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INTRODUCTION

Clean air is vital to ensuring human health and 
promoting overall well-being (Sannigrahi et al. 
2021; South Australia EPA, 2023; United Nations, 
2024). In general, polluted air is considered one of 
the primary contributors to various diseases, such 
as cardiovascular disorders, respiratory problems, 
and lung cancer. In addition, air pollution nega-
tively impacts animals and harms plant ecosys-
tems (Almetwally et al., 2020; Singh and Singh, 
2022; Thongtip et al., 2022; John et al., 2025).

Air pollution is now broadly acknowledged 
as the leading environmental risk factor, with 
certain studies suggesting that poor air quality is 
associated with nearly 20% of deaths worldwide 
(Chen et al., 2024). Air pollution represents the 
foremost environmental exposure contributing to 

global illness and death, placing fourth among all 
risk factors according to the 2019 Global Burden 
of Disease (GBD) study (Kuntic et al., 2023). 
Without substantial intervention, by 2060, ambi-
ent air pollution is expected to cause between 6 
and 9 million deaths each year (Jasiński, 2024).

Increasing human activity, particularly in the 
industrial sector, has led to rising levels of air pol-
lution (Siddiqua et al., 2022; Drahman et al., 2024; 
Nakhjiri and Kakroodi, 2024; Mohammed et al., 
2024; Taufieq et al., 2024). Industrial operations 
significantly contribute to the emission of particu-
late matter (such as PM10) and harmful gases (such 
as NO2, SO2, and CO) (Brontowiyono et al., 2022). 
Industrial processes involving fossil fuel combus-
tion, raw material processing, and other operation-
al activities release large volumes of pollutants into 
the atmosphere (Elawa and Farahat, 2022).
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The cement industry, for example, is a major 
contributor to ambient air pollution. Approxi-
mately 5% of global carbon emissions originate 
from cement production. It is estimated that the 
production of one ton of cement clinker can emit 
up to 46.7 g of dust, 1.80 kg of NOx as NO2, 
0.504 kg of SO2, among other pollutants (Al-
Zboon et al., 2021). The cement sector holds sig-
nificant importance in driving national develop-
ment and fostering economic growth. It serves as 
a key material extensively utilized in construc-
tion and infrastructure development initiatives 
(Sudhakar and Reddy, 2023). It is the most com-
mon and extensively used binding material in the 
construction industry, found in roads, housing, 
embankments, bridges, commercial buildings, 
and overpasses. Therefore, the production of ce-
ment has significantly contributed to global eco-
nomic progress, underpinning major infrastruc-
ture sectors worldwide, including construction, 
steel, petroleum, iron, and telecommunications 
(Etim et al., 2021).

The air pollution resulting from the cement 
industry poses a significant challenge, particular-
ly in developing countries, such as Indonesia. The 
growing demand for cement in Indonesia reflects 
a substantial increase, with sales forecasted to rise 
by 4.9% from the preceding year to 73 million 
tons in 2019, aligning with the intensification of 
infrastructure development at the national level 
(Pambudi et al., 2020).

As one of the largest cement producers in In-
donesia, monitoring air quality in cement industry 
areas is crucial to protect public health and the en-
vironment. However, the availability of air qual-
ity monitoring stations in several regions across 
Indonesia remains limited, making it difficult to 
obtain comprehensive air quality data. According 
to the data from IQAir (2024), there are only three 
air monitoring stations in South Sulawesi – two in 
Makassar City and one in Maros Regency.

In response to this limitation, remote sensing 
has emerged as a viable method for measuring or 
estimating air quality. Remote sensing technology 
based on satellites provides an efficient method 
for long-term air quality monitoring across differ-
ent spatial and temporal scales. The advancement 
of satellite remote sensing has made satellite 
imagery a vital tool in observing urban ecologi-
cal conditions, owing to its high spatial resolu-
tion, extensive coverage, and fast data acquisition 
(Wang et al., 2022).

Monitoring of air pollution using satellite im-
agery has been in practice since the 1970s, initi-
ated with the deployment of instruments such as 
AVHRR and GOES. Today, satellites like Senti-
nel and Landsat are widely used for evaluating air 
quality (Ghasempour et al., 2021).

As a member of the Landsat series, Landsat 
8 is frequently employed in air quality studies. It 
is equipped with two key instruments: the Opera-
tional Land Imager (OLI) and the Thermal Infra-
red Sensor (TIRS), which offer global land cov-
erage on a seasonal basis. The satellite provides 
data at spatial resolutions of 30 meters (visible, 
NIR, SWIR), 100 meters (thermal), and 15 me-
ters (panchromatic). The mission was developed 
collaboratively by NASA and the U.S. Geological 
Survey (USGS) (NASA, 2024).

Estimating air pollutant concentrations using 
Landsat 8 imagery offers the opportunity to map 
the spatial and temporal distribution of air pol-
lution around cement industry areas. However, a 
comparison between the air quality data obtained 
from both satellite and ground-based platforms is 
necessary to assess the strengths and limitations 
of each in detecting and measuring pollutant con-
centrations. This comparison may also serve as 
a foundation for developing more effective sat-
ellite-based air quality monitoring methods, es-
pecially in the areas with limited air monitoring 
infrastructure. This analysis is expected to con-
tribute meaningfully to the enhancement of air 
quality monitoring systems and efforts to mitigate 
the impacts of air pollution in Indonesia.

