varies between 6.1 and 8.3, with 
an average of 7.41, indicating a slightly alkaline 
character, typical of groundwater flowing through 
carbonate terrain.

Heavy metal analysis reveals worrying aver-
age concentrations of lead (0.129 mg/L) and cad-
mium (0.027 mg/L), which are significantly high-
er than WHO standards (2022) and Algerian stan-
dards (JORADP, 2011). These pose serious health 
risks, particularly for vulnerable populations such 
as children and pregnant women. These met-
als are toxic even at low concentrations and are 
known to affect the nervous system, kidneys, and 
bone metabolism. The other metals analyzed (Cr, 
Ni, Zn, Fe) have average concentrations below 
regulatory thresholds, although Fe and Zn, while 
not toxic at these levels, can cause organoleptic 
discomfort (metallic taste, discoloration, depos-
its). The descending order of average heavy metal 
content in groundwater was as follows: Pb > Fe > 
Zn > Cr > Cd > Ni. 

Analysis of Pearson’s correlation matrix (Ta-
ble 2) revealed a negative correlation between pH 
and heavy metals, suggesting that slightly acidic 
conditions promote the solubility and mobil-
ity of metals, resulting in higher concentrations 
in groundwater. This relationship confirms that 
pH variations play a key role in the distribution 
of metals in the aquifer studied. Furthermore, 
the strong positive correlations between several 
heavy metals, notably Pb, Cd, Cr, Zn, and Fe, in-
dicate a possible common origin or similar mo-
bilization mechanisms. Given the hydrochemical 
context and human land use, this association rein-
forces the hypothesis of a predominantly anthro-
pogenic origin, particularly industrial or urban. 

The high presence of Pb and Cd above regu-
latory thresholds, combined with their significant 
correlations with other metals, suggests a worry-
ing environmental and health risk. These results 
underscore the need to implement urgent mitiga-
tion measures, including the identification of con-
tamination sources, regular monitoring of water 
quality, and targeted corrective actions.

In order to further this analysis and better un-
derstand the mechanisms of distribution and asso-
ciation of heavy metals in the groundwater of the 
Soummam watershed, a PCA was performed. This 
multivariate statistical approach makes it possible 
to identify the dominant factors responsible for 
the observed chemical variability, highlighting 
groups of metals influenced by common geogenic 
or anthropogenic processes. Principal component 
analysis (PCA) made it possible to synthesize the 
variability of the data into two main factors, ac-
counting for 59.80% of the total variance. The 
principal components selected are those with 
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eigenvalues greater than 1, in accordance with 
Kaiser’s criterion, in order to ensure a meaningful 
explanation of the variance in the data (Table 5). 
The first principal component (PC1), explaining 
45.65% of the total variance, is strongly correlated 
with heavy metals (Zn, Pb, Cr, Fe, Cd) and tem-
perature (Table 6). The associated factor loadings 
are as follows: Zn (0.88), Pb (0.87), Cr (0.81), 
Fe (0.78), Cd (0.70) and temperature (0.62). This 
configuration suggests a predominantly anthro-
pogenic origin, potentially linked to industrial 
activities, road traffic and urban discharges. The 
presence of temperature as a correlated variable 
can be explained by its catalytic effect on the solu-
bility of metals and their mobility in the aquifer. 
It could also accentuate their dispersion by pro-
moting their diffusion through hydrogeologically 
permeable areas. The second principal component 
(PC2), representing 14.15% of the total variance, 
is dominated by high factor loadings for electri-
cal conductivity (-0.83), nickel (-0.70), and pH 
(0.51). This component reflects the predominant 
influence of natural geochemical processes, par-
ticularly groundwater mineralization linked to the 
dissolution of source rocks and the mineralogi-
cal composition of the basin. The strong negative 
correlation with EC suggests chemical variability 
structured by geogenic factors. Ni, which is also 
highly loaded, could come from natural sources, 
including erosion or weathering of Ni-rich rocks. 
However, an anthropogenic contribution can-
not be ruled out, particularly through the use of 

phosphate fertilizers or other agricultural inputs. 
This factor thus illustrates the interaction between 
natural (geogenic) sources and localized anthro-
pogenic inputs linked to agricultural practices.

The relationships between the variables based 
on the first two factors are illustrated in Figure 3.

