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ABSTRACT

The studied with efficiency of bacterial cellulose (BC) combined with chitosan (CS) and ethylenediaminetetraace-
tic acid (EDTA) for the absorption of heavy metals, focusing on lead (Pb) and cadmium (Cd). The CS and EDTA
were deposited on the BC under 12 different conditions. A physical analysis was performed using scanning elec-
tron microscopy, the chemical structure was determined using Fourier-transform infrared spectroscopy (FTIR),
and a heavy metal analysis was conducted using inductively coupled plasma—optical emission spectroscopy. Mini-
mal differences were observed in the FTIR spectra of the BC mixed with CS or EDTA and the BC mixed with CS
and EDTA, the major spectral groups identified being C=C, C=0, C-H, and —-NH,. The adsorption efficiencies of
the Pb and Cd were found to be 2.89 £ 1.69 and 1.07 = 0.086 mg kg!, respectively, for the BC combined with CS
at aratio of 1:1.25 volume per weight unit (v/w). This led to a significantly higher adsorption of Pb (p < 0.05) than
under any other condition. For the BC combined with CS at a ratio of 1:5 v/w, Cd was absorbed more high signifi-
cantly (p < 0.05) than under any other condition. The results of this study address several sustainable development
goals (SDGs) related to the environment and human quality of life, including SDGs 3, 6, 9, 14, and 15. However,
this study is only preliminary, and the most appropriate conditions need to be further developed to be applicable
to real-world environments.
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INTRODUCTION al., 2021; Zeng et al., 2021; Jose et al., 2025) and is
synthesized by various bacterial species, the most

Bacterial cellulose (BC) is a natural form of cel- notable producers being Kamagataeibacter, Agra-

lulose produced or synthesized by bacteria (Zhong,
2020; Deshpande et al., 2023; Potoc¢nik et al., 2023).
Bacterial cellulose is used in diverse fields, such as
biomedicine, the food industry, materials science
and engineering, the cosmetics industry, and the
textile industry, and has environmental applications
(Augimeri et al., 2015; Picheth et al., 2017; Ul-Is-
lam et al., 2020; Wahid et al., 2021; Pendey et al.,
2024; Absharina et al., 2025). Bacterial cellulose
consists of an ultra-fine network of cellulose nano-
fibers approximately 3—8 nm (Saavedra-Sanabria et
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bacterium, Rhizobium, Gouconacetobacter, and
Sarcina (Krishnamachari et al., 2011; Costa et al.,
2017; Lahiri et al., 2021).

The BC from Komagataeibacter intermedius
BEO073, isolated from bio-extracts during fruit
fermentation (Singhaboot et al., 2022, 2023), has
been shown to hold water up to an average of
91.15+£3.68% and has a water absorption index
averaging 5.305 (Luo et al., 2018; Kroeksakul et
al., 2023). Based on its ability to accumulate and
absorb large amounts of liquids, it was found that if
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BC was supplemented with an adsorption aid, such
as chitosan (CS) or ethylenediaminetetraacetic
acid (EDTA) (Jia et al., 2017; Strnad and Zemlji¢,
2023; Sayago et al., 2024; Fujita et al., 2025), it
could be used to store or absorb heavy metals.

Here, we focused on the heavy metals lead
(Pb) and cadmium (Cd) in relation to Thailand,
which has suffered mine collapses that have led
to Pb leaking into natural water sources (Phupin-
yokul, 2001; Pongboonjun and Trong-ngam, 2021)
and problems with the removal of Cd from waste
(Songpasert et al., 2016; Inthawan and Chunnual,
2017). Consequently, we aimed to study the ef-
ficiency of BC combined with CS and EDTA for
the absorption of heavy metals, with a future goal
of developing products for use in real-world situ-
ations. This study supports Sustainable Develop-
ment Goal 6 (SDG6), relating to clean water and
sanitation, because it addresses pollution in natural
water sources, key goals being access to clean wa-
ter and sustainable water management. It is also re-
lated to SDG12, focusing on responsible consump-
tion and production through the management and
treatment of toxins in the environment, increasing
efficiency from agricultural waste materials to add
more value, and developing products to treat envi-
ronmental pollution in the future, which is one of
the components of the BCG model.