To evaluate and communicate the severity of 
air pollution, standardized air quality indices are 
widely used. Indonesia employs the Air Pollution 
Standard Index (ISPU), as defined in Government 
Regulation No. 22 of 2021, which categorizes air 
quality into five levels to inform the public about 
health risks. This index allows for spatial com-
parison of air quality across regions and serves as 
a critical tool for environmental management as 
well as policy-making. In the areas with limited 
monitoring stations, integrating satellite-based 
pollutant estimation with ISPU can enhance air 
quality surveillance and public health protection.

Unlike most previous studies, the novelty of 
this study lies in its dual approach: applying empir-
ically validated algorithms to estimate pollutants 
using Landsat 8 imagery, and comparing these es-
timates against ground-based measurements to as-
sess accuracy and reliability. Furthermore, by in-
corporating the Indonesian Air Pollution Standard 
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Index (ISPU), the study provides a framework for 
evaluating air quality that is both locally relevant 
and practically applicable. This approach offers 
new insights into the strengths and limitations 
of satellite remote sensing in capturing pollution 
dynamics in industrial regions where monitoring 
infrastructure remains scarce.

METHODOLOGY

Study area

The study was conducted in Pangkep Regen-
cy, South Sulawesi, Indonesia, focusing on one 
of the largest cement industry complexes in the 
country. This industrial area plays a vital role in 
national infrastructure development, but also rep-
resents a significant source of air pollution due 
to quarrying, clinker production, coal combus-
tion, and cement milling activities. The region is 
geographically located in a coastal-to-hinterland 
transition zone, characterized by limestone hills 
and surrounding residential settlements.

The cement industry in Pangkep consists of 
multiple operational units, including clay quar-
ries, limestone quarries, cement mills, coal stock-
piles, and power plants. These facilities release 
various air pollutants, notably particulate matter 

(PM10), nitrogen dioxide (NO2), sulfur dioxide 
(SO2), and carbon monoxide (CO), which can 
affect both the industrial workforce and nearby 
communities.

To capture the spatial variations in air qual-
ity, a total of 41 monitoring points were selected, 
covering both industrial zones and residential 
areas. The industrial monitoring points were lo-
cated around major emission sources, such as 
quarries, cement mills, and power plants, while 
the residential points were distributed in nearby 
villages and along main roads. The spatial distri-
bution of these points is shown in Figure 1, and 
their detailed locations are listed in Table 1.

Dataset and methods

This study employed a quantitative research 
design with a descriptive-comparative approach 
to evaluate air quality conditions around Cement 
Industry X in Pangkep Regency. The analysis 
considered PM10, NO2, SO2, and CO as target pol-
lutants, while the satellite spectral data were used 
as predictors for their estimation.

Dataset

Two primary datasets were utilized in this 
study. The first dataset consisted of Landsat 8 

Figure 1. Research location
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OLI and TIRS imagery obtained from the United 
States Geological Survey (USGS), which pro-
vides spectral information at 30 m (visible, NIR, 
SWIR), 100 m (thermal), and 15 m (panchromatic) 
spatial resolutions. Preprocessing steps included 

radiometric correction, atmospheric correction, 
and raster clipping to match the Area of Interest 
(AOI). From these images, spectral bands (blue, 
green, red, SWIR-2) and Land Surface Tempera-
ture (LST) were extracted as inputs for pollutant 

Table 1. Measurement points
Area Measurement points Code

Operational area

Bontoa Clay Quarry UA1

Tabo-Tabo Clay Quarry UA2

Bulutellue Clay Quarry UA3

Limestone Quarry UA4

Tonasa 1 Clay Quarry UA5

Packer Unit 5 UA6

Cement Mill Unit 5 UA7

Kiln Unit 5 UA8

Packer Unit 2/3/4 UA9

Cement Mill Unit 2/3 UA10

Coal Mill Unit 2/3 UA11

Kiln Unit 2/3 UA12

Coal Stock Pile Unit 2/3/4 UA13

Kiln Unit 4 UA14

Cement Mill Unit 4 UA15

Coal Stockpile Unit 5 UA16

Coal Stockpile Bontoa UA17

Batching Plant Biringere UA18

Biringkassi Coal Warehouse UA19

Biringkassi Cement Silo UA20

Biringkassi Power Plant 1 UA21

Biringkassi Power Plant 2 UA22

Central Special Wharf of Biringkassi UA23

Wharf II Biringkassi UA24

Residential area

Road near Tabo-Tabo Clay Quarry UA25

Residential Area near Tabo-Tabo Quarry UA26

Residential Area near Bulutellue Quarry UA27

Road near Bulutellue Clay Quarry UA28

Mangilu Village UA29

Road near Tonasa 1 Clay Quarry UA30

Residential Area near Tonasa 1 Clay Quarry UA31

Taraweang Village UA32

In Front of Sapanang Village Office UA33

In Front of Kampung Sela Mosque UA34

In Front of Main Office UA35

Biringere Village Office UA36

In Front of Taqwa Mosque UA37

Tonasa–Bungoro Main Road (Bontoa) UA38

Bungoro Intersection UA39

In Front of Bujung Tangaya Elementary School (Bulu Cindea) UA40

Bowong Cindea Village UA41
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estimation. The second dataset involved ground-
based measurements, consisting of ground-based 
measurements concentrations for PM10, NO2, 
SO2, and CO obtained from 41 monitoring points 
distributed across both industrial and residential 
zones (Table 1). These field data were used as 
validation for the satellite-derived estimates.

