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ABSTRACT

This study aimed to estimate the concentrations of air pollutants PM, , NO,, SO,, and CO using Landsat 8 satel-
lite imagery, validated with ground-based measurements at 41 monitoring points in the cement industry area of
Pangkep Regency, South Sulawesi, Indonesia, and to evaluate air quality using ISPU indices. The methodology
included radiometric and atmospheric correction of satellite imagery, extraction of spectral bands and land surface
temperature, application of calibrated regression algorithms, comparison with ground-based measurements, as well
as conversion of both satellite-derived and ground-based concentrations into ISPU indices to provide a compre-
hensive air quality assessment. The satellite-based estimations indicated PM, | concentrations of 4.55-4.56 pg/m’,
NO, of 23.59-72.15 pg/m’, SO, of 75.79-231.79 pg/m’, and CO of 83.3-83.6 ng/m’. Validation results showed
that the satellite-based estimates of NO, and SO, tended to be higher than ground-based measurements, whereas
the PM, ; and CO concentrations were lower than those measured in the field. Ground-based concentrations of the
four pollutants, when converted into ISPU, ranging from Good to Moderate, while satellite-derived ISPU extended
to the Unhealthy category. Despite these differences, the findings highlight the importance of integrating satellite
imagery with ground-based observations to enhance air quality assessment, particularly in industrial regions with

limited monitoring infrastructure.
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INTRODUCTION

Clean air is vital to ensuring human health and
promoting overall well-being (Sannigrahi et al.
2021; South Australia EPA, 2023; United Nations,
2024). In general, polluted air is considered one of
the primary contributors to various diseases, such
as cardiovascular disorders, respiratory problems,
and lung cancer. In addition, air pollution nega-
tively impacts animals and harms plant ecosys-
tems (Almetwally et al., 2020; Singh and Singh,
2022; Thongtip et al., 2022; John et al., 2025).

Air pollution is now broadly acknowledged
as the leading environmental risk factor, with
certain studies suggesting that poor air quality is
associated with nearly 20% of deaths worldwide
(Chen et al., 2024). Air pollution represents the
foremost environmental exposure contributing to

global illness and death, placing fourth among all
risk factors according to the 2019 Global Burden
of Disease (GBD) study (Kuntic et al., 2023).
Without substantial intervention, by 2060, ambi-
ent air pollution is expected to cause between 6
and 9 million deaths each year (Jasinski, 2024).

Increasing human activity, particularly in the
industrial sector, has led to rising levels of air pol-
lution (Siddiqua et al., 2022; Drahman et al., 2024;
Nakhjiri and Kakroodi, 2024; Mohammed et al.,
2024; Taufieq et al., 2024). Industrial operations
significantly contribute to the emission of particu-
late matter (such as PM, ) and harmful gases (such
as NO,, SO,, and CO) (Brontowiyono et al., 2022).
Industrial processes involving fossil fuel combus-
tion, raw material processing, and other operation-
al activities release large volumes of pollutants into
the atmosphere (Elawa and Farahat, 2022).
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The cement industry, for example, is a major
contributor to ambient air pollution. Approxi-
mately 5% of global carbon emissions originate
from cement production. It is estimated that the
production of one ton of cement clinker can emit
up to 46.7 g of dust, 1.80 kg of NOx as NO,,
0.504 kg of SO,, among other pollutants (Al-
Zboon et al., 2021). The cement sector holds sig-
nificant importance in driving national develop-
ment and fostering economic growth. It serves as
a key material extensively utilized in construc-
tion and infrastructure development initiatives
(Sudhakar and Reddy, 2023). It is the most com-
mon and extensively used binding material in the
construction industry, found in roads, housing,
embankments, bridges, commercial buildings,
and overpasses. Therefore, the production of ce-
ment has significantly contributed to global eco-
nomic progress, underpinning major infrastruc-
ture sectors worldwide, including construction,
steel, petroleum, iron, and telecommunications
(Etim et al., 2021).

The air pollution resulting from the cement
industry poses a significant challenge, particular-
ly in developing countries, such as Indonesia. The
growing demand for cement in Indonesia reflects
a substantial increase, with sales forecasted to rise
by 4.9% from the preceding year to 73 million
tons in 2019, aligning with the intensification of
infrastructure development at the national level
(Pambudi et al., 2020).

As one of the largest cement producers in In-
donesia, monitoring air quality in cement industry
areas is crucial to protect public health and the en-
vironment. However, the availability of air qual-
ity monitoring stations in several regions across
Indonesia remains limited, making it difficult to
obtain comprehensive air quality data. According
to the data from IQAir (2024), there are only three
air monitoring stations in South Sulawesi — two in
Makassar City and one in Maros Regency.