METHODOLOGY
Producing bacterial cellulose

Production of the K. intermedius BE073 iso-
late, taken from a village in Nakhon Nayok prov-
ince, Thailand (Singhaboot et al., 2022), involved 3
kg of fruit, 3 kg of sugar, and 5 L of water, the mix-
ture fermented in covered containers (Kroeksakul
et al., 2023). After approximately 2—3 months, BC
develops on the surface of the bio-extract, as illus-
trated in Figure 1A. The yield amount is propor-
tional to the width of the container (Figure 1C). Af-
ter harvesting the BC, an energy source (e.g., fruit)
is added to the bacteria. Here, mango was used as
the energy source (Figure 1B).

After harvesting, the BC was cleaned by wash-
ing it in water before moving it to the laboratory.
There, it was purified by boiling in 0.5 M sodium
hydroxide (NaOH) at temperatures of 120-150°C
for approximately 1-2 h (Robelo et al., 2017; El-
Gendi et al., 2022). The BC was then centrifugated
at speeds of approximately 45,000-50,000 rpm to

Figure 1. Illustration of stages in the preparation
of the BC

remove the moisture, using a Silver Crest blender
(2 L, 4.500 W; Thailand), before being crushed to
a powder and mixed with the CS and EDTA, using
a food mixer (imaflex IF-163; Japan).

The BC was then combined with CS under
three conditions: (1) 1 L BC + 0.625, 1.25, 2.5,
and 5 g CS (ratios of 1:0.625, 1:1.25, 1:2.5, and
1:5 volume per weight unit [v/w] [L g']); (2) 1 L
BC + 0.625, 1.25, 2.5, and 5 g EDTA (ratios of
1:0.625, 1:1.25, 1:2.5, and 1:5 v/w [L g']); and
(3) 1 LBC +0.625, 1.25,2.5, and 5 g CS+EDTA
(ratios of 1:0.625:0.625, 1:1.25:1.25, 1:2.5:2.5,
and 1:5:5 v/w [L g']). These conditions are pre-
sented in Table 1, and illustrations of the different
samples are presented in Figure 2.

The average moisture of the BC was 96.0
(£1.01)%, which corresponds to the general hu-
midity level of BC (Cazén et al., 2020; Bodea et
al., 2021). The BC+EDTA at 1:2.5 had a moisture
percentage that was less than significant (p < 0.05)
relative to the other conditions, while the BC+CS
at 1:5 had a significant moisture percentage (p <
0.05) relative to the other conditions, as shown in
Table 1. After making the different BC mixtures,
a BC mixed volume of 60 mL was pouring onto
a plate, smeared, and left in the sun to dry. The
characteristics of the BC mixtures after drying are
presented in Figure 3.

The selected ratios aimed to investigate the
extent to which EDTA can effectively bind to bac-
terial cellulose and chitosan tissue components,
hence enhancing attributes such as microbiologi-
cal activity and heavy metal adsorption (Rostami
et al., 2023; Kaczorowska and Bozejewicz, 2024;
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Table 1. Conditions of the BC mixed with CS and EDTA

Sample Condition viw (L g™) Moisture content (%) Sample code
1 BC+CS 1:0.625 96.4(+0.216)? A
2 BC+CS 1:1.25 96.3(+0.119)2 B
3 BC+CS 1:2.5 96.8(+0.335)2 C
4 BC+CS 1:5 97.1(+0.425)° D
5 BC+EDTA 1:0.625 95.5(+0.825)* E
6 BC+EDTA 1:1.25 96.4(+0.283)? F
7 BC+EDTA 1:2.5 94.5(x1.99)° G
8 BC+EDTA 1:5 95.9(+0.853)” H
9 BC+CS+EDTA 1:0.625:0.625 96.1(x1.07)° |
10 BC+CS+EDTA 1:1.25:1.25 95.3(+0.877) J
11 BC+CS+EDTA 1:2.5:2.5 96.4(+0.632)? K
12 BC+CS+EDTA 1:5:5 95.4(+0.839)* L

Average 96.0(+1.01)

Note: *¢ difference significant at p < 0.05 (honest significant difference [HSD]).