The projection of variables on the factorial 
plane confirms a clear separation between them: 
heavy metals (Zn, Pb, Cr, Fe, and Cd) and tem-
perature are grouped together on PC1, confirming 
that they have a common source (anthropogenic 
pollution), while CE and Ni are clearly separated 
on PC2. pH appears isolated because it does not 
strongly load a single factor; it acts directly on 
several parameters, reflecting its cross-cutting 
and modulating role in chemical processes, nota-
bly influencing the solubility, mobility, and spe-
ciation of heavy metals. 

Hierarchical classification analysis grouped 
the 135 samples into two distinct clusters (Fig-
ure 4), with significant differences in chemical 
composition, thus verifying and complementing 
the PCA results. The first group (Cluster 1) com-
prised 66.67% of the samples, had a high aver-
age electrical conductivity (1125.26 µS/cm) and 
maximum concentrations of Cd (0.26 mg/l), Cr 
(0.16 mg/l) and Fe (0.68 mg/l). This group in-
cludes water samples that share similarities in their 
heavy metal content, influenced by sources of in-
tense anthropogenic pollution. The second group 
(Cluster 2) occupied 33.33% of the samples, with 
moderate average electrical conductivity (648.36 

Figure 3. PCA results showing chemical variables in the factorial plane
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µS/cm). This group of samples recorded the high-
est Ni concentrations (0.36 mg/l), which could 
be the result of the alteration of Ni-rich rocks. It 
may also be influenced by physicochemical pa-
rameters such as pH and conductivity. This indi-
cates that mineralization, associated with acid-
base conditions, plays an important role in the 
dispersion of nickel in groundwater. This group 
may reflect groundwater with a different chemi-
cal signature, whose quality is mainly controlled 
by specific natural or anthropogenic geochemical 
processes. These intergroup differences validate 
the observations from the PCA.

Analysis of the results of the Cdeg and HEI 
groundwater pollution indices (Table 7) has made 
it possible to clearly differentiate between the two 
clusters identified in the Soummam watershed. 
Cluster 1 has particularly high values, with a Cdeg 

of 1391.3 and an HEI of 1931.3, reflecting a criti-
cal groundwater contamination situation. This pol-
lution is dominated by excessive concentrations of 
Pb, Cd, and other heavy metals, probably resulting 
from anthropogenic activities such as industrial dis-
charges, mining, or intensive use of fertilizers and 
pesticides in agriculture. In contrast, Cluster 2, al-
though still affected, shows moderate pollution with 
Cdeg and HEI values of 539.83 and 1199.14, respec-
tively. This situation suggests the presence of more 
diffuse or less concentrated sources of pollution, 
and potentially moderate dispersion of contami-
nants by natural processes. These results highlight 
the need for differentiated interventions. Cluster 1 
requires immediate corrective measures, including 
the identification and control of point sources of 
pollution, as well as improved water quality moni-
toring. At the same time, preventive measures and 

Figure 4. Hierarchical clustering results for groundwater samples

Table 5. Factor analysis of groundwater data. Significant factors (> 1) are shown in bold
Component Eigenvalues % of variance Cumulative %

1 4.11 45.65 45.65
2 1.27 14.15 59.80
3 0.96 10.62 70.41

4 0.79 8.78 79.19

5 0.64 7.09 86.28

6 0.44 4.86 91.14

7 0.38 4.25 95.39

8 0.24 2.65 98.035

10 0.18 1.97 100
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continuous monitoring should be considered in ar-
eas corresponding to Cluster 2 in order to limit the 
worsening of contamination and preserve the qual-
ity of groundwater resources in the long term. 

In order to better understand the potential ef-
fects of heavy metals in groundwater on human 
health, a health risk assessment was conducted. 
We determined the daily exposure doses (Table 8), 
taking into account three main routes (ingestion, 
skin contact, and inhalation), thus covering all 
possible modes of transfer of contaminants to the 
body. In addition, the study was conducted on five 
distinct age groups, representing different physi-
ological sensitivities: (0–6 years), (7–15 years), 
(16–25 years), (26–50 years), and (˃ 50 years). 
This stratification makes it possible to identify the 
most vulnerable groups and to adapt risk manage-
ment measures according to the exposure profile 
specific to each population category.