In response to this limitation, remote sensing
has emerged as a viable method for measuring or
estimating air quality. Remote sensing technology
based on satellites provides an efficient method
for long-term air quality monitoring across differ-
ent spatial and temporal scales. The advancement
of satellite remote sensing has made satellite
imagery a vital tool in observing urban ecologi-
cal conditions, owing to its high spatial resolu-
tion, extensive coverage, and fast data acquisition
(Wang et al., 2022).
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Monitoring of air pollution using satellite im-
agery has been in practice since the 1970s, initi-
ated with the deployment of instruments such as
AVHRR and GOES. Today, satellites like Senti-
nel and Landsat are widely used for evaluating air
quality (Ghasempour et al., 2021).

As a member of the Landsat series, Landsat
8 is frequently employed in air quality studies. It
is equipped with two key instruments: the Opera-
tional Land Imager (OLI) and the Thermal Infra-
red Sensor (TIRS), which offer global land cov-
erage on a seasonal basis. The satellite provides
data at spatial resolutions of 30 meters (visible,
NIR, SWIR), 100 meters (thermal), and 15 me-
ters (panchromatic). The mission was developed
collaboratively by NASA and the U.S. Geological
Survey (USGS) (NASA, 2024).

Estimating air pollutant concentrations using
Landsat 8 imagery offers the opportunity to map
the spatial and temporal distribution of air pol-
lution around cement industry areas. However, a
comparison between the air quality data obtained
from both satellite and ground-based platforms is
necessary to assess the strengths and limitations
of each in detecting and measuring pollutant con-
centrations. This comparison may also serve as
a foundation for developing more effective sat-
ellite-based air quality monitoring methods, es-
pecially in the areas with limited air monitoring
infrastructure. This analysis is expected to con-
tribute meaningfully to the enhancement of air
quality monitoring systems and efforts to mitigate
the impacts of air pollution in Indonesia.

To evaluate and communicate the severity of
air pollution, standardized air quality indices are
widely used. Indonesia employs the Air Pollution
Standard Index (ISPU), as defined in Government
Regulation No. 22 of 2021, which categorizes air
quality into five levels to inform the public about
health risks. This index allows for spatial com-
parison of air quality across regions and serves as
a critical tool for environmental management as
well as policy-making. In the areas with limited
monitoring stations, integrating satellite-based
pollutant estimation with ISPU can enhance air
quality surveillance and public health protection.

Unlike most previous studies, the novelty of
this study lies in its dual approach: applying empir-
ically validated algorithms to estimate pollutants
using Landsat 8 imagery, and comparing these es-
timates against ground-based measurements to as-
sess accuracy and reliability. Furthermore, by in-
corporating the Indonesian Air Pollution Standard
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Index (ISPU), the study provides a framework for
evaluating air quality that is both locally relevant
and practically applicable. This approach offers
new insights into the strengths and limitations
of satellite remote sensing in capturing pollution
dynamics in industrial regions where monitoring
infrastructure remains scarce.

METHODOLOGY

Study area

The study was conducted in Pangkep Regen-
cy, South Sulawesi, Indonesia, focusing on one
of the largest cement industry complexes in the
country. This industrial area plays a vital role in
national infrastructure development, but also rep-
resents a significant source of air pollution due
to quarrying, clinker production, coal combus-
tion, and cement milling activities. The region is
geographically located in a coastal-to-hinterland
transition zone, characterized by limestone hills
and surrounding residential settlements.

The cement industry in Pangkep consists of
multiple operational units, including clay quar-
ries, limestone quarries, cement mills, coal stock-
piles, and power plants. These facilities release
various air pollutants, notably particulate matter

(PM,,), nitrogen dioxide (NO,), sulfur dioxide
(S0O,), and carbon monoxide (CO), which can
affect both the industrial workforce and nearby
communities.

To capture the spatial variations in air qual-
ity, a total of 41 monitoring points were selected,
covering both industrial zones and residential
areas. The industrial monitoring points were lo-
cated around major emission sources, such as
quarries, cement mills, and power plants, while
the residential points were distributed in nearby
villages and along main roads. The spatial distri-
bution of these points is shown in Figure 1, and
their detailed locations are listed in Table 1.

Dataset and methods

This study employed a quantitative research
design with a descriptive-comparative approach
to evaluate air quality conditions around Cement
Industry X in Pangkep Regency. The analysis
considered PM, , NO,, SO,, and CO as target pol-
lutants, while the satellite spectral data were used
as predictors for their estimation.

Dataset

Two primary datasets were utilized in this
study. The first dataset consisted of Landsat 8
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Figure 1. Research location

459



Journal of Ecological Engineering 2026, 27(1), 457-473

Table 1. Measurement points

Area Measurement points Code
Bontoa Clay Quarry UA1
Tabo-Tabo Clay Quarry UA2
Bulutellue Clay Quarry UA3
Limestone Quarry UA4
Tonasa 1 Clay Quarry UA5
Packer Unit 5 UAG
Cement Mill Unit 5 UA7
Kiln Unit 5 UA8
Packer Unit 2/3/4 UA9
Cement Mill Unit 2/3 UA10
Coal Mill Unit 2/3 UA11