Methods

The research workflow began with the prepro-
cessing of Landsat 8 imagery, which included de-
fining the Area of Interest (AOI), raster clipping, 
as well as applying radiometric and atmospheric 
corrections to ensure data accuracy. After pre-
processing, input variables were extracted from 
the imagery, particularly the blue, green, red, and 
SWIR-2 spectral bands, as well as Land Surface 
Temperature (LST), all of which served as the ba-
sis for pollutant estimation. Pollutant concentra-
tions were then estimated by applying empirical 
algorithms that had been validated in previous 
studies, with PM10 calculated using the model 
proposed by Othman et al. (2010) (Equation 1), 
NO2 and SO2 estimated using the algorithms de-
veloped by Mahardianti et al. (2024) (Equations 2 
and 3), and CO calculated according to the model 
of Somvanshi et al. (2019) (Equation 4).

	 	 (1)

	 	 (2)

	 	 (3)

	 	 (4)

where:	β2 – blue band, β3  – green band, β4 – red 
band, β7 – SWIR 2 band, LST – Land Sur-
face Temperature

The estimated values obtained from these al-
gorithms were validated against the ground-based 
measurements collected from the 41 monitoring 
points to assess the level of agreement and identify 
potential discrepancies. Following validation, the 
data were analyzed spatially to map the distribu-
tion of pollutants across the study area. To further 
interpret the health implications of the estimated 
pollutant concentrations, the ISPU, as defined in 
Indonesian Government Regulation No. 22 of 
2021, was calculated. The index values were de-
rived using the following formula (Equation 5):

	 	 (5)

where:	 I – ISPU value for pollutant concentra-
tion C, C – actual pollutant concentration, 
Chigh, Clow – upper and lower concentration 
bounds for the ISPU category in which C 
falls, Ihigh, Ilow – corresponding upper and 
lower ISPU values for Chigh and Clow

RESULTS

This study aimed to address three main ques-
tions, namely whether Landsat 8 satellite imag-
ery can be applied to estimate concentrations of 
PM10, NO2, SO2, and CO in a cement industrial 
area, how these satellite-based estimations com-
pare with ground-based measurements, and how 
the overall air quality can be categorized using 
ISPU. The following subsections present the re-
sults in line with these research questions.

Estimation of air pollutant concentrations 
based on satellite imagery

As a basis for further analysis, the estimated 
concentrations of air pollutants derived from 
Landsat 8 imagery are first presented. The esti-
mations were obtained through empirically vali-
dated regression algorithms for PM10, NO2, SO2, 
and CO, using spectral reflectance and land sur-
face temperature (LST) as input variables. These 
results provide an initial overview of the pollutant 
levels in the study area and serve as a reference 
point for subsequent comparisons with field mea-
surements and spatial visualization.

Table 2 shows the estimated concentrations of 
PM10, NO2, SO2, and CO at 41 observation points 
representing both industrial and residential areas 
surrounding the cement production complex. The 
estimates indicate spatial variation, with high-
er pollutant concentrations generally observed 
near core industrial operations, such as quarry 
sites, cement mills, and coal-fired power plants. 
Specifically, the PM10 concentrations ranged be-
tween 4.55 and 4.56 µg/m3, NO2 between 23.59 
and 72.15 µg/m3, SO2 between 75.79 and 231.79 
µg/m3, and CO around 83.3–83.6 µg/m3. These 
values serve as the basis for further analysis, in-
cluding comparison with field measurements and 
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Table 2. Estimation of air pollutant concentrations based on satellite imagery

Area Measurement points Code
Pollutant concentrations (µg/m3)