The results obtained reveal significant vari-
ability in heavy metal exposure levels depending 
on age group and route of exposure. Young chil-
dren aged 0 to 6 appear to be the most vulnera-
ble group, with the highest exposure levels, par-
ticularly through oral exposure. The estimated 

daily doses for this group reach 2.73 mg/kg/day 
for Pb and 1.92 mg/kg/day for Fe, values that 
are considered concerning in terms of toxicity 
thresholds. This increased exposure is explained 
by their low body weight, their relatively high 
water consumption in relation to their mass, 
and their still-developing metabolic system. A 
gradual decrease in exposure doses is observed 
with advancing age, with adults and the elder-
ly showing significantly lower levels. For all 
groups studied, the estimated average exposure 
doses through ingestion (Exping), skin contact 
(Expderm), and inhalation (Expinh) were in the fol-
lowing order: Pb > Fe > Zn > Cr > Cd > Ni. The 
results highlight the predominance of lead and 
iron in overall contributions to risk through in-
gestion, while cadmium, chromium, and nickel, 
although present in lower concentrations, pose 
potential long-term threats due to their cumula-
tive toxicity. The analysis thus highlights a clear 
hierarchy of risks, both in terms of age and type 
of metal, and fully justifies the choice of a multi-
pathway and multi-group assessment to compre-
hensively understand the health impacts associ-
ated with groundwater contamination. 

Table 6. Rotation of the component matrix
Variables Component 1 Component 2 Communalities

T° 0.62 -0.05 0.39

EC 0.09 -0.83 0.70

pH -0.51 -0.33 0.37

Pb 0.87 0.09 0.76

Cd 0.70 0.13 0.51

Cr 0.81 0.18 0.69

Ni 0.21 0.70 0.54

Zn 0.88 -0.91 0.79

Fe 0.78 0.21 0.65

Table 7. Description of pollution assessment indices for selected heavy metals (mg/l) in groundwater samples

Parameter MAC 
 Cluster 1 Cluster 2 

Mean HEI Cdeg Mean HEI Cdeg 

Pb 0.01 0.12 1045.54 955.54 0.15 693.79 648.79 

Cd 0.003 0.03 804.6 714.6 0.03 432.57 -1.74 

Cr 0.05 0.03 44.71 -45.29 0.03 30.52 -14.48 

Ni 0.07 0.01 12.36 -77.64 0.04 23.74 -21.26 

Zn 3 0.04 1.14 -88.86 0.05 0.70 -44.30 

Fe 0.3 0.08 22.95 -67.05 0.12 17.82 -27.18 

∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 Cdeg   1931.3 1391.3  1199.14 539.83 
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The non-carcinogenic risk assessment pa-
rameters associated with heavy metals detected 
in groundwater in the Soummam watershed were 
estimated for the three exposure routes and for 
the five defined age groups. Table 9 presents de-
tailed calculations of the hazard quotient (HQ) 
and the non-carcinogenic risk index (HI). The 
results highlight that ingestion is the main route 
of exposure for all population groups, with HI-
ing values significantly higher than those for der-
mal (HIderm) and inhalation (HIinh) routes. Among 
children aged 0 to 6, the risk is particularly wor-
rying, with an HIing index reaching 29.8, well 
above the safety threshold of 1, indicating an 
extremely high health risk. Although this trend 
remains observable in other age groups, the in-
tensity of the risk decreases gradually with age. 
All heavy metals assessed contributed, to vary-
ing degrees, to the total risk through ingestion. 
The descending order of contribution to HIing is 
as follows: Ni > Zn > Fe > Pb > Cr > Cd. Nickel 
(Ni) stands out as the main contributor to chronic 
non-carcinogenic risk, due to its high cumulative 
toxicity and significant presence. Skin exposure, 
although secondary, is not negligible, particular-
ly in children (HIderm = 6.72 × 10⁻³), while in-
halation exposure remains marginal, with HIinh 

values ranging from 10⁻⁴ to 10⁻⁹, suggesting a 
negligible health impact. 