Operational area Kiln Unit 2/3 UA12
Coal Stock Pile Unit 2/3/4 UA13
Kiln Unit 4 UA14
Cement Mill Unit 4 UA15
Coal Stockpile Unit 5 UA16
Coal Stockpile Bontoa UA17
Batching Plant Biringere UA18
Biringkassi Coal Warehouse UA19
Biringkassi Cement Silo UA20
Biringkassi Power Plant 1 UA21
Biringkassi Power Plant 2 UA22
Central Special Wharf of Biringkassi UA23
Wharf Il Biringkassi UA24
Road near Tabo-Tabo Clay Quarry UA25
Residential Area near Tabo-Tabo Quarry UA26
Residential Area near Bulutellue Quarry UA27
Road near Bulutellue Clay Quarry UA28
Mangilu Village UA29
Road near Tonasa 1 Clay Quarry UA30
Residential Area near Tonasa 1 Clay Quarry UA31
Taraweang Village UA32

Residential area In Front of Sapanang Village Office UA33
In Front of Kampung Sela Mosque UA34
In Front of Main Office UA35
Biringere Village Office UA36
In Front of Tagwa Mosque UA37
Tonasa—Bungoro Main Road (Bontoa) UA38
Bungoro Intersection UA39
In Front of Bujung Tangaya Elementary School (Bulu Cindea) UA40
Bowong Cindea Village UA41

OLI and TIRS imagery obtained from the United
States Geological Survey (USGS), which pro-
vides spectral information at 30 m (visible, NIR,
SWIR), 100 m (thermal), and 15 m (panchromatic)
spatial resolutions. Preprocessing steps included
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radiometric correction, atmospheric correction,
and raster clipping to match the Area of Interest
(AO]). From these images, spectral bands (blue,
green, red, SWIR-2) and Land Surface Tempera-
ture (LST) were extracted as inputs for pollutant
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estimation. The second dataset involved ground-
based measurements, consisting of ground-based
measurements concentrations for PM, » NO,,
SO,, and CO obtained from 41 monitoring points
distributed across both industrial and residential
zones (Table 1). These field data were used as
validation for the satellite-derived estimates.

Methods

The research workflow began with the prepro-
cessing of Landsat 8 imagery, which included de-
fining the Area of Interest (AOI), raster clipping,
as well as applying radiometric and atmospheric
corrections to ensure data accuracy. After pre-
processing, input variables were extracted from
the imagery, particularly the blue, green, red, and
SWIR-2 spectral bands, as well as Land Surface
Temperature (LST), all of which served as the ba-
sis for pollutant estimation. Pollutant concentra-
tions were then estimated by applying empirical
algorithms that had been validated in previous
studies, with PM, calculated using the model
proposed by Othman et al. (2010) (Equation 1),
NO, and SO, estimated using the algorithms de-
veloped by Mahardianti et al. (2024) (Equations 2
and 3), and CO calculated according to the model
of Somvanshi et al. (2019) (Equation 4).

PMyy = (396 x 12] +
+ (253 x 3] — (194 x §4] (1)

NiJy — L5T % 1875 (2)
50, — L5T x 60232 3)

£ = 8659+ (—0.427 X fa) +
+(0.22 x f4) + (—0.861 x §7) (4)

where: 2 —blue band, 53 — green band, 4 —red
band, 7 — SWIR 2 band, LST — Land Sur-
face Temperature

The estimated values obtained from these al-
gorithms were validated against the ground-based
measurements collected from the 41 monitoring
points to assess the level of agreement and identify
potential discrepancies. Following validation, the
data were analyzed spatially to map the distribu-
tion of pollutants across the study area. To further
interpret the health implications of the estimated
pollutant concentrations, the ISPU, as defined in
Indonesian Government Regulation No. 22 of
2021, was calculated. The index values were de-
rived using the following formula (Equation 5):

_ Inan — Teow
Cngen ~ Cronr (5)
- {0 — Croued + Ipny

where: / — ISPU value for pollutant concentra-
tion C, C — actual pollutant concentration,

Cigi» Cioe —upPET and lower concentration
bounds for the ISPU category in which C
falls, 7, . 1,,, — corresponding upper and
lower ISPU values for €, and C, |

I

RESULTS

This study aimed to address three main ques-
tions, namely whether Landsat 8 satellite imag-
ery can be applied to estimate concentrations of
PM,,, NO,, SO,, and CO in a cement industrial
area, how these satellite-based estimations com-
pare with ground-based measurements, and how
the overall air quality can be categorized using
ISPU. The following subsections present the re-
sults in line with these research questions.

Estimation of air pollutant concentrations
based on satellite imagery

As a basis for further analysis, the estimated
concentrations of air pollutants derived from
Landsat 8 imagery are first presented. The esti-
mations were obtained through empirically vali-
dated regression algorithms for PM , NO,, SO,,
and CO, using spectral reflectance and land sur-
face temperature (LST) as input variables. These
results provide an initial overview of the pollutant
levels in the study area and serve as a reference
point for subsequent comparisons with field mea-
surements and spatial visualization.