PM10 NO2 SO2 CO

Operational area

Bontoa Clay Quarry UA1 4.550 57.06 183.30 83.56

Tabo-Tabo Clay Quarry UA2 4.551 72.15 231.79 83.52

Bulutellue Clay Quarry UA3 4.551 65.84 211.50 83.52

Limestone Quarry UA4 4.557 23.59 75.79 83.26

Tonasa 1 Clay Quarry UA5 4.551 66.88 214.83 83.53

Packer Unit 5 UA6 4.552 37.50 120.46 83.48

Cement Mill Unit 5 UA7 4.552 39.82 127.93 83.48

Kiln Unit 5 UA8 4.554 25.88 83.13 83.36

Packer Unit 2/3/4 UA9 4.553 23.88 76.71 83.46

Cement Mill Unit 2/3 UA10 4.552 32.09 103.10 83.47

Coal Mill Unit 2/3 UA11 4.551 38.60 124.01 83.59

Kiln Unit 2/3 UA12 4.554 25.46 81.78 83.35

Coal Stock Pile Unit 2/3/4 UA13 4.552 38.07 122.28 83.53

Kiln Unit 4 UA14 4.552 42.40 136.19 83.49

Cement Mill Unit 4 UA15 4.552 40.21 129.16 83.51

Coal Stockpile Unit 5 UA16 4.551 36.54 117.37 83.52

Coal Stockpile Bontoa UA17 4.552 33.09 106.30 83.52

Batching Plant Biringere UA18 4.551 42.73 137.25 83.57

Biringkassi Coal Warehouse UA19 4.550 61.98 199.09 83.54

Biringkassi Cement Silo UA20 4.551 63.32 203.40 83.57

Biringkassi Power Plant 1 UA21 4.550 59.66 191.64 83.57

Biringkassi Power Plant 2 UA22 4.550 60.22 193.45 83.54

Central Special Wharf of Biringkassi UA23 4.551 49.66 159.52 83.53

Wharf II Biringkassi UA24 4.551 51.81 166.43 83.55

Residential area

Road near Tabo-Tabo Clay Quarry UA25 4.551 68.75 220.85 83.53

Residential Area near Tabo-Tabo Quarry UA26 4.550 51.42 165.17 83.60

Residential Area near Bulutellue Quarry UA27 4.550 64.29 206.51 83.56

Road near Bulutellue Clay Quarry UA28 4.551 64.49 207.17 83.54

Mangilu Village UA29 4.551 69.41 222.97 83.53

Road near Tonasa 1 Clay Quarry UA30 4.550 51.83 166.51 83.57

Residential Area near Tonasa 1 Clay Quarry UA31 4.550 66.33 213.09 83.55

Taraweang Village UA32 4.551 69.52 223.33 83.52

In Front of Sapanang Village Office UA33 4.551 69.49 223.23 83.55

In Front of Kampung Sela Mosque UA34 4.554 29.87 95.95 83.34

In Front of Main Office UA35 4.550 59.10 189.86 83.61

Biringere Village Office UA36 4.551 45.99 147.72 83.54

In Front of Taqwa Mosque UA37 4.550 58.80 188.90 83.60

Tonasa–Bungoro Main Road (Bontoa) UA38 4.551 69.34 222.74 83.53

Bungoro Intersection UA39 4.551 64.60 207.52 83.55
In Front of Bujung Tangaya Elementary School 
(Bulu Cindea) UA40 4.551 60.72 195.07 83.54

Bowong Cindea Village UA41 4.550 61.00 195.97 83.52
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spatial distribution mapping through graphs and 
thematic maps in the subsequent sections.

Comparison of satellite imagery estimation 
with ground-based measurements

To assess the accuracy of the satellite-based 
estimates, the results were compared with ground-
based measurements. Figures 2, 4, 6, and 8 pres-
ent the comparison between the estimated and 
measured concentrations of PM₁₀, NO₂, SO₂, and 
CO, while Figures 3, 5, 7, and 9 illustrate their 
spatial distribution across the study area.

In Figures 2 and 3, it can be observed that 
based on satellite imagery estimation, the high-
est PM₁₀ concentration was found at UA4 (Lime-
stone Quarry), and the lowest at UA35 (In Front 
of Main Office). However, based on the mea-
surement data, the highest PM₁₀ concentration 
was found at UA7 (Cement Mill Unit 5), while 
the lowest at UA26 (Residential Area near Tabo-
Tabo Quarry).

Figures 4 and 5 show that based on satellite 
imagery estimation, the highest NO2 concentra-
tion was found at UA2 (Tabo-Tabo Clay Quar-
ry), and the lowest at UA4 (Limestone Quarry). 

Figure 2. Comparison of PM10 concentrations

Figure 3. PM10 pollutant distribution map based on satellite imagery estimation
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Meanwhile, based on the measurement data, the 
highest NO2 concentration was found at UA21 
(Biringkassi Power Plant 1), and the lowest at 
UA29 (Mangilu Village).

In Figures 6 and 7, it can be seen that based 
on satellite imagery estimation, the highest SO₂ 
concentration was found at UA2 (Tabo-Tabo 
Clay Quarry), and the lowest at UA4 (Limestone 
Quarry). However, based on the measurement 
data, the highest SO₂ concentration was found at 
UA38 (Tonasa–Bungoro Main Road (Bontoa)), 
and the lowest at UA40 (In Front of Bujung Tan-
gaya Elementary School (Bulu Cindea)).

Figures 8 and 9 show that based on satellite 
imagery estimation, the highest CO concentration 
was found at UA35 (In Front of Main Office), and 
the lowest at UA4 (Limestone Quarry). Mean-
while, based on the measurement data, the highest 
CO concentration was found at UA9 (Packer Unit 
2/3/4), and the lowest at UA40 (In Front of Bu-
jung Tangaya Elementary School (Bulu Cindea)).

Air pollution standard index

The estimated concentrations of pollutants 
were further translated into the air pollution stan-
dard index (ISPU) to provide a more interpretable 

Figure 4. Comparison of NO2 concentrations

Figure 5. NO2 pollutant distribution map based on satellite imagery estimation
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assessment of environmental conditions. Table 
3 presents the ISPU values derived from both 
ground-based measurements and satellite-based 
estimations.

Table 3 shows that while the ground-based 
ISPU values ranged from Good to Moderate, the 
satellite-derived ISPU values extended up to the 
Unhealthy category. These discrepancies high-
light the impact of over- and underestimation in 
satellite-derived concentrations on the resulting 
index and emphasize both the potential as well as 
the limitations of remote sensing in representing 
actual air quality conditions.