Furthermore, the assessment of the carcino-
genic risk associated with heavy metals (Table 
10) shows that all populations studied have a risk 
level above the critical threshold of 10-4, suggest-
ing significant exposure to potentially carcino-
genic substances. The risk is particularly high in 
young children (0–6 years old), with a cumula-
tive value reaching 4.75, reflecting high biologi-
cal vulnerability. Cd appears to be the main car-
cinogen, followed by Ni, while Pb and Cr pres-
ent more moderate risks. The gradual decrease in 
risk observed with age could be explained by a 
relative decrease in exposure and a high capacity 
for toxin elimination. 

As these values exceed the safety thresholds 
set by health agencies, it is crucial to implement 
preventive measures to reduce exposure to sourc-
es of contamination, particularly among the most 
vulnerable populations. In order to strengthen 
the robustness of this assessment, a Monte Carlo 
simulation was performed to estimate non-car-
cinogenic risks using a probabilistic approach. 
The results (Figure 5) confirm that ingestion of 
contaminated water remains the main route of 
risk, with HI values significantly above 1 in all 

Table 8. Daily exposure by ingestion, dermal and inhalation routes in five populations
Heavy 
metal 

(0–6) (7–15) (16–25) (26–50) ˃ 50 

Exping Expderm Expinh Exping Expderm Expinh Exping Expderm Expinh Exping Expderm Expinh Exping Expderm Expinh 

Pb 2.73 4.99E-4 6.36E-10 1.03 1.89E-4 2.41E-10 0.66 1.21E-4 2E-10 0.56 1.03E-4 1.7E-10 0.55 9.99E-5 1.65E-10 

Cd 0.58 1.07E-4 1.36 E-10 0.22 4.03E-5 5.13 E-11 0.14 2.57 E-5 4.26 E-11 0.12 2.19 E-5 3.63 E-11 2.34E-
12 2.13 E-5 3.53 E-

11 

Cr 0.59 1.08E-4 1.37E-10 0.22 4.09E-5 5.2E-11 0.14 2.61E-5 4.31E-11 0.12 2.22E-5 3.68E-11 0.12 2.16E-5 3.58E-
11 

Ni 0.4 7.26E-5 9.24E-11 0.15 2.75 E-5 3.5E-11 0.1 1.75 E-5 2.9E-11 0.08 1.49E-5 2.47E-11 0.08 1.45E-5 2.4E-11 

Zn 0.87 1.58E-4 2.02E-10 0.33 5.99E-5 7.63E-11 0.21 3.82E-5 6.33E-11 0.18 3.26E-5 5.4E-11 0.17 3.17E-5 5.24E-11 

Fe 1.92 3.51E-4 4.47E-10 0.73 1.33E-4 1.69E-10 0.46 8.48E-5 1.4E-10 0.4 7.23E-5 1.2E-10 0.38 7.02E-5 1.16E-
10 

 

Table 9. Results for hazard quotient HQ and hazard index HI (non-cancer risk)
Para-
meter 

(0–6) (7–15) (16–25) (26–50) ˃ 50 

HQing HQderm HQinh HQing HQderm HQinh HQing HQderm HQinh HQing HQderm HQinh HQing HQderm HQinh 

Pb 1.95 1.19E-3 4.54E-11 7.4E-1 4.5E-4 1.72E-11 5.3E-1 2.87E-4 1.43E-11 4E-1 2.45E-4 1.22E-11 3.9E-1 2.38E-4 1.18E-11 

Cd 1.17 5.33E-4 2.71E-10 4.4E-1 2.02E-4 1.03E-10 2.8E-1 1.29E-4 8.51E-11 2.4E-1 1.1E-4 7.26E-11 2.3E-1 1.07E--4 7.05E-11 

Cr 1.18 3.36E-4 2.4E-5 4.47E-1 1.36E-4 1.73E-11 2.85E-1 8.69E-5 1.44E-11 2.43E-1 7.41E-5 1.23E-11 2.36E-1 7.2E-5 1.19E-11 