Table 2 shows the estimated concentrations of
PM,,, NO,, SO,, and CO at 41 observation points
representing both industrial and residential areas
surrounding the cement production complex. The
estimates indicate spatial variation, with high-
er pollutant concentrations generally observed
near core industrial operations, such as quarry
sites, cement mills, and coal-fired power plants.
Specifically, the PM, concentrations ranged be-
tween 4.55 and 4.56 ug/m’, NO, between 23.59
and 72.15 pg/m’, SO, between 75.79 and 231.79
pug/m?, and CO around 83.3-83.6 pug/m?®. These
values serve as the basis for further analysis, in-
cluding comparison with field measurements and
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Table 2. Estimation of air pollutant concentrations based on satellite imagery

Pollutant concentrations (ug/m?®)

Area Measurement points Code
PM,, NO, SO, CcoO
Bontoa Clay Quarry UA1 4.550 57.06 183.30 83.56
Tabo-Tabo Clay Quarry UA2 4.551 72.15 231.79 83.52
Bulutellue Clay Quarry UA3 4.551 65.84 211.50 83.52
Limestone Quarry UA4 4.557 23.59 75.79 83.26
Tonasa 1 Clay Quarry UAS5 4.551 66.88 214.83 83.53
Packer Unit 5 UAB 4.552 37.50 120.46 | 83.48
Cement Mill Unit 5 UA7 4.552 39.82 127.93 | 83.48
Kiln Unit 5 UA8 4.554 25.88 83.13 83.36
Packer Unit 2/3/4 UA9 4.553 23.88 76.71 83.46
Cement Mill Unit 2/3 UA10 4.552 32.09 103.10 | 83.47
Coal Mill Unit 2/3 UA11 4.551 38.60 124.01 83.59
Operational area Kiln Unit 2/3 UA12 4.554 25.46 81.78 83.35
Coal Stock Pile Unit 2/3/4 UA13 4.552 38.07 122.28 | 83.53
Kiln Unit 4 UA14 4.552 42.40 136.19 | 83.49
Cement Mill Unit 4 UA15 4.552 40.21 129.16 | 83.51
Coal Stockpile Unit 5 UA16 4.551 36.54 117.37 83.52
Coal Stockpile Bontoa UA17 4.552 33.09 106.30 83.52
Batching Plant Biringere UA18 4.551 42.73 137.25 83.57
Biringkassi Coal Warehouse UA19 4.550 61.98 199.09 | 83.54
Biringkassi Cement Silo UA20 4.551 63.32 | 203.40 | 83.57
Biringkassi Power Plant 1 UA21 4.550 59.66 191.64 83.57
Biringkassi Power Plant 2 UA22 4.550 60.22 193.45 83.54
Central Special Wharf of Biringkassi UA23 4.551 49.66 159.52 83.53
Wharf Il Biringkassi UA24 4.551 51.81 166.43 | 83.55
Road near Tabo-Tabo Clay Quarry UA25 4.551 68.75 220.85 83.53
Residential Area near Tabo-Tabo Quarry UA26 4.550 51.42 165.17 83.60
Residential Area near Bulutellue Quarry UA27 4.550 64.29 206.51 83.56
Road near Bulutellue Clay Quarry UA28 4.551 64.49 20717 83.54
Mangilu Village UA29 4.551 69.41 222,97 | 83.53
Road near Tonasa 1 Clay Quarry UA30 4.550 51.83 166.51 83.57
Residential Area near Tonasa 1 Clay Quarry UA31 4.550 66.33 213.09 83.55
Taraweang Village UA32 4.551 69.52 223.33 83.52
Residential area | In Front of Sapanang Village Office UA33 4.551 69.49 223.23 83.55
In Front of Kampung Sela Mosque UA34 4.554 29.87 95.95 83.34
In Front of Main Office UA35 4.550 59.10 189.86 | 83.61
Biringere Village Office UA36 4.551 45.99 147.72 83.54
In Front of Taqwa Mosque UA37 4.550 58.80 188.90 83.60
Tonasa-Bungoro Main Road (Bontoa) UA38 4.551 69.34 222.74 83.53
Bungoro Intersection UA39 4.551 64.60 207.52 83.55
zgzLogti;);:au)jung Tangaya Elementary School UA40 4,551 60.72 195.07 83.54
Bowong Cindea Village UA41 4.550 61.00 195.97 | 83.52
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spatial distribution mapping through graphs and
thematic maps in the subsequent sections.

Comparison of satellite imagery estimation
with ground-based measurements

To assess the accuracy of the satellite-based
estimates, the results were compared with ground-
based measurements. Figures 2, 4, 6, and 8 pres-
ent the comparison between the estimated and
measured concentrations of PMio, NO2z, SO, and
CO, while Figures 3, 5, 7, and 9 illustrate their
spatial distribution across the study area.

60

In Figures 2 and 3, it can be observed that
based on satellite imagery estimation, the high-
est PMio concentration was found at UA4 (Lime-
stone Quarry), and the lowest at UA35 (In Front
of Main Office). However, based on the mea-
surement data, the highest PMio concentration
was found at UA7 (Cement Mill Unit 5), while
the lowest at UA26 (Residential Area near Tabo-
Tabo Quarry).