DISCUSSION

The use of satellite imagery in estimating 
air pollutant concentrations is an innovative ap-
proach that enables spatial and temporal monitor-
ing of air quality, particularly in the regions with 
limited conventional monitoring systems (Yan 
et al., 2025). In this study, the concentrations of 
four major air pollutants – PM10, NO2, SO2, and 
CO – were estimated using the Landsat 8 data and 
empirical regression algorithms from previous re-
search (Othman et al. (2010), Mahardianti et al. 
(2024), Somvanshi et al. (2019)). 

Figure 6. Comparison of the SO2 concentrations

Figure 7. SO2 pollutant distribution map based on satellite imagery estimation
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Particulate matter

On the basis of the distribution map derived 
from satellite image estimations (Figure 3), the 
highest PM10 concentration was detected at point 
UA4 (Limestone Quarry). This can be attributed 
to open-pit mining and raw material transpor-
tation activities, which are known to be major 
sources of coarse particulate emissions in the ce-
ment industry (Al-Zboon et al., 2021). However, 
based on ground measurement data, the highest 
value was found at UA7 (Cement Mill Unit 5), 
indicating that cement grinding activities also 
serve as a major emission source due to intensive 

mechanical processes (Elawa and Farahat, 2022). 
The difference in the highest concentration points 
between the satellite-based estimations and 
ground data highlights the limitations of satellite 
imagery in capturing highly localized emissions 
or those originating from enclosed sources. Nev-
ertheless, the overall estimated distribution pat-
tern is generally able to represent areas with high 
industrial activity intensity.

Nitrogen dioxide

For the NO2 parameter, the estimation re-
sults indicated the highest concentration at UA2 

Figure 8. Comparison of the CO concentrations

Figure 9. CO pollutant distribution map based on satellite imagery estimation
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Table 3. Air pollution standard index based on ground-based measurements and satellite imagery estimation

Area Measurement 
points Code Pollutant

ISPU value ISPU categories

Ground-based 
measurements

Satellite 
imagery 

estimation

Ground-based 
measurements

Satellite 
imagery 

estimation

Operational 
area

Bontoa Clay 
Quarry UA1

PM10 24.90 4.55 Good Good
NO2 15.35 25.25 Good Good
SO2 18.27 116.59 Good Unhealthy
CO 4.51 0.84 Good Good

Tabo-Tabo Clay 
Quarry UA2

PM10 25.60 4.55 Good Good
NO2 16.02 31.93 Good Good
SO2 20.87 140.00 Good Unhealthy
CO 10.43 0.84 Good Good

Bulutellue Clay 
Quarry UA3

PM10 31.50 4.55 Good Good
NO2 18.50 29.13 Good Good
SO2 24.33 130.20 Good Unhealthy
CO 5.18 0.84 Good Good

Limestone Quarry UA4

PM10 37.10 4.56 Good Good
NO2 21.99 10.44 Good Good
SO2 27.21 62.51 Good Moderate
CO 8.15 0.83 Good Good

Tonasa 1 Clay 
Quarry UA5

PM10 28.50 4.55 Good Good
NO2 18.54 59.59 Good Good
SO2 26.83 131.81 Good Unhealthy
CO 9.73 0.84 Good Good

Packer Unit 5 UA6

PM10 40.19 4.55 Good Good
NO2 20.80 16.59 Good Good
SO2 40.19 85.08 Good Moderate
CO 14.18 0.83 Good Good

Cement Mill Unit 5 UA7

PM10 51.00 4.55 Moderate Good
NO2 15.93 17.62 Good Good
SO2 28.46 88.85 Good Moderate
CO 10.31 0.83 Good Good

Kiln Unit 5 UA8

PM10 32.80 4.55 Good Good
NO2 19.42 11.45 Good Good
SO2 23.17 66.22 Good Moderate
CO 12.63 0.83 Good Good

Packer Unit 2/3/4 UA9

PM10 42.90 4.55 Good Good
NO2 18.45 10.56 Good Good
SO2 30.77 62.97 Good Moderate
CO 19.63 0.83 Good Good

Cement Mill Unit 
2/3 UA10

PM10 34.10 4.55 Good Good
NO2 18.05 14.20 Good Good
SO2 30.67 76.30 Good Moderate
CO 19.71 0.83 Good Good

Coal Mill Unit 2/3 UA11

PM10 34.42 4.55 Good Good
NO2 17.48 17.08 Good Good
SO2 34.42 86.87 Good Moderate
CO 16.11 0.84 Good Good

Kiln Unit 2/3 UA12

PM10 36.70 4.55 Good Good
NO2 20.22 11.26 Good Good
SO2 34.52 65.54 Good Moderate
CO 18.06 0.83 Good Good

Coal Stock Pile 
Unit 2/3/4 UA13

PM10 46.70 4.55 Good Good
NO2 19.96 16.84 Good Good
SO2 20.87 86.00 Good Moderate
CO 5.14 0.84 Good Good

Kiln Unit 4 UA14

PM10 49.70 4.55 Good Good
NO2 21.50 18.76 Good Good
SO2 26.15 93.02 Good Moderate
CO 13.95 0.83 Good Good
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Cont. Table 3. 