Figure 2. Different BC conditions. Sample codes A—L refer to the conditions before drying, as provided in Table 1

Begum et al., 2024). However, the crucial aspect
is the equilibrium between performance and mate-
rial characteristics. Lower ratios (about 1:0.625)
facilitate the evaluation of the minimum quantity
of EDTA necessary, whilst larger ratios (up to 1:5)
enable the assessment of the impact of surplus
EDTA on attributes such as durability, flexibility,
or microbiological efficacy (Bhandary et al., 2017;
Pinheiro et al., 2021). These ratios are frequently
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derived from previous research indicating that this
range yields substantial results while maintaining
the composite’s durability, in addition to serving
as an experimental range for identifying the ideal
value. Examining a broad spectrum of ratios fa-
cilitates the determination of the ideal CS/EDTA
ratio for achieving specific attributes, such as peak
cross-linking capability or microbiological effi-
cacy, while ensuring material stability.
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Figure 3. Different BC conditions. Sample codes A—L refer to the conditions after drying, as provided in Table 1

Fourier-transform infrared spectroscopy

The chemical structure of the films was ana-
lyzed using Fourier-transform infrared (FTIR)
spectroscopy, using a SpectrumTwo (Perkin El-
mer, USA) FTIR instrument in the region 4.000—
500 cm™' at a spectral resolution of 4 cm™'.

Characterization of the BC film surface
morphology

The surface morphology of all the BC films
was recorded using scanning electron microscopy
(SEM) (JSM-6610, JEOL Ltd., Japan). The film
was coated with gold before examination and ex-
amined at an accelerating voltage of 15 kV.

Heavy metal analysis

The BC from K. intermedius BE0O73 absorbs
reagents optimally after 120 min (Kroeksakul
et al., 2023). Thus, in our experiments, 1.5 g of
BC (all mixtures) was soaked for 120 min in Pb
and Cd solutions at concentrations of 10 ppm,
after which the samples were air dried. Samples
(0.5 g) were digested in pure reagents (12 ml),
including nitric acid (HNO,), hydrofluoric acid

(HF), and hydrochloric acid (HCI), at a ratio of
2:1:1, using a TANK ECO microwave diges-
tion/extraction band Hanon (SINEO, Shang-
hai, China) to produce samples for inductively
coupled plasma—optical emission spectroscopy
(ICP-OES) analysis (PlasmaQuant 9100 series,
Germany). Quality assurance and quality control
procedures ensured that all 20 samples, as well
as their duplicates and blanks, were collected,
processed, and examined to standard conditions.
These samples were compared against ICP-OES
multi-element standard solutions (AccuStan-
dard, USA). However, the reason for using a 10
ppm concentration is frequently employed in
laboratory research as it represents the levels of
concerning heavy metals in the environment, in-
cluding pollutants in contaminated water sources
(Tchounwou et al., 2012; Operacz et al., 2022).
This concentration also aligns with the detect-
ability and analytical sensitivity of ICP-OES in-
struments, thereby mitigating the risk of rapid
sample saturation or damage.

Statistical analysis

The data were analyzed using a one-way
analysis of variance and differences in the data
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were compared using the post hoc Tukey’s hon-
estly significant difference (HSD) test for p <0.05
between datasets. All analyses were conducted
using SPSS software.

RESULTS AND DISCUSSION

Morphological characterization of BC+CS

In Figure 4, Con_1 and Con_2 show the basic
structure of BC with no CS added, with the un-
modified appearance of the BC and the natural fi-
ber density being apparent. Figure 4(A1) and (A2),
in which 1:0.625 v/w CS was added, some densifi-
cation of the structure and interconnection between
the fibers was observed, which is more obvious in
Figure 4(A2). Figure 4(C1) and (C2), showing the
CS at a ratio of 1:2.5 v/w, shows a finer surface
texture, suggesting that the CS may have formed
a denser and more continuous structure. Figure
4(D1) and (D2), with CS at a ratio of 1:5 v/w, illus-
trates the highest structural density and the highest
penetration and strengthening of the CS (Rezaza-
deh et al., 2024; Cetin et al., 2025). The addition
of different amounts of CS thus significantly influ-
enced the surface structure of the BC.
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The SEM images show that increasing the ra-
tio of CS in the BC resulted in structural and sur-
ficial modifications, which are important factors
influencing heavy metal adsorption efficiency.
Understanding these structures is key to develop-
ing materials with optimal properties and perfor-
mance for environmental applications.