Figures 4 and 5 show that based on satellite
imagery estimation, the highest NO, concentra-
tion was found at UA2 (Tabo-Tabo Clay Quar-
ry), and the lowest at UA4 (Limestone Quarry).
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Figure 5. NO, pollutant distribution map based on satellite imagery estimation

Meanwhile, based on the measurement data, the
highest NO, concentration was found at UA21
(Biringkassi Power Plant 1), and the lowest at
UA29 (Mangilu Village).

In Figures 6 and 7, it can be seen that based
on satellite imagery estimation, the highest SO2
concentration was found at UA2 (Tabo-Tabo
Clay Quarry), and the lowest at UA4 (Limestone
Quarry). However, based on the measurement
data, the highest SO: concentration was found at
UA38 (Tonasa—Bungoro Main Road (Bontoa)),
and the lowest at UA40 (In Front of Bujung Tan-
gaya Elementary School (Bulu Cindea)).
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Figures 8 and 9 show that based on satellite
imagery estimation, the highest CO concentration
was found at UA35 (In Front of Main Office), and
the lowest at UA4 (Limestone Quarry). Mean-
while, based on the measurement data, the highest
CO concentration was found at UA9 (Packer Unit
2/3/4), and the lowest at UA40 (In Front of Bu-
jung Tangaya Elementary School (Bulu Cindea)).

Air pollution standard index

The estimated concentrations of pollutants
were further translated into the air pollution stan-
dard index (ISPU) to provide a more interpretable
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Figure 7. SO, pollutant distribution map based on satellite imagery estimation

assessment of environmental conditions. Table
3 presents the ISPU values derived from both
ground-based measurements and satellite-based
estimations.

Table 3 shows that while the ground-based
ISPU values ranged from Good to Moderate, the
satellite-derived ISPU values extended up to the
Unhealthy category. These discrepancies high-
light the impact of over- and underestimation in
satellite-derived concentrations on the resulting
index and emphasize both the potential as well as
the limitations of remote sensing in representing
actual air quality conditions.

DISCUSSION

The use of satellite imagery in estimating
air pollutant concentrations is an innovative ap-
proach that enables spatial and temporal monitor-
ing of air quality, particularly in the regions with
limited conventional monitoring systems (Yan
et al., 2025). In this study, the concentrations of
four major air pollutants — PM,,, NO,, SO,, and
CO — were estimated using the Landsat 8 data and
empirical regression algorithms from previous re-
search (Othman et al. (2010), Mahardianti et al.
(2024), Somvanshi et al. (2019)).
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Figure 9. CO pollutant distribution map based on satellite imagery estimation
Particulate matter mechanical processes (Elawa and Farahat, 2022).

On the basis of the distribution map derived
from satellite image estimations (Figure 3), the
highest PM | concentration was detected at point
UA4 (Limestone Quarry). This can be attributed
to open-pit mining and raw material transpor-
tation activities, which are known to be major
sources of coarse particulate emissions in the ce-
ment industry (Al-Zboon et al., 2021). However,
based on ground measurement data, the highest
value was found at UA7 (Cement Mill Unit 5),
indicating that cement grinding activities also
serve as a major emission source due to intensive
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The difference in the highest concentration points
between the satellite-based estimations and
ground data highlights the limitations of satellite
imagery in capturing highly localized emissions
or those originating from enclosed sources. Nev-
ertheless, the overall estimated distribution pat-
tern is generally able to represent areas with high
industrial activity intensity.

Nitrogen dioxide

For the NO, parameter, the estimation re-
sults indicated the highest concentration at UA2
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Table 3. Air pollution standard index based on ground-based measurements and satellite imagery estimation

ISPU value ISPU categories
Area Mea;;l:;? ont Code | Pollutant | Ground-based Satellite Ground-based Satellite
measurements 'magery measurements 'magery
estimation estimation
PM., 24.90 4.55
Bontoa Clay UA1 NO, 15.35 25.25
Quarry SO, 18.27 116.59
Cco 4.51 0.84
PM,, 25.60 4.55
Tabo-Tabo Clay UA2 NO, 16.02 31.93
Quarry SO, 20.87 140.00
CO 10.43 0.84
PM,, 31.50 4.55
Bulutellue Clay UA3 NO, 18.50 29.13
Quarry SO, 24.33 130.20
Cco 5.18 0.84
PM,, 37.10 4.56
. NO, 21.99 10.44
Limestone Quarry UA4 S0, 27 21 6251
Cco 8.15 0.83
PM,, 28.50 4.55
Tonasa 1 Clay UAS NO, 18.54 59.59
Quarry SO, 26.83 131.81
CO 9.73 0.84
PM,, 40.19 4.55
. NO, 20.80 16.59
Packer Unit 5 UAG SO, 2019 85.08
Cco 14.18 0.83
PM,, 51.00 4.55
. . NO, 15.93 17.62
Cement Mill Unit 5 UA7 SO, 28.46 88.85
Operational CcO 10.31 0.83
area PM. 32.80 4.55
) . NO, 19.42 11.45
Kiln Unit 5 UA8 SO, 2317 66.22
CO 12.63 0.83
PM,, 42.90 4.55
. NO, 18.45 10.56
Packer Unit 2/3/4 UA9 S0, 30.77 5207
Cco 19.63 0.83
PM,, 34.10 4.55
Cement Mill Unit UA10 NO, 18.05 14.20
2/3 SO, 30.67 76.30
Cco 19.71 0.83
PM,, 34.42 4.55
) . NO, 17.48 17.08
Coal Mill Unit 2/3 UAT1 SO, 34.42 36.87
CO 16.11 0.84
PM,, 36.70 4.55
. . NO, 20.22 11.26
Kiln Unit 2/3 UA12 SO, 3452 65.54
Cco 18.06 0.83
PM,, 46.70 4.55
Coal Stock Pile UA13 NO, 19.96 16.84
Unit 2/3/4 SO, 20.87 86.00
Cco 5.14 0.84
PM,, 49.70 4.55
) . NO, 21.50 18.76
Kiln Unit 4 UA14 SO, 26.15 93.02
CO 13.95 0.83
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Cont. Table 3.