Ni 19.86 3.63E-3 3.7E-9 7.51 1.37E-3 1.4E-9 4.79 8.76E-4 1.16E-9 4.09 7.47E-4 9.89E-10 3.97 7.26E-4 9.61E-10 

Zn 2.89 5.28E-4 5.76E-10 1.09 1.1E-4 2.18E-10 6.68E-1 6.66E-4 1.81E-10 5.95E-1 1.09E-4 1.54E-10 5.78E-1 1.06E-4 1.5E-10 

Fe 2.75 5.02E-4 1.25E-4 1.04 1.9E-4 2.11E-10 6.63E-1 1.21E-4 1.75E-10 5.65E-1 1.03E-4 1.49E-10 5.49E-1 1E-4 1.45E-10 

∑HI 29.8 6.72E-3 1.49E-4 11.27 2.46E-3 1.97E-9 7.22 2.17E-3 1.63E-9 6.13 1.39E-3 1.39E-9 5.95 1.35E-3 1.35E-9 
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age groups, particularly during childhood. On the 
other hand, the dermal and inhalation routes gen-
erate very low indices, well below the threshold 
value, confirming their negligible contribution to 
overall exposure. These results call for preven-
tive efforts to focus on reducing the risks associ-
ated with ingestion, in particular by controlling 
sources of pollution and improving groundwater 
treatment systems used for domestic purposes.

In parallel with the assessment of non-carci-
nogenic risks, a Monte Carlo simulation was also 
used to estimate the CR associated with exposure 
to heavy metals present in groundwater (Figure 
6). The results obtained reveal that all age groups 
studied present a risk level above the critical 
threshold of 10-4, which reflects a worrying situa-
tion in terms of health. Once again, children aged 
0 to 6 appear to be the population most likely 
to be affected, with their risk distribution curve 
(CR) clearly differing from those of other groups 
due to significantly higher values, linked to their 
physiological immaturity, relatively high water 
consumption, and reduced detoxification capac-
ity. The estimated risk decreases gradually with 

age, with individuals over 50 showing the lowest 
levels, reflecting lower exposure or more effec-
tive metabolic defense mechanisms. The marked 
separation between the distributions of the differ-
ent age groups highlights significant variations in 
exposure profiles, underscoring the need for in-
depth investigation of potential sources of con-
tamination. These results reinforce the call for 
the implementation of targeted prevention strate-
gies, particularly measures to reduce exposure to 
carcinogens in children. Particular efforts should 
be focused on limiting risks through ingestion, 
identified as the main route of contamination, by 
improving control of drinking water sources, op-
timizing treatment, and raising awareness among 
at-risk populations.

The results obtained in this study are fully in 
line with the research conducted at the national and 
international levels on groundwater contamination 
by heavy metals. At the local level, several previ-
ous studies in the sub-basins of the Soummam wa-
tershed corroborate our observations. Bouguerra et 
al. (2023) reported high concentrations of lead in 
the Soummam plain, attributed to anthropogenic 

Table 10. Carcinogenic risk (CR) of heavy metals by the oral route
Populations (0–6) (7–15) (16–25) (26–50) ˃ 50 

Pb 0.23 0.09 0.06 0.05 0.05 

Cd 3.54 1.34 0.85 0.73 1.43E-11 

Cr 0.30 0.11 0.07 0.06 0.06 

Ni 0.68 0.26 0.17 0.14 0.14 

∑𝐶𝐶𝐶𝐶 4.75 1.8 1.15 0.98 0.25 

 

Figure 5. Monte Carlo simulation of non-carcinogenic risks
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sources, while Nasiruddin et al. (2023) identified 
cadmium contamination in the Bousselam sub-ba-
sin, reflecting similar conditions to those observed 
in our study. Khoudja et al. (2022) and Bekhti et 
al. (2020) also highlighted a dominant influence of 
human activities and geogenic inputs on the dis-
tribution of heavy metals in the Sahel and lower 
Soummam sub-basins through the application of 
multivariate methods. Moreover, Ouahrani et al. 
(2022) observed particularly high pollution indices 
(Cdeg and HEI) in the intensely exploited areas of 
the lower Soummam, which reinforces the valid-
ity of the critical levels noted here. Moreover, the 
levels of non-carcinogenic risk detected in children 
are consistent with those reported by Lammari and 
Daghi (2021) in the lower Soummam, although our 
results reveal an increased severity of carcinogenic 
risks, with values exceeding the critical threshold 
in all age groups.