Morphological characterization of the
BC+EDTA

As shown in Figure 5, Con 1 has a relatively
smooth and hard surface, whereas Con_2 clearly
has cavities and a fibrous structure, depending on
the magnification used. In Figure 5(E1), the fiber
structure appears complex and systematic, and
differences in the structure were noted. In Figure
5(E2), the details of the fine structure are clearer.
Figure 5(F1) has a fiber structure that is smooth
and simple, but an increasing concentration may
cause the structure to deteriorate or become harder.
Figure 5(F2) shows fibers with thinner and more
complex structures. In Figure 5(G1) the structure
appears complex and orderly and the fibers are
higher in number and resolution. In Figure 5(H1),
the structure appears to be degraded, potentially

“
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Figure 4. Morphology of BC+CS. (Con_1) BC with no addition at 1.500x magnification; (Con_2) BC with no
addition at 8.000x magnification; (A1) BC+CS at 1:0.625 v/w, 1.500 x magnification; (A2) BC+CS at 1:0.625
v/w, 8,000x magnification; (B1) BC+CS at 1:1.25 v/w, 1.500x magnification; (B2) BC+CS at 1:1.25 v/w, 8,000x
magnification; (C1) BC+CS at 1:2.5 v/w, 1.500x magnification; (C2) BC+CS at 1:2.5 v/w, 8.000x magnification;
(D1) BCHCS at 1:5 v/w, 1.500x magnification; and (D2) BC+CS at 1:5 v/w, 8.000x magnification
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Figure 5. Morphology of BC combined with EDTA. (Con_1) BC with no additions at 1.500x magnification;
(Con_2) BC with no additions at 8.000x magnification; (E1) BC+EDTA at 1:0.625 v/w, 1.500x magnification;

(E2) BC+EDTA at 1:0.625 v/w, 8.000x magnification; (F1) BC+EDTA at 1:1.25 v/w, 1.500x magnification;
(F2) BC+EDTA at 1:1.25 v/w, 8.000x magnification; (G1) BC+EDTA at 1:2.5 v/w, 1.500x magnification; (G2)

BC+EDTA at 1:2.5 v/w, 8.000x magnification; (H1) BC+EDTA at 1:5 v/w, 1.500x magnification; and (H2)

BC+EDTA at 1:5 v/w, 8.000x magnification
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Figure 6. Morphology of BC combined with CS and EDTA. (Con_1) BC with no additions at 1.500x
magnification; (Con_2) BC with no additions at 8.000x magnification; (I1) BC+CS+EDTA at 1:0.625:0.625
v/w, 1.500x magnification; (I12) BC+CS+EDTA at 1:0.625:0.625 v/w, 8.000x magnification; (J1) BC+CS+EDTA
at 1:1.25:1.25 v/w, 1.500x magnification; (J2) BC+CS+EDTA at 1:1.25:1.25 v/w, 8.000x magnification;
(K1) BC+CS+EDTA at 1:2.5:2.5 v/w, 1.500x magnification; (K2) BC+CS+EDTA at 1:2.5:2.5 v/w, 8.000x
magnification; (L1) BC+CS+EDTA at 1:5:5 v/w, 1.500x magnification; and (L2) BC+CS+EDTA at 1:5:5 v/w,
8.000x magnification
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due to the highest concentration of EDTA. In
Figure 5(H2), the structure appears less complex
and less degraded, potentially being affected by
the highest concentrations of EDTA. The SEM
images helped to clarify that: (1) the addition of
EDTA at a low concentration (1:0.625) resulted
in fibrous and hollow structures, which were still
maintained to some extent; (2) increasing the con-
centration of EDTA (1:1.25, 1:2.5) produced more
complex and fine fibrous structures that influenced
the internal structure of the BC; and (3) the high-
est concentration (1:5) may cause the structure to
start deteriorating, disintegrating or degrading, the
addition of too much EDTA potentially leading to
the destruction of the structure. Indeed, EDTA is
known to be a metal and inorganic binding agent
that can alter the structure of BC, in terms of its
strength, complexity or degradation (Song et al.,
2020; Fujita et al., 2025).