ISPU value ISPU categories
Area Measurement Code | Pollutant | Ground-based Satellite Ground-based Satellite
points imagery imagery
measurements LY measurements L
estimation estimation
PM,, 45.70 4.55
) ) NO, 20.75 17.79
Cement Mill Unit 4 UA15 SO, 3250 8947
CcO 10.62 0.84
PM,, 25.80 455
Coal Stockpile UA16 NO, 15.35 16.17
Unit 5 SO, 20.87 0.84
CcO 9.32 83.52
PM,, 33.40 455
Coal Stockpile UA17 NO, 9.34 14.64
Bontoa SO, 22.60 77.92
CcO 12.54 0.84
PM,, 42.80 4.55
Batching Plant UA18 NO, 23.01 18.90
Biringere SO, 32.40 93.56
CcO 14.16 0.84
PM,, 36.10 455
Biringkassi Coal UA19 NO, 17.30 27.42
Warehouse SO, 30.58 124.22
Operational CcO 10.17 0.84
area PM,, 50.95 4.55
Biringkas.si UA20 NO2 18.23 28.01
Cement Silo SO, 34.33 126.30
CcO 13.62 0.84
PM,, 35.67 455
Biringkassi Power | ., NO, 26.46 26.40
Plant 1 SO, 35.67 120.62
CO 12.49 0.84
PM,, 36.90 4.55
Biringkassi Power | ), NO, 16.95 26.65
Plant 2 SO, 20.87 121.49
CcO 3.17 0.84
Contral Soocal PM,, 31.90 4.55
ermarfrﬁc'a UA23 NO, 16.24 21.97
Biringkassi S0, 19.62 105.11
CcOo 4.19 0.84
PM,, 43.90 4.55
Wharf Il UA24 NO, 11.55 22.92
Biringkassi SO 29.90 108.45 |__Unhealth
CcO 8.52 0.84
PM,, 33.85 4.55
Road near Tabo- NO 14.16 30.42
Tabo Clay Quarry UA25 802 33.85 134.72 Unhealth
, . : y
CO 11.96 0.84
Fesidontial A PM,, 24.81 4.55
esidential Airea NO, 14.07 22.75
o ”eagﬁsﬁ’;abo VA6 SO, 24.81 107.84 Unhealthy
Residential CO 1.15 0.84
area Fesidontal A PM,, 30.80 4.55
esidenual sirea NO, 19.07 28.44
”eag‘gf&e"“e UA27 SO, 18.27 127.80 Unhealthy
CcO 5.16 0.84
“ond noar PM,, 21.80 4.55
NO, 17.48 28.53
B”'“gﬂg’fryc'ay VA8 SO, 18.27 128.12 Unhealthy
CO 8.94 0.84
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Cont. Table 3.