These findings also resonate on an interna-
tional scale. Jahan et al. (2025), in the Ganges ba-
sin in India, applied a combination of PCA, MLR, 
and Monte Carlo simulation, highlighting multi-
ple contributions from anthropogenic sources and 
high health risks among young populations. Shi 
et al. (2022), in China, demonstrated that heavy 
metals present in Hainan aquifers, notably Cr, Cd, 
and Pb, also pose significant carcinogenic risks, 
while Kumar and Maurya (2025) observed con-
cerning exposure to aluminum, iron, nickel, and 
lead in the State of Bihar.

In summary, this study stands out for its in-
tegrated approach combining comprehensive 
spatial coverage of the Soummam watershed, a 
detailed multi-path and multi-age group assess-
ment, the use of a complete and multidisciplinary 
methodology, combining hydrochemical analysis, 
multivariate statistics, pollution indices, health 
risk assessment, and probabilistic modeling.

It thus offers a complete and unprecedented 
vision of the dynamics of contamination and its 
health implications, making it a reproducible 
model for other regions facing similar environ-
mental pressures, while enriching the interna-
tional scientific corpus in the field of sustainable 
management of groundwater resources.

CONCLUSIONS

This study provides a thorough and inte-
grated assessment of groundwater quality in the 
Soummam watershed, emphasizing heavy metal 
contamination, its potential sources, and associ-
ated health risks. The results reveal alarming av-
erage concentrations of Pb and Cd, which exceed 
both national and international drinking water 
standards. These exceedances underscore the 
growing environmental and public health chal-
lenges posed by rapid urbanization, industrial 
activities, and agricultural practices in the re-
gion. Through to the application of multivariate 

Figure 6. Monte Carlo simulation of carcinogenic risks
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statistical methods (PCA and CAH), the com-
bined influence of anthropogenic and geogenic 
sources, such as the natural weathering of geo-
logical formations, has been clearly identified. 
This approach not only highlights the dominant 
sources of contamination but also confirms the 
value of statistical tools in hydrogeochemical 
investigations. The pollution indices (HEI and 
Cdeg) further indicate the presence of critical 
contamination hotspots, particularly in urban-
ized and industrialized areas. The health risk as-
sessment, which considered three exposure path-
ways (ingestion, dermal, inhalation) and five age 
groups of the population, demonstrated that chil-
dren aged 0 to 6 years are the most susceptible to 
both carcinogenic and non-carcinogenic effects, 
largely due to their higher water consumption 
relative to their body weight and their physiolog-
ical sensitivity. The application of Monte Carlo 
simulations has enhanced the reliability of these 
risk estimates by accounting for uncertainties in 
exposure parameters, providing a robust probabi-
listic assessment of health risks. The originality 
and scientific value of this study lie in its holistic 
approach, which integrates full spatial coverage 
of the Soummam basin with advanced statistical 
tools, exhaustive pollution indices, quantitative 
assessment of health risks, and the use of the 
probabilistic Monte Carlo method. This method-
ology ensures a precise and multidimensional un-
derstanding of groundwater quality, making it an 
effective model for regions facing similar envi-
ronmental pressures and public health risks. The 
results not only provide a diagnosis of current 
contamination levels but also offer strategic per-
spectives for groundwater management and risk 
reduction. Looking forward, several research and 
management strategies should be prioritized to 
build on these results. Long-term spatiotemporal 
monitoring of groundwater quality is necessary 
to detect seasonal or interannual variations and 
better understand the dynamics of contamination. 
Expanding the scope of the analysis to include 
microbiological contaminants and emerging pol-
lutants, such as pharmaceuticals and pesticides, 
would lead to a more comprehensive health risks 
assessment. The application of geospatial model-
ing techniques, such as GIS and remote sensing, 
could further refine the identification of pollu-
tion sources, track their dispersion patterns, and 
support predictive modeling of contamination 
trends. Additionally, evaluating the effectiveness 
of local water treatment technologies would help 

develop tailored solutions to reduce heavy metal 
concentrations and improve water safety. Finally, 
this research highlights the importance of a par-
ticipatory approach involving local authorities, 
decision-makers, public health agencies, and 
economic actors. Collaborative efforts are essen-
tial to transform scientific findings into practical 
management strategies and policies, ensuring 
sustainable water resources governance and the 
protection of vulnerable populations. The results 
of this study thus serve both as a scientific foun-
dation and a call to action for integrated water 
management and environmental protection in the 
Soummam watershed and beyond. 
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