Morphological characterization of
BC+CS+EDTA

In Figure 6, Con_1 and Con_2 are the control
samples (i.e., untreated BC), showing a well-pre-
served fiber network and a porous structure, con-
sidered the baseline morphology. Figure 6(11) and
(I2) show fibers with wavy, fibrous or tissue-like
features that possibly denote biological tissue or
processed fiber structures. Figure 6(J1) and (J2)
show granular features and rough surfaces with
granular particles and surface irregularities, pos-
sibly indicating degradation from the treatment.
Figure 6(K1) and (K2) show fibrous structures
with some smooth areas, the fibers sometimes
intertwined, denoting the effects of the differ-
ent treatments or different biological materials.
Figure 6(L1) and (L2) show granular and rough
regions with fibers, and granular surfaces with fi-
brous elements. In summary, it is possible to dis-
tinguish between both material degradation and
the effects of specific treatments. The SEM imag-
es in Figure 6 illustrate several significant differ-
ences relating to: (1) size and porosity, such that
the control samples (Con_1 and Con_2) mostly
present fibrous and porous structures typical of
BC; (2) surface features, where samples present
varying textures, which could be due to the dif-
ferent treatments, biological states or material
modification; and (3) magnification effects, with
higher-magnification imaging revealing finer de-
tails, such as interconnections between fibers,
surface granularity, and degradation.
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FTIR analysis

The FTIR spectra acquired from the BC
are shown in Figure 7. There is little difference
between the FTIR spectra from the BC+CS
[Figure 7(A)], BC+EDTA [Figure 7(B)], and
BC+CS+EDTA. In the FTIR spectra, the bands
at 2.925-2.930 cm™' denote the C—H stretching
vibrations of —~CH, of the hydroxymethyl group
(Schneider et al., 1979; Ghozali et al., 2021),
whereas the C=C group typically absorbs in the
region of 1.600-1.670 cm™' (Almohareb et al.,
2020), and C=0 carbonyl group in the range of
1.680-1.760 cm™ (Ellerbrock and Gerke, 2021;
Nandiyanto et al., 2023). The bands at 3.225 cm™!
are interpreted as ~NH, from primary amides,
with secondary amines appearing at 1.000-1.350
cm ! (Smith, 2019; Pasieczna-Patkowska et al.,
2025). The results of the FTIR analysis indicate
that, despite the addition of the various modifiers,
the basic structure and main functional groups of
the BC remained similar in all samples, reflect-
ing their structural stability and ability to retain
important functional groups.

Potential of BC to absorb heavy metals

The adsorption efficiencies of the heavy met-
als Pb and Cd were found to be 2.89(+1.69) and
1.07(x0.086) mg kg !, respectively. In the Pb ad-
sorption of the control samples, the average value
was 2.83(+0.259) mg kg !. The BC+CS at 1:1.25
v/w could adsorb up to 8.33(+1.30) mg kg! (i.e.,
significant levels) (p < 0.05). These data are pre-
sented in Table 2 and Figure 8(A). For Cd adsorp-
tion by the control samples, the average value
was 1.08(+0.002) mg kg', with BC+CS at 1:5
v/w adsorbing up to 1.21(+0.030) mg kg!. This
is again highly significant (p < 0.05). These data
are presented in Table 2 and Figure 8(B). The ad-
dition of CS and EDTA cause electrostatic inter-
actions with the metals and different functional
groups, such as —OH, -NH,, and -COOH (Feng et
al., 2021; Verma et al., 2022; Zhang et al., 2022).
However, although the addition of CS and EDTA
is effective for heavy metal adsorption, it must be
added in the right proportions to achieve maxi-
mum efficiency. Nevertheless, the study results
indicated no synergistic effect on heavy metal
adsorption capacity between CS and EDTA, par-
ticularly at the ratio of BC, CS, and BC at 1:5:5
L g-1, which considerably reduced heavy metal
adsorption efficiency.
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Figure 7. FTIR spectra of the BC. (A) BC+CS; (B) BC+EDTA; and (C) BC+CS+EDTA