Area Measurement 
points Code Pollutant

ISPU value ISPU categories

Ground-based 
measurements

Satellite 
imagery 

estimation

Ground-based 
measurements

Satellite 
imagery 

estimation

Operational 
area

Cement Mill Unit 4 UA15

PM10 45.70 4.55 Good Good
NO2 20.75 17.79 Good Good
SO2 32.50 89.47 Good Moderate
CO 10.62 0.84 Good Good

Coal Stockpile 
Unit 5 UA16

PM10 25.80 4.55 Good Good
NO2 15.35 16.17 Good Good
SO2 20.87 0.84 Good Moderate
CO 9.32 83.52 Good Good

Coal Stockpile 
Bontoa UA17

PM10 33.40 4.55 Good Good
NO2 9.34 14.64 Good Good
SO2 22.60 77.92 Good Moderate
CO 12.54 0.84 Good Good

Batching Plant 
Biringere UA18

PM10 42.80 4.55 Good Good
NO2 23.01 18.90 Good Good
SO2 32.40 93.56 Good Moderate
CO 14.16 0.84 Good Good

Biringkassi Coal 
Warehouse UA19

PM10 36.10 4.55 Good Good
NO2 17.30 27.42 Good Good
SO2 30.58 124.22 Good Unhealthy
CO 10.17 0.84 Good Good

Biringkassi 
Cement Silo UA20

PM10 50.95 4.55 Moderate Good
NO2 18.23 28.01 Good Good
SO2 34.33 126.30 Good Unhealthy
CO 13.62 0.84 Good Good

Biringkassi Power 
Plant 1 UA21

PM10 35.67 4.55 Good Good
NO2 26.46 26.40 Good Good
SO2 35.67 120.62 Good Unhealthy
CO 12.49 0.84 Good Good

Biringkassi Power 
Plant 2 UA22

PM10 36.90 4.55 Good Good
NO2 16.95 26.65 Good Good
SO2 20.87 121.49 Good Unhealthy
CO 3.17 0.84 Good Good

Central Special 
Wharf of 

Biringkassi
UA23

PM10 31.90 4.55 Good Good
NO2 16.24 21.97 Good Good
SO2 19.62 105.11 Good Unhealthy
CO 4.19 0.84 Good Good

Wharf II 
Biringkassi UA24

PM10 43.90 4.55 Good Good
NO2 11.55 22.92 Good Good
SO2 29.90 108.45 Good Unhealthy
CO 8.52 0.84 Good Good

Residential 
area

Road near Tabo-
Tabo Clay Quarry UA25

PM10 33.85 4.55 Good Good

NO2 14.16 30.42 Good Good
SO2 33.85 134.72 Good Unhealthy
CO 11.96 0.84 Good Good

Residential Area 
near Tabo-Tabo 

Quarry
UA26

PM10 24.81 4.55 Good Good
NO2 14.07 22.75 Good Good
SO2 24.81 107.84 Good Unhealthy
CO 1.15 0.84 Good Good

Residential Area 
near Bulutellue 

Quarry
UA27

PM10 30.80 4.55 Good Good
NO2 19.07 28.44 Good Good
SO2 18.27 127.80 Good Unhealthy
CO 5.16 0.84 Good Good

Road near 
Bulutellue Clay 

Quarry
UA28

PM10 21.80 4.55 Good Good
NO2 17.48 28.53 Good Good
SO2 18.27 128.12 Good Unhealthy
CO 8.94 0.84 Good Good
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Cont. Table 3. 

Area Measurement 
points Code Pollutant

ISPU value ISPU categories

Ground-based 
measurements

Satellite 
imagery 

estimation

Ground-based 
measurements

Satellite 
imagery 

estimation

Residential 
area

Mangilu Village UA29

PM10 24.10 4.55 Good Good
NO2 6.42 30.71 Good Good
SO2 18.27 135.74 Good Unhealthy
CO 1.84 0.84 Good Good

Road near Tonasa 
1 Clay Quarry UA30

PM10 30.20 4.55 Good Good
NO2 17.57 22.93 Good Good
SO2 26.54 108.49 Good Unhealthy
CO 6.95 0.84 Good Good

Residential Area 
near Tonasa 1 
Clay Quarry

UA31

PM10 25.80 4.55 Good Good
NO2 18.23 29.35 Good Good
SO2 18.27 130.97 Good Unhealthy
CO 3.53 0.84 Good Good

Taraweang Village UA32

PM10 21.80 4.55 Good Good
NO2 7.83 30.76 Good Good
SO2 18.27 135.92 Good Unhealthy
CO 1.84 0.84 Good Good

In Front of 
Sapanang Village 

Office
UA33

PM10 25.30 4.55 Good Good
NO2 12.92 30.75 Good Good
SO2 18.27 135.87 Good Unhealthy
CO 1.84 0.84 Good Good

In Front of 
Kampung Sela 

Mosque
UA34

PM10 22.90 4.55 Good Good
NO2 16.90 13.21 Good Good
SO2 18.27 72.69 Good Moderate
CO 1.84 0.83 Good Good