ISPU value ISPU categories
Measurement i i
Area oints Code | Pollutant | Ground-based Satellite Ground-based Satellite
p imagery imagery
measurements S measurements L
estimation estimation
PM,, 24.10 4.55
Mangilu Village UA29 NO, 642 30.71
ilu Vi
giuvitag SO, 18.27 135.74 Unhealthy
CO 1.84 0.84
PM,, 30.20 4.55
Road near Tonasa NO, 17.57 22.93
UA30
1 Clay Quarry SO, 26.54 108.49 Unhealthy
CO 6.95 0.84
PM,, 25.80 4.55
Residential Area NO 18.23 29.35
near Tonasa 1 UA31 2 : -
Clay Quarry SO, 18.27 130.97 Unhealthy
CO 3.53 0.84
PM,, 21.80 4.55
Taraweang Village | UA32 NO, 7.83 30.76
Wi I
SR SO, 18.27 135.92 Unhealthy
CcO 1.84 0.84
PM,, 25.30 4.55
In Front of
NO 12.92 30.75
Sapanang Village UA33 2
Office so, 18.27 135.87 Unhealthy
CcO 1.84 0.84
PM,, 22.90 4.55
In Front of NO, 16.90 13.21
Kampung Sela UA34
Mosque SO, 18.27 72.69
CcO 1.84 0.83
PM,, 31.80 4.55
Residential | In Front of Main NO, 18.45 26.15
) UA35
area Office SO, 28.75 119.76 Unhealthy
CcO 7.14 0.84
PM,, 31.50 4.55
Biringerg Village UA36 NO, 10.18 20.35
Office SO, 20.77 98.85
CO 1.84 0.84
PM,, 23.60 4.55
In Front of Tagwa NO, 7.48 26.01
UA37
Mosque SO, 18.27 119.30 Unhealthy
CcO 1.84 0.84
PM,, 37.20 4.55
Tonasa—-Bungoro NO 16.50 30.68
Main Road UA38 2 : -
(Bontoa) SO, 49.33 135.63 Unhealthy
CcO 12.52 0.84
PM,, 39.20 4.55
Bungoro NO, 20.44 28.58
. UA39
Intersection SO, 49.04 128.29 Unhealthy
CcO 13.82 0.84
In Eront of PM,, 21.40 4.55
Bujung Tangaya NO, 11.19 26.87
UA40
Elementary School SO, 15.48 122.27 Unhealthy
(Bulu Cindea) co 0.90 0.84
PM,, 21.50 4.55
Bowong Cindea NO, 16.24 26.99
. UA41
Village SO, 20.00 122.71 Unhealthy
CcO 5.01 0.84
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(Tabo-Tabo Clay Quarry), while ground mea-
surements showed the highest value at UA21
(Biringkassi Power Plant 1) (Figures 4 and 5).
The high NO, concentration in the power plant
area is expected, as coal combustion is a major
source of NO, emissions (Agarwalla et al., 2024).
However, the high estimated concentration in the
mining area suggests potential algorithmic bias
toward open surfaces with high land surface tem-
peratures, as LST (Land Surface Temperature)
is a contributing variable in the estimation algo-
rithm. Rahaman et al. (2023) have noted that the
NO: concentration estimates using the multiband
approach from Landsat may deviate in areas with
low vegetation cover or bright surfaces such as
mining zones.

Sulfur dioxide

The estimated SO, distribution showed the
highest concentration at UA2 (Tabo-Tabo Clay
Quarry), while ground measurements identified
the peak at UA38 (Tonasa—Bungoro Main Road
(Bontoa)) (Figures 6 and 7). The SO, pollut-
ants typically originate from the combustion of
high-sulfur fuels, such as coal in power plants
and industrial transportation (Etim et al., 2021).
This discrepancy is likely influenced by the tem-
poral resolution limitations of Landsat 8 imagery,
which only captures data every 16 days, poten-
tially causing the estimation to miss the actual
conditions at the time of ground measurement.
Nevertheless, the distribution pattern indicates
that the estimation algorithm by Mahardianti et
al. (2024) still effectively captures the general
trend of SO, distribution, particularly in industrial
areas with combustion and raw material process-
ing activities.

Carbon monoxide

For the CO parameter, the estimation indicat-
ed the highest concentration at UA35 (In Front of
Main Office), while measurement data recorded
the peak at UA9 (Packer Unit 2/3/4) (Figures
8 and 9). Carbon monoxide is an invisible and
scentless gas generated through incomplete com-
bustion processes, mainly originating from motor
vehicles and industrial equipment (World Health
Organization, 2021). The estimation model ap-
plied was based on the approach by Somvanshi
et al. (2019), which utilized a combination of OLI
and TIRS bands, including land surface tempera-
ture as a parameter. Potential discrepancies may
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arise because the CO levels fluctuate rapidly and
are heavily influenced by daily human activities,
which may not be captured during satellite acqui-
sition times. Moreover, CO is a light gas that can
be quickly diluted by wind, making its spatial dis-
tribution highly dynamic (Bachtiar et al., 2018).

The comparison between estimation results
and measurement data indicates that satellite
imagery-based approaches hold strong potential
for mapping regional air pollution. However,
discrepancies exist between the locations of the
highest estimated concentrations and those of the
actual measured peaks across nearly all param-
eters. This aligns with the findings of Ghasem-
pour et al. (2021), who noted that the accuracy of
satellite-based estimations is highly dependent on
atmospheric conditions, surface characteristics,
and the timing of image acquisition.

Several factors influence the accuracy of
satellite-derived air pollutant concentration esti-
mates. First, spatial resolution limitations—such
as the 30-meter resolution of Landsat 8—make it
less effective in precisely detecting point-source
emissions, particularly from localized sources
such as factory chimneys or heavy vehicles. Sec-
ond, the estimation algorithms rely heavily on
land surface temperature (LST) and vegetation
indices. This dependence can lead to inaccura-
cies, especially in artificial or open mining areas
the surface characteristics of which differ signifi-
cantly from vegetated regions. Third, temporal
variability of emissions poses a challenge, as air
pollutant concentrations are strongly influenced
by daily human activities and rapidly changing
meteorological conditions. Since satellite imag-
ery captures only a single moment in time, it may
not align with the timing of ground measurements
(Shin et al., 2020).