Potential of BC+CS+EDTA to absorb heavy
metals for SDGs

Bacterial products, such as biofilm or dried
biomass, including cellulose, have advantageous
chemical properties for capturing heavy metals
such as Cd** and Pb?** (Genue et al., 2025; Ozieg-
be et al., 2025) because functional groups, such
as —COOH, —-OH, —-NH:, and —SH, on the surface

of cells or microbial products have the ability to
capture the positive charge of the metal (Gu and
Lan, 2023; Tavan et al., 2025). The addition of
CS, a natural polymer derived from chitin, which
has amino groups (Aranaz et al., 2021; Piekarska
et al., 2024) that can bind heavy metals, allows
the binding of metals through chelation and ion-
exchange mechanisms, and CS also has a porous
network structure that is suitable for use as an
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Table 2. Elemental contents under different BC conditions

Condition i cd
(mg kg™' dry weight) | (mg kg™ dry weight)
Control 2.83+0.259° 1.08+0.002%
A 1.68+0.026° 1.08+0.0012®
B 8.33+1.30° 1.18+0.0042
C 3.27+0.399 1.01+0.004%
D 2.55+0.21924 1.21£0.030°
E 1.86+0.136% 1.00£0.127%
F 2.86+0.21424 1.04+0.002%
G 2.75+0.08032 1.13+0.009%
H 2.42+0.083 1.08+0.055%
I 2.63+0.4552 1.07+0.005%
J 2.10+£0.09430¢ 1.00+0.0042¢
K 2.40+0.6013¢ 1.12+0.0062
L 1.90+0.0832 0.915+0.07¢
Average 2.89+1.69 1.07+0.086

Note: ¢ Mean is column differences significant at p
<0.05 (HSD).
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adsorbent. When mixed with bacterial products,
it increases both the surface area (Figure 4) and
the adsorption efficiency.

In addition, EDTA is a chelating agent with ex-
cellent abilities to bind several heavy metals, such
as Pb*" and copper (Cu?") (Dong et al., 2023; Gen-
ua et al., 2025), and is used to enhance the metal
binding efficiency of adsorption systems. When
combined with BC and CS, it can promote faster
and more efficient metal binding. It also helps to
move heavy metals from soils or other environ-
ments into a form that can be easily absorbed.

The use of environmentally friendly biotech-
nology for heavy metal removal has a direct link
to the targets of several SDGs (Kumar et al., 2023;
Meftah et al., 2025), including SDG3 (Good
Health and Well-being) in terms of reducing the
heavy metal contamination from water, soil, and
food, protecting human health, SDG6 (Clean Wa-
ter and Sanitation) in restoring water quality by
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Figure 8. Elemental contents under different BC conditions. (A) Pb; and (B) Cd
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safely removing heavy metals, SDG9 (Industry,
Innovation, and Infrastructure) in developing bio-
sorbent materials as a green industrial innovation,
and SDGs 14 and 15 (Life Below Water and Life
on Land) in reducing the impact of heavy metals
on aquatic and terrestrial life, including the cor-
relation of initial product forms of BC in relation
to SDG objectives.

CONCLUSIONS

The results of this study show that BC was
effective at absorbing heavy metals, especially
when CS was added to the BC at a ratio of 1:1.25
v/w, which resulted in a significant (p < 0.05) Pb
adsorption capacity. The addition of CS to BC
at a ratio of 1:5 v/w produced a significant (p <
0.05) Cd adsorption capacity. We also found that
the addition of CS to BC gave better adsorption
efficiency for Pb and Cd than the addition of just
EDTA or CS+EDTA. Adding CS to BC in dif-
ferent proportions prompted different responses
in terms of the adsorption efficiency of the dif-
ferent heavy metals. Our findings relate to SDG
targets that involve the environment and human
quality of life, including SDGs 3, 6, 9, 14, and 15.
However, this is only a preliminary evaluation of
the best ratios needed for heavy metal removal in
real-world environments.
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