In Front of Main 
Office UA35

PM10 31.80 4.55 Good Good
NO2 18.45 26.15 Good Good
SO2 28.75 119.76 Good Unhealthy
CO 7.14 0.84 Good Good

Biringere Village 
Office UA36

PM10 31.50 4.55 Good Good
NO2 10.18 20.35 Good Good
SO2 20.77 98.85 Good Moderate
CO 1.84 0.84 Good Good

In Front of Taqwa 
Mosque UA37

PM10 23.60 4.55 Good Good
NO2 7.48 26.01 Good Good
SO2 18.27 119.30 Good Unhealthy
CO 1.84 0.84 Good Good

Tonasa–Bungoro 
Main Road 
(Bontoa)

UA38

PM10 37.20 4.55 Good Good
NO2 16.50 30.68 Good Good
SO2 49.33 135.63 Good Unhealthy
CO 12.52 0.84 Good Good

Bungoro 
Intersection UA39

PM10 39.20 4.55 Good Good
NO2 20.44 28.58 Good Good
SO2 49.04 128.29 Good Unhealthy
CO 13.82 0.84 Good Good

In Front of 
Bujung Tangaya 

Elementary School 
(Bulu Cindea)

UA40

PM10 21.40 4.55 Good Good
NO2 11.19 26.87 Good Good
SO2 15.48 122.27 Good Unhealthy
CO 0.90 0.84 Good Good

Bowong Cindea 
Village UA41

PM10 21.50 4.55 Good Good
NO2 16.24 26.99 Good Good
SO2 20.00 122.71 Good Unhealthy
CO 5.01 0.84 Good Good
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(Tabo-Tabo Clay Quarry), while ground mea-
surements showed the highest value at UA21 
(Biringkassi Power Plant 1) (Figures 4 and 5). 
The high NO2 concentration in the power plant 
area is expected, as coal combustion is a major 
source of NO2 emissions (Agarwalla et al., 2024). 
However, the high estimated concentration in the 
mining area suggests potential algorithmic bias 
toward open surfaces with high land surface tem-
peratures, as LST (Land Surface Temperature) 
is a contributing variable in the estimation algo-
rithm. Rahaman et al. (2023) have noted that the 
NO₂ concentration estimates using the multiband 
approach from Landsat may deviate in areas with 
low vegetation cover or bright surfaces such as 
mining zones.

Sulfur dioxide

The estimated SO2 distribution showed the 
highest concentration at UA2 (Tabo-Tabo Clay 
Quarry), while ground measurements identified 
the peak at UA38 (Tonasa–Bungoro Main Road 
(Bontoa)) (Figures 6 and 7). The SO2 pollut-
ants typically originate from the combustion of 
high-sulfur fuels, such as coal in power plants 
and industrial transportation (Etim et al., 2021). 
This discrepancy is likely influenced by the tem-
poral resolution limitations of Landsat 8 imagery, 
which only captures data every 16 days, poten-
tially causing the estimation to miss the actual 
conditions at the time of ground measurement. 
Nevertheless, the distribution pattern indicates 
that the estimation algorithm by Mahardianti et 
al. (2024) still effectively captures the general 
trend of SO2 distribution, particularly in industrial 
areas with combustion and raw material process-
ing activities.

Carbon monoxide

For the CO parameter, the estimation indicat-
ed the highest concentration at UA35 (In Front of 
Main Office), while measurement data recorded 
the peak at UA9 (Packer Unit 2/3/4) (Figures 
8 and 9). Carbon monoxide is an invisible and 
scentless gas generated through incomplete com-
bustion processes, mainly originating from motor 
vehicles and industrial equipment (World Health 
Organization, 2021). The estimation model ap-
plied was based on the approach by Somvanshi 
et al. (2019), which utilized a combination of OLI 
and TIRS bands, including land surface tempera-
ture as a parameter. Potential discrepancies may 

arise because the CO levels fluctuate rapidly and 
are heavily influenced by daily human activities, 
which may not be captured during satellite acqui-
sition times. Moreover, CO is a light gas that can 
be quickly diluted by wind, making its spatial dis-
tribution highly dynamic (Bachtiar et al., 2018).

The comparison between estimation results 
and measurement data indicates that satellite 
imagery-based approaches hold strong potential 
for mapping regional air pollution. However, 
discrepancies exist between the locations of the 
highest estimated concentrations and those of the 
actual measured peaks across nearly all param-
eters. This aligns with the findings of Ghasem-
pour et al. (2021), who noted that the accuracy of 
satellite-based estimations is highly dependent on 
atmospheric conditions, surface characteristics, 
and the timing of image acquisition.

Several factors influence the accuracy of 
satellite-derived air pollutant concentration esti-
mates. First, spatial resolution limitations—such 
as the 30-meter resolution of Landsat 8—make it 
less effective in precisely detecting point-source 
emissions, particularly from localized sources 
such as factory chimneys or heavy vehicles. Sec-
ond, the estimation algorithms rely heavily on 
land surface temperature (LST) and vegetation 
indices. This dependence can lead to inaccura-
cies, especially in artificial or open mining areas 
the surface characteristics of which differ signifi-
cantly from vegetated regions. Third, temporal 
variability of emissions poses a challenge, as air 
pollutant concentrations are strongly influenced 
by daily human activities and rapidly changing 
meteorological conditions. Since satellite imag-
ery captures only a single moment in time, it may 
not align with the timing of ground measurements 
(Shin et al., 2020).