Nevertheless, this approach remains highly
valuable, especially in the areas with limited air
quality monitoring infrastructure. As reported by
IQAIr (2024), South Sulawesi has only three air
monitoring stations, making the application of re-
mote sensing technology a relevant and efficient
alternative solution.

Furthermore, air pollutant concentrations
estimated from satellite imagery were used to
calculate the Indonesian Air Pollution Standard
Index (ISPU) based on Government Regula-
tion No. 22 of 2021. The estimation results at 41
measurement points revealed a wide range of air
quality categories. According to the ISPU, sev-
eral locations fell under the Unhealthy category,
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particularly in industrial areas such as Tabo-Tabo
Clay Quarry (UA2), Biringkassi Cement Silo
(UA20), and residential zones near major emis-
sion sources. These findings signal possible pol-
lutant exposure that may adversely affect public
health, particularly among sensitive populations
such as children and the elderly.

However, when ISPU values were calculated
using direct measurement data (on-site test re-
sults), the outcomes differed significantly. All
points were recorded in the Good category, with
some ranging up to Moderate. These discrepan-
cies indicate a potential overestimation in the sat-
ellite-based results. This may occur because some
estimation algorithms assume ideal conditions in
the relationship between spectral values and pol-
lutant concentrations, whereas local atmospheric
conditions, surface disturbances, and the timing
of image acquisition greatly affect estimation ac-
curacy. As Wang et al. (2022) noted, factors such
as humidity, land surface temperature, and the
presence of aerosols can influence the accuracy
of remote sensing-based calculations.

Therefore, while satellite-based approaches
offer advantages in terms of broad and continu-
ous monitoring, their results must be regularly
validated against ground-based measurements
to achieve a more accurate understanding of air
quality. These inconsistencies also highlight the
need to develop localized algorithms that are bet-
ter suited to the atmospheric and land use char-
acteristics of the study area, as well as the im-
portance of selecting acquisition times that better
reflect daily pollution conditions on the ground.
A combined approach using satellite imagery and
direct measurements can provide more reliable
results to support air pollution control policies,
particularly in strategic industrial areas such as
Pangkep Regency.

Several previous studies have demonstrated
the potential of satellite remote sensing for as-
sessing air quality in diverse environments, in-
cluding arid regions, urban megacities, and in-
dustrial areas (Othman et al., 2010; Mahardianti
et al., 2024; Somvanshi et al., 2019). These stud-
ies indicate that satellite-derived data can be used
to estimate air quality parameters and indices,
although discrepancies with ground-based mea-
surements remain a common challenge.

At the same time, this study provides the
contributions that distinguish it from much of
the earlier work. While previous research has
focused on arid regions, large urban centers, or

industrial-urban areas, the present study exam-
ines a cement industrial complex characterized
by highly localized and intense emissions. This
industrial context highlights both the strengths
and the limitations of medium-resolution satel-
lite imagery in representing pollutant variability
across heterogeneous landscapes. Furthermore,
the integration of satellite-derived pollutant con-
centrations with ISPU provides a framework that
has rarely been emphasized in earlier studies, par-
ticularly in the context of Indonesia.

These aspects underline the significance of
this research. By combining satellite-based es-
timations with ground-based measurements, the
study demonstrates a practical approach for as-
sessing air quality in the regions where monitor-
ing infrastructure is limited. The results suggest
that, despite a tendency to overestimate concen-
trations, satellite remote sensing can serve as a
valuable complementary tool for identifying pol-
lution hotspots and providing broader spatial cov-
erage. This integrated approach not only supports
environmental monitoring and management in
industrial regions but also contributes to policy-
making aimed at balancing industrial develop-
ment with public health protection.

CONCLUSIONS

This study demonstrated the potential of
Landsat 8 imagery for estimating concentrations
of PM , NO,, SO,, and CO in an industrial ce-
ment area of Pangkep Regency, South Sulawesi,
with validation against ground-based data. The
results showed that the NO, and SO, concentra-
tions were generally overestimated by satellite
estimations, while PM,  and CO were underes-
timated compared with field observations, lead-
ing to notable differences in ISPU values. The
ground-based ISPU ranged from Good to Mod-
erate, whereas the satellite-derived ISPU extend-
ed to categories as high as Unhealthy, reflecting
the influence of resolution, surface heterogene-
ity, and acquisition timing on pollutant estima-
tion. Despite these discrepancies, the integration
of the satellite and ground-based approaches
highlights the usefulness of remote sensing for
identifying spatial variability and potential pol-
lution hotspots, especially in the areas with lim-
ited monitoring infrastructure. These findings
emphasize the role of satellite data as a comple-
mentary tool for environmental management
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and policy-making in industrial regions, while
also pointing to the need for future research that
incorporates higher-resolution sensors, multi-
temporal datasets, and advanced modeling tech-
niques to improve accuracy and reliability in
satellite-based air quality assessments.
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