Nevertheless, this approach remains highly 
valuable, especially in the areas with limited air 
quality monitoring infrastructure. As reported by 
IQAir (2024), South Sulawesi has only three air 
monitoring stations, making the application of re-
mote sensing technology a relevant and efficient 
alternative solution.

Furthermore, air pollutant concentrations 
estimated from satellite imagery were used to 
calculate the Indonesian Air Pollution Standard 
Index (ISPU) based on Government Regula-
tion No. 22 of 2021. The estimation results at 41 
measurement points revealed a wide range of air 
quality categories. According to the ISPU, sev-
eral locations fell under the Unhealthy category, 
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particularly in industrial areas such as Tabo-Tabo 
Clay Quarry (UA2), Biringkassi Cement Silo 
(UA20), and residential zones near major emis-
sion sources. These findings signal possible pol-
lutant exposure that may adversely affect public 
health, particularly among sensitive populations 
such as children and the elderly.

However, when ISPU values were calculated 
using direct measurement data (on-site test re-
sults), the outcomes differed significantly. All 
points were recorded in the Good category, with 
some ranging up to Moderate. These discrepan-
cies indicate a potential overestimation in the sat-
ellite-based results. This may occur because some 
estimation algorithms assume ideal conditions in 
the relationship between spectral values and pol-
lutant concentrations, whereas local atmospheric 
conditions, surface disturbances, and the timing 
of image acquisition greatly affect estimation ac-
curacy. As Wang et al. (2022) noted, factors such 
as humidity, land surface temperature, and the 
presence of aerosols can influence the accuracy 
of remote sensing-based calculations.

Therefore, while satellite-based approaches 
offer advantages in terms of broad and continu-
ous monitoring, their results must be regularly 
validated against ground-based measurements 
to achieve a more accurate understanding of air 
quality. These inconsistencies also highlight the 
need to develop localized algorithms that are bet-
ter suited to the atmospheric and land use char-
acteristics of the study area, as well as the im-
portance of selecting acquisition times that better 
reflect daily pollution conditions on the ground. 
A combined approach using satellite imagery and 
direct measurements can provide more reliable 
results to support air pollution control policies, 
particularly in strategic industrial areas such as 
Pangkep Regency.

Several previous studies have demonstrated 
the potential of satellite remote sensing for as-
sessing air quality in diverse environments, in-
cluding arid regions, urban megacities, and in-
dustrial areas (Othman et al., 2010; Mahardianti 
et al., 2024; Somvanshi et al., 2019). These stud-
ies indicate that satellite-derived data can be used 
to estimate air quality parameters and indices, 
although discrepancies with ground-based mea-
surements remain a common challenge.

At the same time, this study provides the 
contributions that distinguish it from much of 
the earlier work. While previous research has 
focused on arid regions, large urban centers, or 

industrial–urban areas, the present study exam-
ines a cement industrial complex characterized 
by highly localized and intense emissions. This 
industrial context highlights both the strengths 
and the limitations of medium-resolution satel-
lite imagery in representing pollutant variability 
across heterogeneous landscapes. Furthermore, 
the integration of satellite-derived pollutant con-
centrations with ISPU provides a framework that 
has rarely been emphasized in earlier studies, par-
ticularly in the context of Indonesia.

These aspects underline the significance of 
this research. By combining satellite-based es-
timations with ground-based measurements, the 
study demonstrates a practical approach for as-
sessing air quality in the regions where monitor-
ing infrastructure is limited. The results suggest 
that, despite a tendency to overestimate concen-
trations, satellite remote sensing can serve as a 
valuable complementary tool for identifying pol-
lution hotspots and providing broader spatial cov-
erage. This integrated approach not only supports 
environmental monitoring and management in 
industrial regions but also contributes to policy-
making aimed at balancing industrial develop-
ment with public health protection.

CONCLUSIONS

This study demonstrated the potential of 
Landsat 8 imagery for estimating concentrations 
of PM10, NO2, SO2, and CO in an industrial ce-
ment area of Pangkep Regency, South Sulawesi, 
with validation against ground-based data. The 
results showed that the NO2 and SO2 concentra-
tions were generally overestimated by satellite 
estimations, while PM10 and CO were underes-
timated compared with field observations, lead-
ing to notable differences in ISPU values. The 
ground-based ISPU ranged from Good to Mod-
erate, whereas the satellite-derived ISPU extend-
ed to categories as high as Unhealthy, reflecting 
the influence of resolution, surface heterogene-
ity, and acquisition timing on pollutant estima-
tion. Despite these discrepancies, the integration 
of the satellite and ground-based approaches 
highlights the usefulness of remote sensing for 
identifying spatial variability and potential pol-
lution hotspots, especially in the areas with lim-
ited monitoring infrastructure. These findings 
emphasize the role of satellite data as a comple-
mentary tool for environmental management 
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and policy-making in industrial regions, while 
also pointing to the need for future research that 
incorporates higher-resolution sensors, multi-
temporal datasets, and advanced modeling tech-
niques to improve accuracy and reliability in 
satellite-based air quality assessments.
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